Features

- Operating Voltage: 5VAccess Time: 40ns
- Very Low Power Consumption
 - Active: 440mW (Max)Standby: 10mW (Typ)
- Wide Temperature Range: -55°C to +125°C
- 600 Mils Width Package: SB28
- TTL Compatible Inputs and Outputs
- Asynchronous
- No Single Event Latch-up below a LET Threshold of 80 MeV/mg/cm²@125°C
- Radiation Tolerance⁽¹⁾
 - Tested up to a Total Dose of 300 krads (Si)
 - RHA capability of 100 krad (Si) according to MIL STD 883 Method 1019
- ESD better than 4000V
- · Deliveries at least equivalent to QML procurement according to MIL-PRF38535
- AT65609EHW is pin to pin compatible with MA9264 device from DYNEX

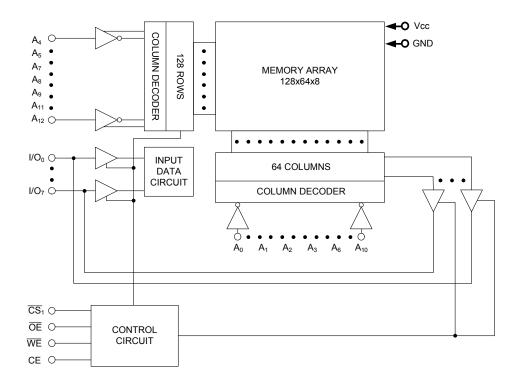
Note: 1. tolerance to MBU's may need to be enhanced by the application

Description

The AT65609EHW is a very low power CMOS static RAM organized as 8192 x 8 bits. Using an array of six transistors (6T) memory cells, the AT65609EHW combines an extremely low standby supply current with a fast access time at 40 ns over the full military temperature range. The high stability of the 6T cell provides excellent protection against soft errors due to noise.

The AT65609EHW is processed according to the methods of the latest revision of the MIL PRF 38535.

It is manufactured on the same process as the MH1RT RAD-hard sea of gates series.


Rad. Tolerant 8K x 8 - 5 volts Very Low Power CMOS SRAM

AT65609EHW

Block Diagram

Pin Assignment

	ſ	\ /	1	
NC [1		28	Vcc
A12 [2		27	\overline{WE}
A7 [3	Mils	26	CE
A6 [4		25	A8
A5 [5	Ф	24	Α9
A4 [6	side-brazed 600	23	A11
A3 [7	-pr	22	ŌĒ
A2 [8	ide	21	A10
A1 [9	DIL s	20	CS1
A0 [10		19	I/O7
I/O0 [11	28-lead	18	I/O6
I/O1 [12	- - - -	17	I/O5
I/O2 [13		16	I/O4
GND [14		15	I/O3
			-	

Note: NC pin is not bonded internally. So, it can be connected to GND or VCC.

Pin Description

Table 1. Pin Names

Names	Description
A0 - A12	Address inputs
1/00 - 1/07	Data Input/Output
CS1	Chip select
CE	Chip Enable
WE	Write Enable
ŌĒ	Output Enable
VCC	Power
GND	Ground

Table 2. Truth Table

CS1	CE	WE	OE	Inputs/ Outputs	Mode
Н	Х	Х	Х	Z	Deselect / Power-down
Х	L	Х	Х	Z	Deselect / power-down
L	Н	Н	L	Data Out	Read
L	Н	L	Х	Data In	Write
L	Н	Н	Н	Z	Output Disable

Note: L = low, H = high, X = H or L, Z = high impedance.

Electrical Characteristics

Absolute Maximum Ratings

Supply voltage to GND potential:0.5V + 7.0V	*NOTE: Stresses beyond those listed under "Abso-
DC input voltage:GND - 0.3V to VCC + 0.3	lute Maximum Ratings" may cause permanent damage to the device. This is a stress
DC output voltage high Z state:GND - 0.3V to VCC + 0.3	rating only and functional operation of the device at these or any other conditions
Storage temperature:65·C to +150·C	beyond those indicated in the operational
Output current into outputs (low):	sections of this specification is not implied. Exposure between recommended DC
Electro Static Discharge voltage with HBM method (MIL STD 883D method 3015):> 4000V	operating and absolute maximum rat- ing conditions for extended periods may affect device reliability.
Electro Static Discharge voltage with Socketed CDM method (ANSI/ESD SP5.3.2-2004) : > 1000V	

Military Operating Range

Operating Voltage	Operating Temperature
5V <u>+</u> 10%	-55°C to + 125°C

Recommended DC Operating Conditions

Parameter	Description	Minimum	Typical	Maximum	Unit
V _{CC}	Supply voltage	4.5	5.0	5.5	V
GND	Ground	0.0	0.0	0.0	V
V _{IL}	Input low voltage	GND - 0.3	0.0	0.8	V
V _{IH}	Input high voltage	2.2	_	VCC + 0.3	V

Capacitance

Parameter	Description	Minimum	Typical	Maximum	Unit
Cin ⁽¹⁾	Input low voltage	_	-	8	pF
Cout ⁽¹⁾	Output high voltage	_	_	8	pF

Note: 1. Guaranteed but not tested.

DC Parameters

DC Test Conditions

TA = -55°C to + 125°C; Vss = 0V; V_{CC} = 4.5V to 5.5V

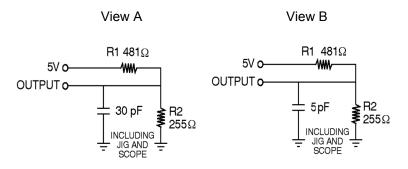
Symbol	Description	Minimum	Typical	Maximum	Unit
IIX ⁽¹⁾	Input leakage current	-10	_	10	μΑ
IOZ (1)	Output leakage current	-10	_	10	μΑ
VOL (2)	Output low voltage	_	_	0.4	V
VOH (3)	Output high voltage	2.4	_	-	V

- $\mathsf{GND} < \mathsf{Vin} < \mathsf{V}_{\mathsf{CC}}, \, \mathsf{GND} < \mathsf{Vout} < \mathsf{V}_{\mathsf{CC}} \, \, \mathsf{Output} \, \, \mathsf{Disabled}.$ 1.
- 2.
- V_{CC} min. IOL = 8 mA V_{CC} min. IOH = -4 mA. 3.

Consumption

Symbol	Description	AT65609EHW	Unit	Value
ICCSB (1)	Standby supply current	5	mA	max
ICCSB1 (2)	Standby supply current	3	mA	max
ICCOP (3)	Dynamic operating current	80	mA	max

- 1.
- 2.
- 3.


AC Parameters

Test Conditions

Temperature Range	55 +125 °C
Supply Voltage:	5 <u>+</u> 0.5V
Input and Output Timing Reference Levels	1.5V

Test Loads and Waveforms

Figure 1. Test Loads

Equivalent to: THEVENIN EQUIVALENT

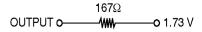
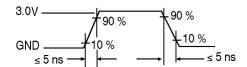
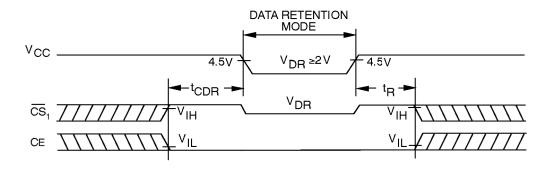



Figure 2. CMOS Input Pulses



Data Retention Mode

Atmel CMOS RAM's are designed with battery backup in mind. Data retention voltage and supply current are guaranteed over temperature. The following rules ensure data retention:

- 1. During data retention chip select CS1 must be held high within VCC to VCC -0.2V or, chip select CE must be held down within GND to GND +0.2V.
- 2. Output Enable (OE) should be held high to keep the RAM outputs high impedance, minimizing power dissipation.
- 3. During power up and power-down transitions $\overline{CS1}$ and \overline{OE} must be kept between VCC + 0.3V and 70% of VCC, or with CE between GND and GND -0.3V.
- 4. The RAM can begin operation > TR ns after VCC reaches the minimum operation voltages (4.5V).

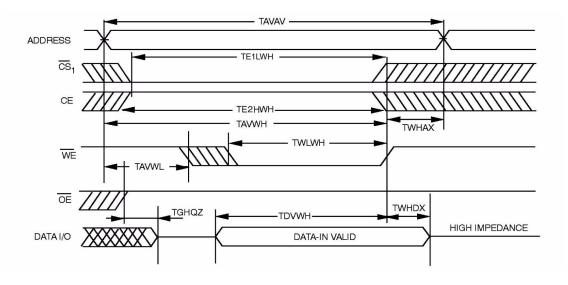
Timing

Data Retention Characteristics

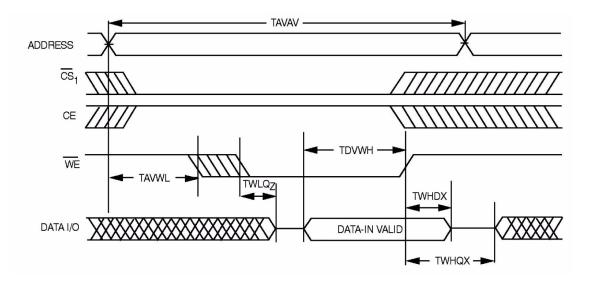
Parameter	Description	Minimum	Typical TA = 25 °C	Maximum	Unit
VCCDR	V _{CC} for data retention	2.0	-	_	٧
TCDR	Chip deselect to data retention time	0.0	-	_	ns
TR	Operation recovery time	TAVAV ⁽¹⁾	-	_	ns
ICCDR1 ⁽²⁾	Data retention current at 2.0V	_	1	1.5	mA
ICCDR2 ⁽²⁾	Data retention current at 3.0V	ı	1.5	2	mA

Notes: 1. <u>TAVAV = Read Cycle Time</u>

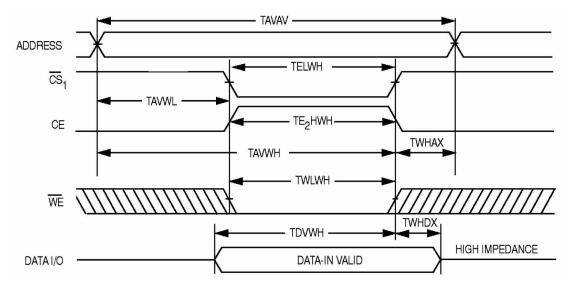
2. $\overline{CS1} = V_{CC}$ or $CE = \overline{CS1} = GND$, $Vin = GND/V_{CC}$, this parameter is only tested at $V_{CC} = 2V$.



Write Cycle


Symbol	Parameter	AT65609EHW	Unit	Value
TAVAW	Write cycle time	40	ns	min
TAVWL	Address set-up time	0	ns	min
TAVWH	Address valid to end of write	35	ns	min
TDVWH	Data set-up time	22	ns	min
TE1LWH	CS1 low to write end	35	ns	min
TE2HWH	CE high to write end	35	ns	min
TWLQZ	Write low to high Z ⁽¹⁾	17	ns	max
TWLWH	Write pulse width	35	ns	min
TWHAX	Address hold from to end of write	3	ns	min
TWHDX	Data hold time	0	ns	min
TWHQX	Write high to low Z ⁽¹⁾	0	ns	min

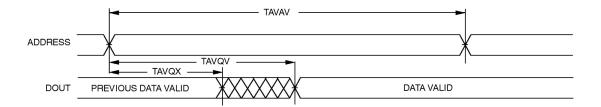
Note: 1. Parameters guaranteed, not tested, with output loading 5 pF (See view B on Figure 1 on page 6)


Write Cycle 1 WE Controlled, OE High During Write

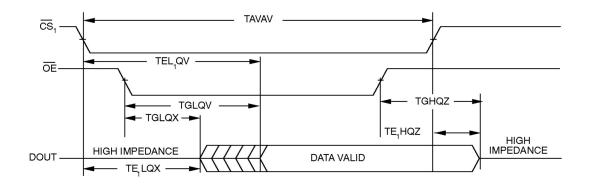
Write Cycle 2 WE Controlled, OE Low

Write Cycle 3 CS1 or CE Controlled

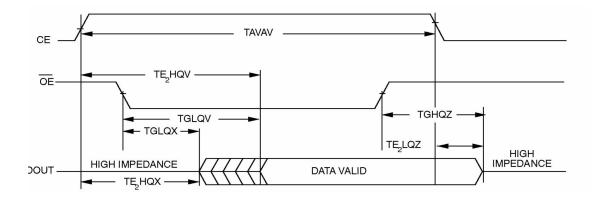
Note: The internal write time of the memory is defined by the overlap of $\overline{\text{CS1}}$ Low and CE HIGH and $\overline{\text{WE}}$ LOW. Both signals must be actived to initiate a write and either signal can terminate a write by going in actived. The data input setup and hold timing should be referenced to the actived edge of the signal that terminates the write. Data out is high impedance if $\overline{\text{OE}} = V_{\text{IH}}$.



Read Cycle

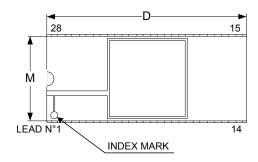

Symbol	Parameter	AT65609EHW	Unit	Value
TAVAV	Read cycle time	40	ns	min
TAVQV	Address access time	40	ns	max
TAVQX	Address valid to low Z ⁽¹⁾	3	ns	min
TE1LQV	Chip-select1 access time	40	ns	max
TE1LQX	CS1 low to low Z ⁽¹⁾	3	ns	min
TE1HQZ	CS1 high to high Z ⁽¹⁾	15	ns	max
TE2HQV	Chip-select2 access time	40	ns	max
TE2HQX	CE high to low Z ⁽¹⁾	3	ns	min
TE2LQZ	CE low to high Z ⁽¹⁾	15	ns	max
TGLQV	Output Enable access time	15	ns	max
TGLQX	OE low to low Z ⁽¹⁾	0	ns	min
TGHQZ	OE high to high Z ⁽¹⁾	10	ns	max

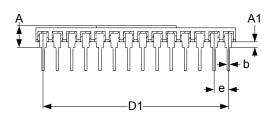
Note: 1. Parameters Guaranteed, not tested, with output loading 5 pF (See view B on Figure 1 on page 6)

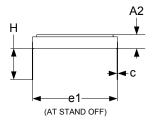

Read Cycle 1 Address Controlled ($\overline{CS1} = \overline{OE}$ Low, $CE = \overline{WE}$ High)

Read Cycle 2 $\overline{\text{CS1}}$ Controlled (CE = $\overline{\text{WE}}$ High)

Read Cycle 3 CE Controlled (WE High, CS1 Low)




Ordering Information


Atmel Reference Part Number	Temperature Range	Speed	Package	Flow
AT65609EHW-CI40-E	25·C	40ns	SB28.6	Engineering Samples
AT65609EHW-CI40MQ	-55⋅ to +125⋅C	40ns	SB28.6	Mil Level B
AT65609EHW-CI40SV	-55⋅ to +125⋅C	40ns	SB28.6	Space Level B
AT65609EHW-CI40SR	-55⋅ to +125⋅C	40ns	SB28.6	Space Level B RHA

Package Drawing

28-lead Side Braze 600 Mils

Ref	Millimeters		Inches			
	Min.	Nom.	Max.	Min.	Nom.	Max.
Α	3.73	3.99	4.24	0.147	0.157	0.167
A1	1.02	1.27	1.52	0.040	0.050	0.060
A2	2.47	2.73	2.98	0.0974	0.1074	0.1174
b	0.41	0.46	0.51	0.016	0.018	0.020
С	0.23	0.25	0.30	0.009	0.010	0.012
D	35.20	35.56	35.92	1.386	1.400	1.414
D1	32.89	33.02	33.15	1.295	1.300	1.305
е	2.41	2.54	2.67	0.095	0.100	0.105
e1	14.99	15.24	15.49	0.590	0.600	0.610
Н			5.51			0.217
М	14.86	15.11	15.37	0.585	0.595	0.605

Document Revision History

Changes from 7791A to 7791B

1. Update: total dose value in features section

2. Update: note 3 of consumption table

Changes from 7791B to 7791C

1. Add-on: ESD item in features section

2. Update: ESD HBM in Absolute Maximum Ratings

3. Add-on: ESD Socketed CDM in Absolute Maximum Ratings

4. Update: ordering Information section

5. Update: package drawing

Changes from 7791C to 7791D

1. Add-on: MBU's note in features section

2. Update: radiation tolerance in features section

3. Update: block diagram

4. Update: AC Test conditions section

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia
Room 1219
Chinachem Golde

Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe Le Krebs

8, Rue Jean-Pierre Timbaud BP 309

78054 Saint-Quentin-en-Yvelines Cedex

France

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033

Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

aero@nto.atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel on a combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.