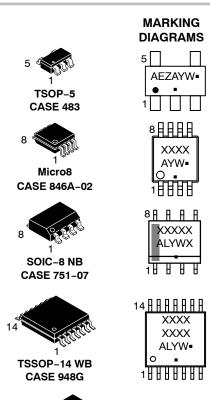
Precision Operational Amplifier, 25 μV Offset, Zero-Drift, 36 V Supply, 2 MHz

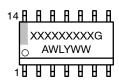
The NCS2191x family of high precision op amps feature low input offset voltage and near–zero drift over time and temperature. These op amps operate over a wide supply range from 4 V to 36 V with low quiescent current. The rail–to–rail output swings within 10 mV of the rails. The family includes the single channel NCS(V)21911, the dual channel NCS(V)21912, and the quad channel NCS(V)21914 in a variety of packages. All versions are specified for operation from –40°C to +125°C. Automotive qualified options are available under the NCV prefix.

Features

- Input Offset Voltage: 25 μV max
- Zero-Drift Offset Voltage: 0.085 μV/°C max
 Voltage Noise Density: 22 nV/√Hz typical
- Unity Gain Bandwidth: 2 MHz typical
- Supply Voltage: 4 V to 36 V
- Quiescent Current: 570 μA max
- Rail-to-Rail Output
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-free, Halogen free/BFR free and are RoHS compliant


Typical Applications

- Temperature Measurements
- Transducer Applications
- Electronic Scales
- Medical Instrumentation
- Current Sensing
- Automotive



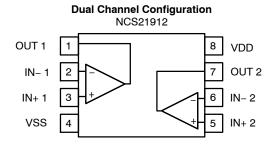
ON Semiconductor®

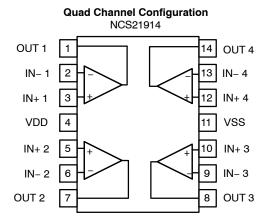
www.onsemi.com

XXXXX = Specific Device Code A = Assembly Location

L or WL = Wafer Lot
Y = Year
W = Work Week
Pb-Free Package


(Note: Microdot may be in either location)


ORDERING INFORMATION


See detailed ordering and shipping information on page 2 of this data sheet.

PIN CONNECTIONS

Single Channel Configuration

ORDERING INFORMATION

Channels	Device	Package	Shipping †
Single	NCS21911SN2T1G	SOT23-5 / TSOP-5	3000 / Tape & Reel
Dual	NCS21912DR2G (In Development*)	SOIC-8	2500 / Tape & Reel
	NCS21912DMR2G (In Development*)	MICRO-8	4000 / Tape & Reel
Quad	NCS21914DR2G (In Development*)	SOIC-14	2500 / Tape & Reel
	NCS21914DBR2G (In Development*)	TSSOP-14	2500 / Tape & Reel
utomotive Qualified			
Channels	Device	Package	Shipping [†]
Single	NCV21911SN2T1G	SOT23-5 / TSOP-5	3000 / Tape & Reel
Dual	NCV21912DR2G (In Development*)	SOIC-8	2500 / Tape & Reel
	NCV21912DMR2G (In Development*)	MICRO-8	4000 / Tape & Reel
Quad	NCV21914DR2G (In Development*)	SOIC-14	2500 / Tape & Reel
	NCV21914DBR2G (In Development*)	TSSOP-14	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

^{*}Contact local sales office for more information.

ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Unit
Supply Voltage (VDD- VSS)	40	V
INPUT AND OUTPUT PINS		
Input Voltage (Note 1)	VSS – 0.3 to VDD + 0.3	V
Differential Input Voltage (Note 2)	±17	V
Input Current (Notes 1 and 2)	±10	mA
Output Short Circuit Current (Note 3)	Continuous	mA
TEMPERATURE		
Operating Temperature	-40 to +125	°C
Storage Temperature	-65 to +150	°C
Junction Temperature	+150	°C
ESD RATINGS (Note 4)		
Human Body Model (HBM)	3000	V
Charged Device Model (CDM)	2000	V
OTHER RATINGS	•	
Latch-up Current (Note 5)	100	mA
MSL	Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails should be current limited to 10 mA or less.
- 2. The inputs are diode connected with a total input protection of 1.65 k Ω , increasing the absolute maximum differential voltage to $\pm 17 \ V_{DC}$. If the applied differential voltage is expected to exceed this rating, external resistors should be added in series with the inputs to limit the input current to $\pm 10 \ \text{mA}$.
- 3. Short–circuit to V_{DD} or V_{SS} . Short circuits to either rail can cause an increase in the junction temperature. The total power dissipation must be limited to prevent the junction temperature from exceeding the 150°C limit.
- 4. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per JEDEC standard JS-001-2017 (AEC-Q100-002) ESD Charged Device Model tested per JEDEC standard JS-002-2014 (AEC-Q100-011)
- 5. Latch-up Current tested per JEDEC standard JESD78E (AEC-Q100-004).

THERMAL INFORMATION (Note 6)

Rating	Symbol	Package	Value	Unit
Thermal Resistance, Junction to Ambient	θ_{JA}	TSOP-5 / SOT23-5	170	°C/W
		Micro8/MSOP8	TBD	
		SOIC-8	TBD	
		SOIC-14	TBD	
		TSSOP-14	TBD	

As mounted on an 80x80x1.5 mm FR4 PCB with 2S2P, 2 oz copper, and a 200 mm² heat spreader area. Following JEDEC JESD51-7 guidelines.

OPERATING CONDITIONS

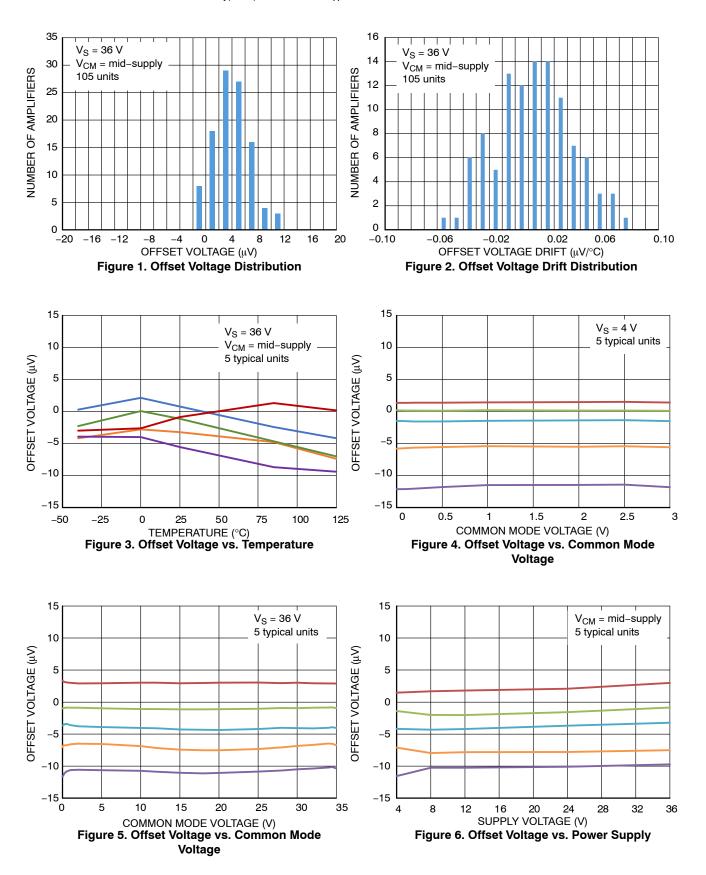
Parameter	Symbol	Range	Unit
Supply Voltage (V _{DD} - V _{SS})	V _S	4 to 36	V
Specified Operating Temperature Range	T _A	-40 to 125	°C
Input Common Mode Voltage Range	V _{CM}	V _{SS} to V _{DD} -1.5	V
Differential Voltage (Note 7)	V_{DIFF}	±17	V

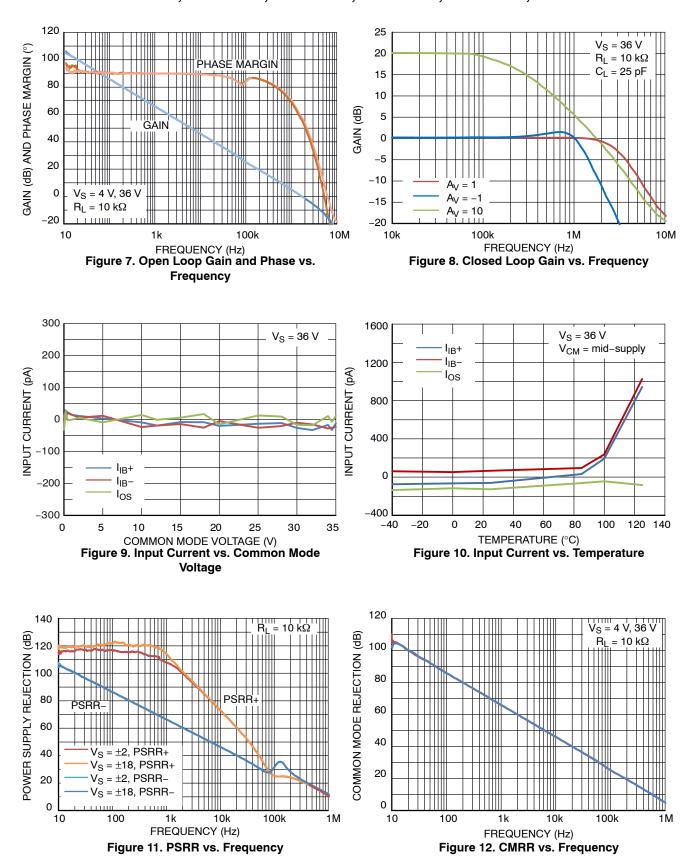
The inputs are diode connected with a total input protection of 1.65 kΩ, increasing the absolute maximum differential voltage to ±17 V_{DC}.
 If the applied differential voltage is expected to exceed this rating, external resistors should be added in series with the inputs to limit the input current to ±10 mA.

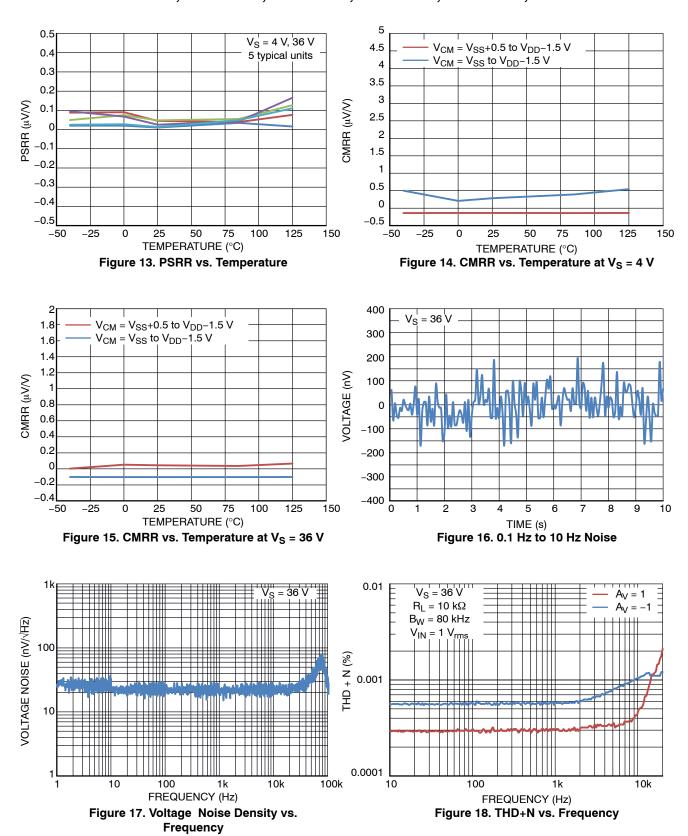
ELECTRICAL CHARACTERISTICS $V_S = 4 V \text{ to } 36 V$

At $T_A = +25^{\circ}C$, $R_L = 10~k\Omega$ connected to midsupply, $V_{CM} = V_{OUT} =$ midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to 125°C, guaranteed by characterization and/or design.

Parameter	Symbol	Conditio	ns	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
Offset Voltage	Vos				±1	±25	μV
Offset Voltage Drift vs Temp	$\Delta V_{OS}/\Delta T$				±0.02	±0.085	μV/°C
Input Bias Current	I _{IB}				±100	±500	pА
						±3500	pA
Input Offset Current	los				±200	±500	pA
						±3500	pА
Common Mode Rejection Ratio	CMRR	$V_{SS} \le V_{CM} \le V_{DD}-1.5 V$	V _S = 36 V	140	150		dB
		V _{DD} –1.5 V		130			
			V _S = 12 V	130	150		
			(Note 8)	120			
			V _S = 8 V	130	140		
			(Note 8)	120			
			V _S = 4 V	120	130		
				110			
Input Capacitance	C _{IN}	Common N	/lode		3		pF
EMI Rejection Ratio	EMIRR	f = 5 GHz			100		dB
		f = 400 M	Hz		80		
OUTPUT CHARACTERISTICS							
Open Loop Voltage Gain	Avoi	A_{VOL} $V_{SS} + 0.5 V < V_{O} < V_{DD} - 0.5 V$		130	150		dB
, ,	VOL			125	135		
Open Loop Output Impedance	Z _{OUT_OL}	No Loa	d		See		Ω
	001_02				Figure 23		
Output Voltage High, Referenced to	V _{OH}	No Load $R_L = 10 \text{ k}\Omega$			5	10	mV
Rail					100	210	
					140	250	
Output Voltage Low, Referenced to	V_{OL}	No Loa	d		5	10	mV
Rail		R _L = 10 kΩ			100	210	1
					140	250	
Short Circuit Current	I _{SC}	Sinking Cu	rrent		18		mA
		Sourcing Co	urrent		16		
Capacitive Load Drive	C_{L}				1		nF
DYNAMIC PERFORMANCE	•	•	•		•		
Gain Bandwidth Product	GBW	C _L = 100	pF		2		MHz
Gain Margin	A _M	C _L = 100 pF			13		dB
Phase Margin	φм	C _L = 100 pF			55		0
Slew Rate	SR	G = +1			1.6		V/μs
Settling Time	t _S	V _S = 36 V	0.1%		20		μS
			0.01%		45		μS
Overload Recovery Time	t _{OR}	$V_S = \pm 18 \text{ V, A}_V$ $V_{IN} = \pm 2.4$	/ = −10,		1		μs


^{8.} Guaranteed by characterization and/or design.


ELECTRICAL CHARACTERISTICS $V_S = 4 \text{ V to } 36 \text{ V}$ At $T_A = +25 ^{\circ}\text{C}$, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT} =$ midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range, $T_A = -40 ^{\circ}\text{C}$ to 125 $^{\circ}\text{C}$, guaranteed by characterization and/or design.


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
NOISE PERFORMANCE						
Total Harmonic Distortion + Noise	THD+N	f_{IN} = 1 kHz, A_V = 1, V_{OUT} = 1 V_{TMS}		0.0003		%
Voltage Noise Density	e _N	f = 1 kHz		22		nV/√ Hz
Current Noise Density	i _N	f = 1 kHz		100		fA/√ Hz
Voltage Noise, Peak-to-Peak	e _{PP}	f = 0.1 Hz to 10 Hz		400		nV_PP
Voltage Noise, RMS	e _{rms}	f = 0.1 Hz to 10 Hz		70		nV_{rms}
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	V _S = 4 V to 36 V		0.02	0.3	μV/V
			130	154		dB
Quiescent Current	ΙQ	Per channel		475	570	μΑ
					570	1

GRAPHS

Typical performance at $T_A = 25^{\circ}C$, unless otherwise noted.

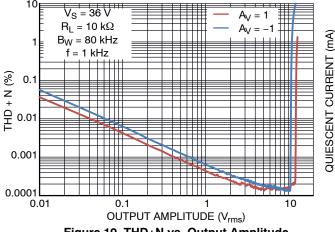


Figure 19. THD+N vs. Output Amplitude

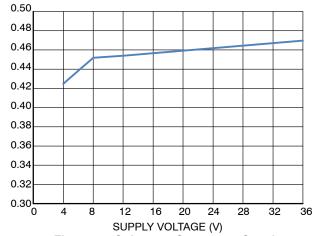


Figure 20. Quiescent Current vs. Supply Voltage

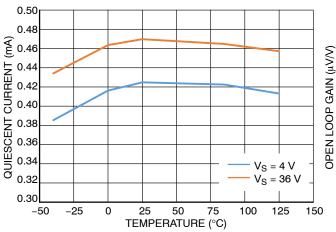


Figure 21. Quiescent Current vs. Temperature

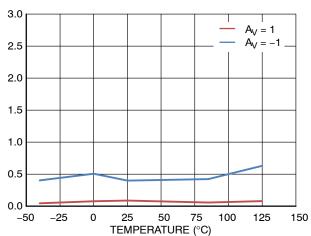


Figure 22. Open Loop Gain vs. Temperature

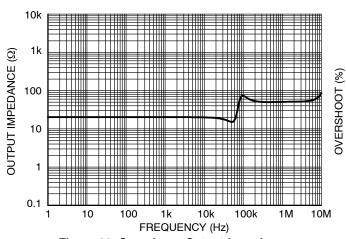


Figure 23. Open Loop Output Impedance vs. Frequency

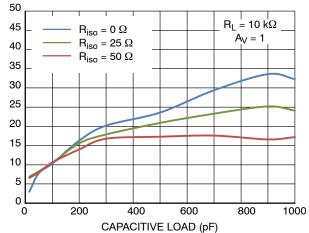


Figure 24. Small Signal Overshoot vs. Capacitive Load (100 mV Output Step)

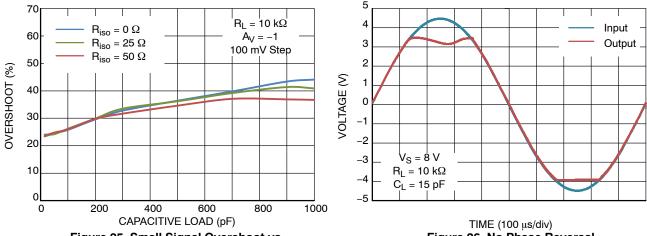


Figure 25. Small Signal Overshoot vs. Capacitive Load (100 mV Output Step)

Figure 26. No Phase Reversal

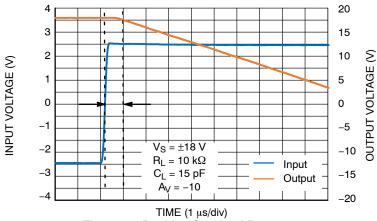


Figure 27. Positive Overload Recovery

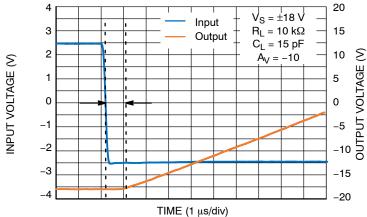
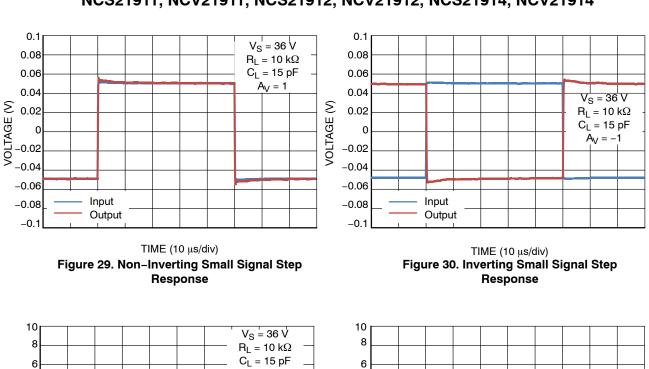
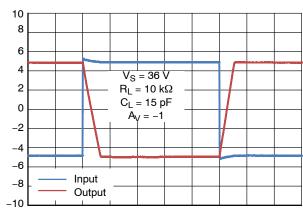




Figure 28. Negative Overload Recovery

TIME (10 μs/div)
Figure 31. Non–Inverting Large Signal Step
Response

TIME (10 μs/div) Figure 32. Inverting Large Signal Step Response

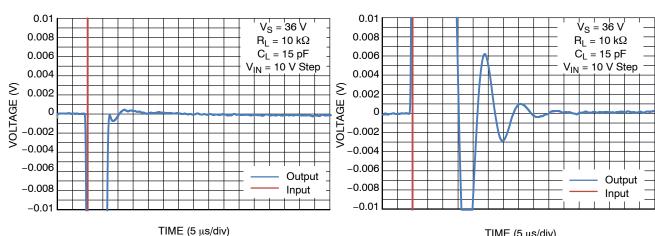


Figure 33. Large Signal Settling Time, Low-to-High

TIME (5 μs/div)
Figure 34. Large Signal Settling Time,
High-to-Low

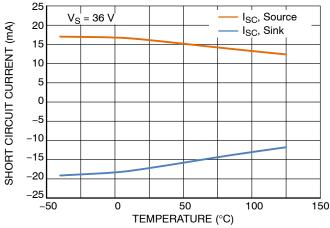


Figure 35. Short Circuit Current vs. Temperature

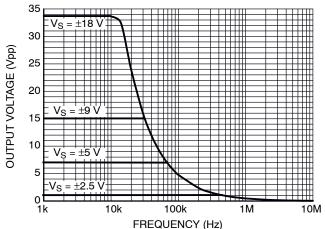


Figure 36. Maximum Output Voltage vs. Frequency (A_V = 1 for V_S = ± 2.5 V, ± 5 V, ± 9 V; A_V = 2 for V_S = ± 18 V)

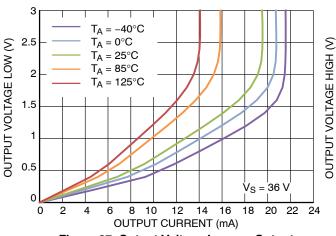


Figure 37. Output Voltage Low vs. Output Current

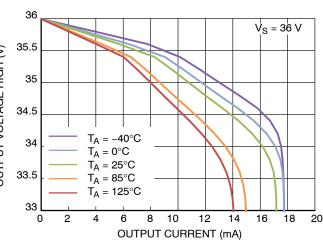


Figure 38. Output Voltage High vs. Output Current

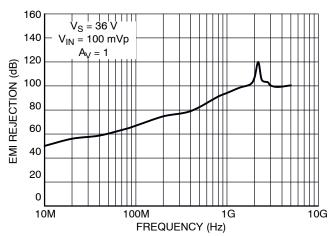


Figure 39. EMIRR IN+ vs. Frequency

APPLICATION INFORMATION

Overview

The NCS21911, NCS21912, and NCS21914 precision op amps provide low offset voltage and zero drift over temperature. With a maximum offset voltage of 25 μV and input common mode voltage range that includes ground, the NCS21911 series is well–suited for applications where precision is required, such as low side current sensing and interfacing with sensors.

The NCS21911 series of amplifiers uses a chopper-stabilized architecture, which provides the advantage of minimizing offset voltage drift over temperature and time. The simplified block diagram is shown in Figure 40. Unlike the classical chopper architecture, the chopper stabilized architecture has two signal paths.

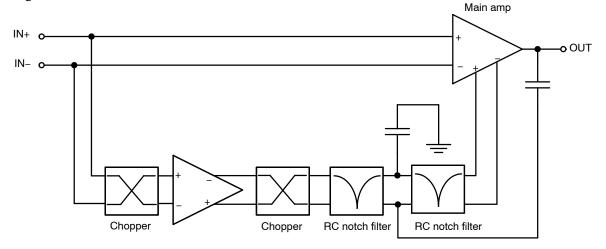


Figure 40. Simplified NCS21911 Block Diagram

In Figure 40, the lower signal path is where the chopper samples the input offset voltage, which is then used to correct the offset at the output. The offset correction occurs at a frequency of 250 kHz. The chopper-stabilized architecture is optimized for best performance at frequencies up to the related Nyquist frequency (1/2 of the offset correction frequency). As the signal frequency exceeds the Nyquist frequency, 125 kHz, aliasing may occur at the output. This is an inherent limitation of all chopper and chopper-stabilized architectures. Nevertheless, the NCS21911 series op amps have minimal aliasing up to 200 kHz and are less susceptible to aliasing effects when compared to competitor parts from other manufacturers. ON Semiconductor's patented approach utilizes two cascaded, symmetrical, RC notch filters tuned to the chopper frequency and its fifth harmonic to reduce aliasing effects.

The chopper-stabilized architecture also benefits from the feed-forward path, which is shown as the upper signal path of the block diagram in Figure 40. This is the high speed signal path that extends the gain bandwidth up to 2 MHz. Not only does this help retain high frequency components of the input signal, but it also improves the loop gain at low frequencies. This is especially useful for low-side current sensing and sensor interface applications where the signal is low frequency and the differential voltage is relatively small.

Application Circuits

Low-Side Current Sensing

Low–side current sensing is used to monitor the current through a load. This method can be used to detect over–current conditions and is often used in feedback control, as shown in Figure 41. A sense resistor is placed in series with the load to ground. Typically, the value of the sense resistor is less than 100 m Ω to reduce power loss across the resistor. The op amp amplifies the voltage drop across the sense resistor with a gain set by external resistors R1, R2, R3, and R4 (where R1 = R2, R3 = R4). Precision resistors are required for high accuracy, and the gain is set to utilize the full scale of the ADC for the highest resolution.

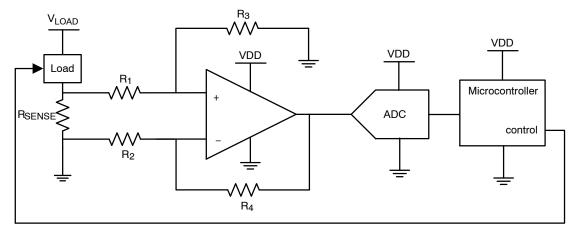


Figure 41. Low-Side Current Sensing

Differential Amplifier for Bridged Circuits

Sensors to measure strain, pressure, and temperature are often configured in a Wheatstone bridge circuit as shown in Figure 42. In the measurement, the voltage change that is

produced is relatively small and needs to be amplified before going into an ADC. Precision amplifiers are recommended in these types of applications due to their high gain, low noise, and low offset voltage.

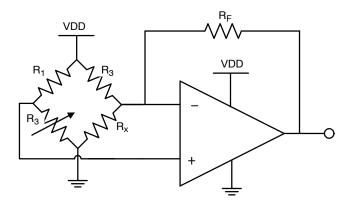
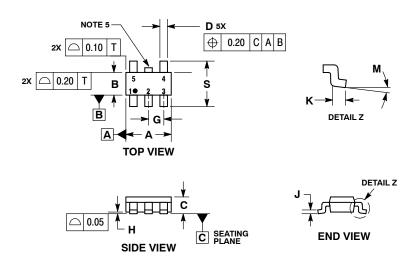


Figure 42. Wheatstone Bridge Circuit Amplification

EMI Susceptibility and Input Filtering

Op amps have varying amounts of EMI susceptibility. Semiconductor junctions can pick up and rectify EMI signals, creating an EMI-induced voltage offset at the output, adding another component to the total error. Input pins are the most sensitive to EMI. The NCS2191x integrates low-pass filters to decrease its sensitivity to EMI. Figure 39 shows the EMIRR performance.


General Layout Guidelines

To ensure optimum device performance, it is important to follow good PCB design practices. Place 0.1 μF decoupling

capacitors as close as possible to the supply pins. Keep traces short, utilize a ground plane, choose surface-mount components, and place components as close as possible to the device pins. These techniques will reduce susceptibility to electromagnetic interference (EMI). Thermoelectric effects can create an additional temperature dependent offset voltage at the input pins. To reduce these effects, use metals with low thermoelectric coefficients and prevent temperature gradients from heat sources or cooling fans.

PACKAGE DIMENSIONS

TSOP-5 **CASE 483** ISSUE M

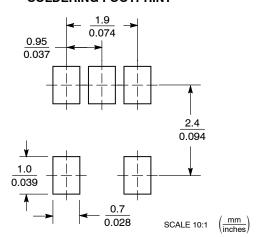
NOTES:

- VILES.

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

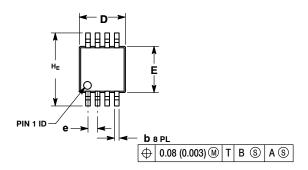
- 2. CONTROLLING DIMENSION: MILLIMETERS.

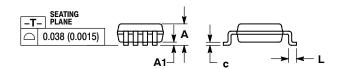

 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A.

 5. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMENSI FAMILY AND ADDITIONAL.
- TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.85	3.15		
В	1.35	1.65		
С	0.90	1.10		
D	0.25	0.50		
G	0.95	BSC		
Н	0.01	0.10		
J	0.10	0.26		
K	0.20	0.60		
М	0°	10 °		
S	2.50	3.00		

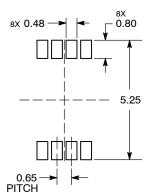

SOLDERING FOOTPRINT*



*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

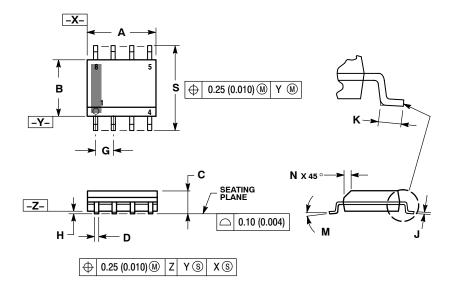
Micro8 CASE 846A-02 **ISSUE J**



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED. 0.15 (0.006) PER SIDE.
- 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 5. 846A-01 OBSOLETE, NEW STANDARD 846A-02.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10		-	0.043
A1	0.05	0.08	0.15	0.002	0.003	0.006
b	0.25	0.33	0.40	0.010	0.013	0.016
С	0.13	0.18	0.23	0.005	0.007	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
E	2.90	3.00	3.10	0.114	0.118	0.122
е		0.65 BSC			0.026 BSC)
L	0.40	0.55	0.70	0.016	0.021	0.028
HE	4.75	4.90	5.05	0.187	0.193	0.199

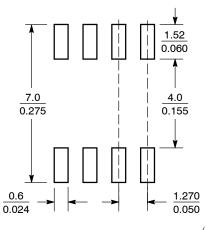
RECOMMENDED SOLDERING FOOTPRINT*



DIMENSION: MILLIMETERS

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

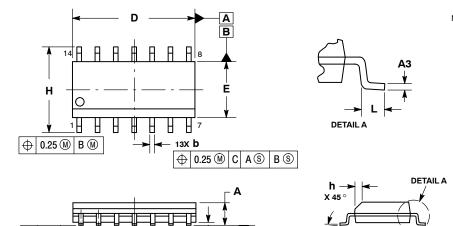
PACKAGE DIMENSIONS


SOIC-8 NB CASE 751-07 **ISSUE AK**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- MAXIMUM MATERIAL CONDITION.
 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	7 BSC	0.050 BSC	
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*



SCALE 6:1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOIC-14 NB CASE 751A-03 ISSUE L

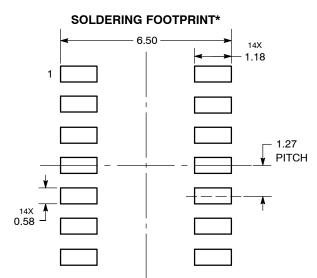
C SEATING PLANE

0.10

e

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

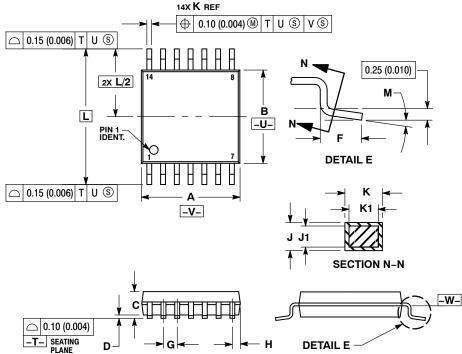

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.

 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
АЗ	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
е	1.27	BSC	0.050 BSC	
Η	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
М	0 °	7°	0 °	7°

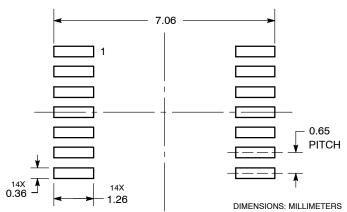


DIMENSIONS: MILLIMETERS

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-14 WB CASE 948G **ISSUE C**


NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.

- 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMILM MATERIAL CONDITION MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
C		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.50	0.60	0.020	0.024	
C	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40	BSC	0.252 BSC		
М	0 °	8 °	0 °	8°	

SOLDERING FOOTPRINT

ON Semiconductor and lill are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative