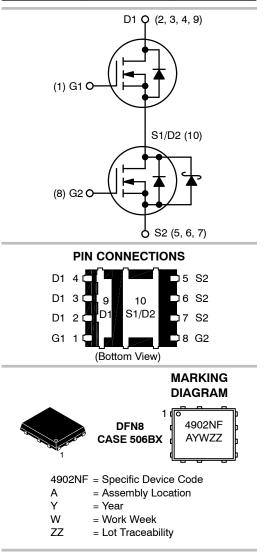
MOSFET – Power, Dual, N-Channel with Integrated Schottky, SO8FL

30 V, High Side 18 A / Low Side 23 A

Features

- Co-Packaged Power Stage Solution to Minimize Board Space
- Low Side MOSFET with Integrated Schottky
- Minimized Parasitic Inductances
- Optimized Devices to Reduce Power Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications


- DC–DC Converters
- System Voltage Rails
- Point of Load

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
Q1 Top FET	$6.5~\mathrm{m}\Omega$ @ 10 V	10.4
30 V	10 mΩ @ 4.5 V	18 A
Q2 Bottom	4.1 mΩ @ 10 V	23 A
FET 30 V	6.2 mΩ @ 4.5 V	23 A

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS (T_J = $25^{\circ}C$ unless otherwise stated)

Parameter				Symbol	Value	Unit
Drain-to-Source Voltage	Q1	V _{DSS}	30	V		
Drain-to-Source Voltage	Q2					
Gate-to-Source Voltage			Q1	V _{GS}	±20	V
Gate-to-Source Voltage			Q2			
Continuous Drain Current $R_{\theta JA}$ (Note 1)		T _A = 25°C	Q1	I _D	13.5	
		T _A = 85°C			9.7	
		T _A = 25°C	Q2		17.5	A
		T _A = 85°C			12.6	
Power Dissipation		T _A = 25°C	Q1	PD	1.90	W
R0JA (Note 1)			Q2		1.99	
Continuous Drain Current $R_{\theta JA} \leq 10 \text{ s}$ (Note 1)	1	T _A = 25°C	Q1	I _D	18.2	
		T _A = 85°C			13.1	
	Steady	T _A = 25°C	Q2		23	A
	State	T _A = 85°C			16.6	
Power Dissipation		T _A = 25°C	Q1	PD	3.45	W
$R_{\theta JA} \leq 10 \text{ s}$ (Note 1)			Q2		3.45	
Continuous Drain Current		T _A = 25°C	Q1	I _D	10.3	
R _{0JA} (Note 2)		T _A = 85°C			7.4	
		T _A = 25°C	Q2		13.3	A
		T _A = 85°C			9.6	
Power Dissipation		T _A = 25 °C	Q1	PD	1.10	W
R _{θJA} (Note 2)			Q2		1.16	
Pulsed Drain Current		TA = 25°C	Q1	I _{DM}	60	Α
		tp = 10 μs	Q2		80	
Operating Junction and Storage Temperature			Q1	T _J , T _{STG}	–55 to +150	°C
	Q2					
Source Current (Body Diode)				ا _S	3.4	Α
	Q2		4.9			
Drain to Source dV/dt		dV/dt	6.0	V/ns		
Single Pulse Drain-to-Source Avalanche Energy (T		24 A	Q1	EAS	28.8	mJ
V_{DD} = 50 V, V_{GS} = 10 V, I_L = XX A_{pk} , L = 0.1 mH, R_{G}	Q2	EAS	36.5			
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)				ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.
2. Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	FET	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 3)	Q1	R_{\thetaJA}	65.9	
	Q2	1	62.8	
Junction-to-Ambient - Steady State (Note 4)	Q1	$R_{\theta JA}$	113.2	0000
	Q2	1	108	°C/W
Junction-to-Ambient – (t \leq 10 s) (Note 3)	Q1	R_{\thetaJA}	36.2	
	Q2		36.2	

3. Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.

4. Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	FET	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS								
Drain-to-Source Break-	Q1	V _{(BR)DSS}	V _{GS} = 0 V,	I _D = 250 μA	30			V
down Voltage	Q2		V _{GS} = 0 V,	I _D = 1.0 mA	30			1
Drain-to-Source Break- down Voltage Temperature	Q1	V _{(BR)DSS}				18		mV / °C
Coefficient	Q2	/ T _J				15		
Zero Gate Voltage Drain	Q1	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V	$T_J = 25^{\circ}C$			1	μΑ
Current			$v_{DS} = 24 v$	$T_J = 125^{\circ}C$			10	1
	Q2		V _{GS} = 0 V, V _{DS} = 24 V	$T_J = 25^{\circ}C$			500	
Gate-to-Source Leakage	Q1	I _{GSS}	V _{GS} = 0 V, \	/DS = ±20 V			±100	nA
Current	Q2						±100	1

ON CHARACTERISTICS (Note 5)

Gate Threshold Voltage	Q1	V _{GS(TH)}	V _{GS} = VDS,	I _D = 250 μA	1.2		2.2	V
	Q2				1.2		2.2	
Negative Threshold Temper- ature Coefficient	Q1	V _{GS(TH)} / T _J				4.5		mV / °C
	Q2	IJ				4.0		-0
Drain-to-Source On Resist-	Q1	R _{DS(on)}	V _{GS} = 10 V	I _D = 10 A		5.2	6.5	
ance			V _{GS} = 4.5 V	I _D = 10 A		8.0	10	
	Q2		V _{GS} = 10 V	I _D = 15 A		3.3	4.1	mΩ
			V _{GS} = 4.5 V	I _D = 15 A		5.0	6.2	
Forward Transconductance	Q1	9 FS	V _{DS} = 1.5 V	V, I _D = 10 A		28		S
	Q2					35		

CHARGES, CAPACITANCES & GATE RESISTANCE

Innut Canaaitanaa	Q1	0		1150	
Input Capacitance	Q2	C _{ISS}		1590	
Output Canaditanaa	Q1	6		360	~
Output Capacitance	Q2	C _{OSS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 15 V	813	pF
Deveree Conseitence	Q1	0		105	
Reverse Capacitance	Q2	C _{RSS}		83	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.

6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise specified)

		Symbol	Test Condition	Min	Тур	Max	Unit
CHARGES, CAPACITANCES	& GATE	RESISTANC	E	-			
	Q1				9.7		
Total Gate Charge	Q2	Q _{G(TOT)}			11.5		
Thursehold Osta Obarra	Q1	0			1.1		
Threshold Gate Charge	Q2	Q _{G(TH)}			1.4		-0
Coto to Source Charge	Q1	0	V_{GS} = 4.5 V, V_{DS} = 15 V; I_{D} = 10 A		3.3		nC
Gate-to-Source Charge	Q2	Q _{GS}			4.2		
Coto to Drain Chargo	Q1	0			3.7		
Gate-to-Drain Charge	Q2	Q _{GD}			3.4		
Total Cata Charge	Q1	0	Q _{G(TOT)} V _{GS} = 10 V, V _{DS} = 15 V; I _D = 10 A		19.1		nC
Total Gate Charge	Q2	Q _{G(TOT)}	$v_{GS} = 10 v, v_{DS} = 15 v, I_D = 10 A$		24.9		ne
SWITCHING CHARACTERIS	TICS (No	te 6)					
Turn On Dalay Time	Q1		V_{GS} = 4.5 V, V_{DS} = 15 V, I _D = 10 A, R _G = 3.0 Ω		9.0		ns
Turn-On Delay Time	Q2	t _{d(ON)}			10.5		
Diag Time	Q1				15		
Rise Time	Q2	t _r			15.2		
Turn Off Delay Time	Q1		I_D = 10 A, R_G = 3.0 Ω		14		ns
Turn-Off Delay Time	Q2	t _{d(OFF)}			17.7		
Fall Time	Q1	+			4.0]
	Q2	t _f			4.7		
SWITCHING CHARACTERIS	TICS (No	te 6)					
Turn-On Delay Time	Q1	÷			6.0		
Tum-On Delay Time	Q2	t _{d(ON)}			7.0		
Rise Time	Q1	+			14		
Q2 Q1	Q2	t _r	V _{GS} = 10 V, V _{DS} = 15 V,		14		
	+	$V_{GS} = 10 \text{ V}, \text{ V}_{DS} = 15 \text{ V}, \\ \text{I}_{D} = 10 \text{ A}, \text{ R}_{G} = 3.0 \Omega$		17		ns	
	Q2	t _{d(OFF)}			22]
	Q1				3.0]
Foll Time		t _f					1
Fall Time	Q2	·			3.3		

	Q1		V _{GS} = 0 V,	$T_J = 25^{\circ}C$	0.75	1.0	
Forward Voltage		V	I _S = 3 A	$T_J = 125^{\circ}C$	0.62		V
Forward Voltage	Q2	V_{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$	0.37	0.70	v
	42		$V_{GS} = 0 V,$ $I_S = 2 A$	$T_J = 125^{\circ}C$	0.31		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%. 6. Switching characteristics are independent of operating junction temperatures.

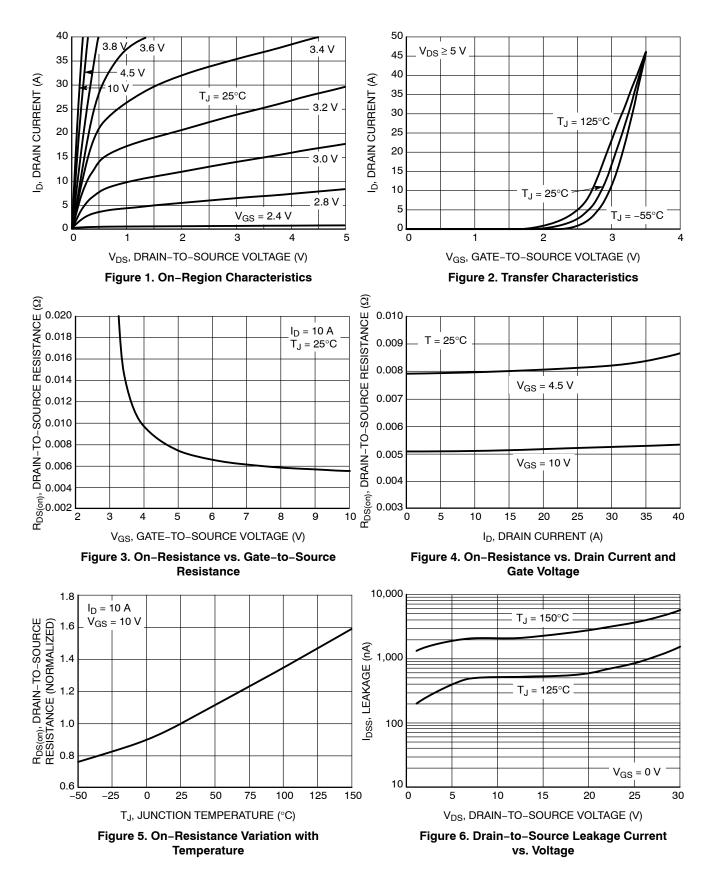
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	FET	Symbol	Test Condition	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHA	RACTE	RISTICS					
	Q1				23		
Reverse Recovery Time	Q2	t _{RR}			24.5		
Chorgo Timo	Q1		ta		12		ns
Charge Time	Q2	la			13		
Discharge Time	Q1	tb	V_{GS} = 0 V, d _{IS} /d _t = 100 A/µs, I _S = 3 A		11		
Discharge Time	Q2	lD			11.5		
Deverse Desevery Charge	Q1	0			12		
Reverse Recovery Charge	Q2	Q _{RR}			24		nC

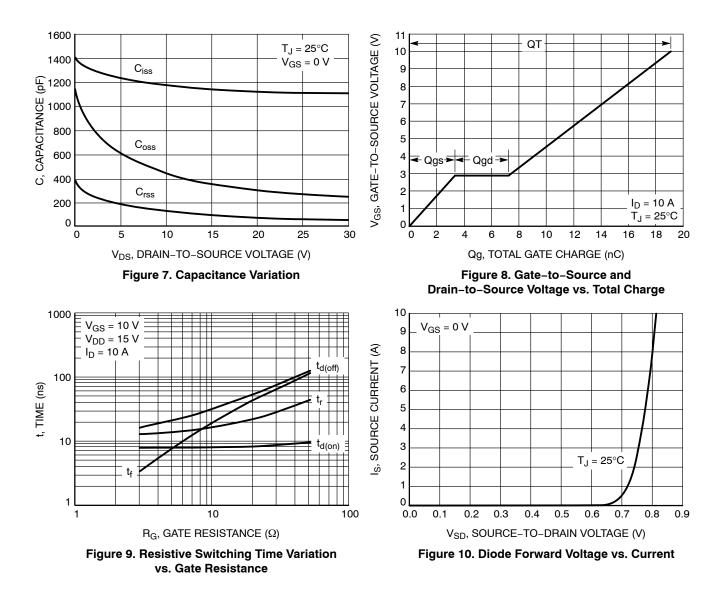
PACKAGE PARASITIC VALUES

	Q1			0.38	
Source Inductance	Q2	LS		0.65	nH
Drain Inductoria	Q1	1		0.054	الم
Drain Inductance	Q2	LD		0.007	nH
Cata Industance	Q1		$T_A = 25^{\circ}C$	1.5	الم
Gate Inductance	Q2	L _G		1.5	nH
Gate Resistance	Q1	P.		0.8	Ω
Gale Resistance	Q2	R _G		0.8	52

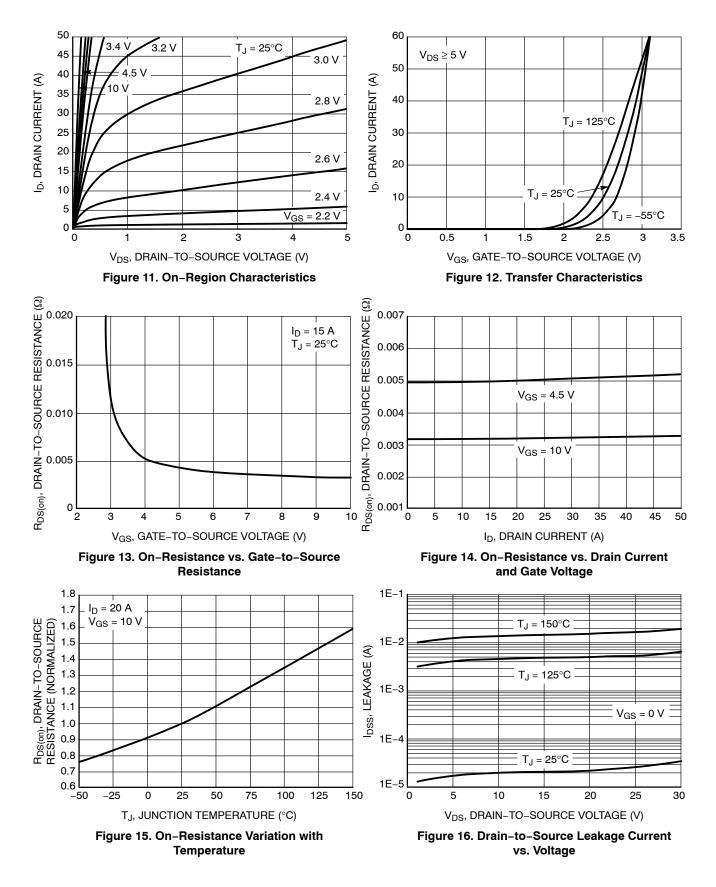
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

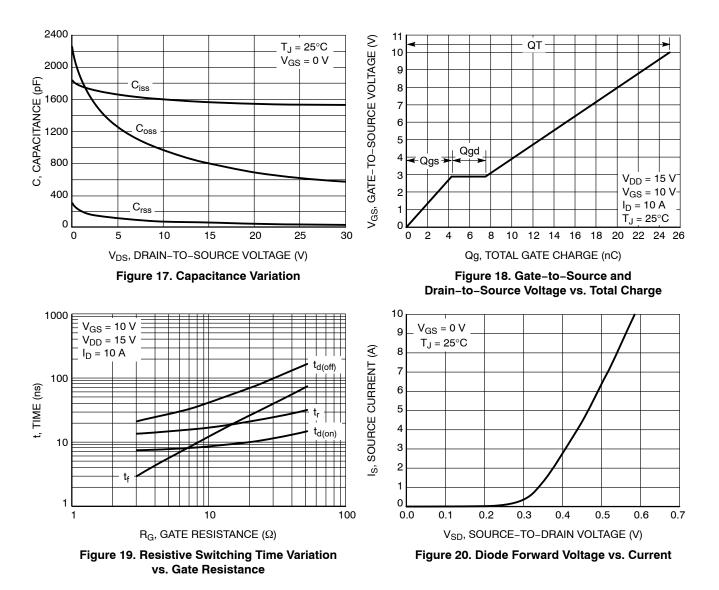

6. Switching characteristics are independent of operating junction temperatures.

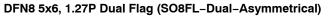
ORDERING INFORMATION

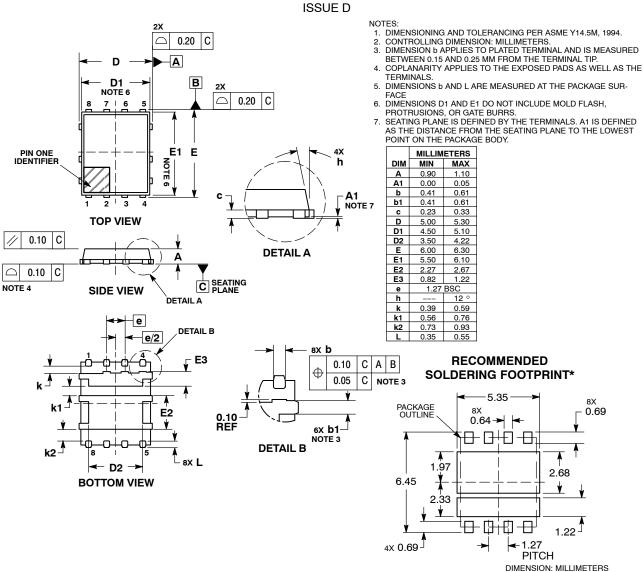

Device	Package	Shipping [†]
NTMFD4902NFT1G	DFN8 (Pb-Free)	1500 / Tape & Reel
NTMFD4902NFT3G	DFN8 (Pb-Free)	5000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


TYPICAL CHARACTERISTICS - Q1


TYPICAL CHARACTERISTICS – Q1


TYPICAL CHARACTERISTICS – Q2


TYPICAL CHARACTERISTICS – Q2

PACKAGE DIMENSIONS

CASE 506BX

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the an are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product for any such unintended or unauthorized application. Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literatu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative