
DOCUMENT NUMBER
S12IICV2/D
HCS12 Inter-Integrated Circuit(IIC)

Block Guide

V02.07

Original Release Date: 08 SEP 1999
Revised: Apr 11, 2003

8/16 Bit Division,TSPG
Motorola, Inc.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges
that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc.is an Equal
Opportunity/Affirmative Action Employer.

1

©Motorola, Inc., 2002

Block Guide — S12IICV2/D V02.07
Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

0.1 8-Sep-99
Vipin Agrawal,
Puneet Goel

Original draft. Distributed only within Motorola

0.2 30-Sep-99 Puneet Goel Minor corrections as suggested by Joachim Kruecken.

2.0 12-Feb-01
Gautam Kar,

Gurdarshan Kalra
Reformatted for SRS v2.0

2.1
2-Mar-200

1
Gurdarshan Kalra Minor corrections as suggested by Jens Winkler

2.2
6-Mar-200

1
Gurdarshan Kalra Minor corrections as suggested by Jens Winkler

2.03
26-Mar-20

01
Gurdarshan Kalra

Jens Winkler
Minor updates in format

2.04
19-July-20

01
Dirk Rowald

Document names have been added, Names and variable
definitions have been hidden

2.05
7-Mar-200

2
Stephen Zhou Minor updates in format

2.06
18-Aug-20

02
Stephen Zhou

Reformated for SRS3.0,and add examples for programing general
use and some diagrams to make it more user friendly as suggested
by Joachim

2.07
11-Apr-20

03
Stephen Zhou

Clearly claim support 400kps;
Add notes for TCF bit in Section 5.1.3
Correct Section 7 for IBIF is cleared by writing ‘1’
2

Block Guide — IIC V02.07
Table of Contents

Section 1 Introduction

1.1 Overview. 11

1.2 Features . 11

1.3 Modes of Operation . 11

1.4 Block Diagram . 12

Section 2 External Signal Description

2.1 Overview. 14

2.2 Detailed Signal Descriptions. 14

2.2.1 SCL . 14

2.2.2 SDA . 14

Section 3 Memory Map/Register Definition

3.1 Overview. 15

3.2 Module Memory Map . 15

3.3 Register Descriptions . 15

3.3.1 IIC Address Register . 15

3.3.2 IIC Frequency Divider Register . 16

3.3.3 IIC Control Register . 25

3.3.4 IIC Status Register . 27

3.3.5 IIC Data I/O Register . 29

Section 4 Functional Description

4.1 General. 30

4.2 I-Bus Protocol . 30

4.2.1 START Signal . 31

4.2.2 Slave Address Transmission . 31

4.2.3 Data Transfer . 32

4.2.4 STOP Signal . 32

4.2.5 Repeated START Signal . 32

4.2.6 Arbitration Procedure . 32

4.2.7 Clock Synchronization . 33

4.2.8 Handshaking . 33
3

Block Guide — IIC V02.07
4.2.9 Clock Stretching . 33

4.3 Modes of Operation . 34

4.3.1 Run Mode. 34

4.3.2 Wait Mode . 34

4.3.3 Stop Mode . 34

Section 5 Initialization/Application Information

5.1 IIC Programming Examples . 35

5.1.1 Initialization Sequence . 35

5.1.2 Generation of START. 35

5.1.3 Post-Transfer Software Response . 35

5.1.4 Generation of STOP. 36

5.1.5 Generation of Repeated START . 37

5.1.6 Slave Mode . 37

5.1.7 Arbitration Lost . 37

Section 6 Resets

6.1 General. 40

Section 7 Interrupts

7.1 General. 41

7.2 Interrupt Description . 41
4

Block Guide — IIC V02.07
List of Figures

Figure 1-1 IIC Block Diagram . 12

Figure 3-1 IIC Bus Address Register (IBAD). 15

Figure 3-2 IIC Bus Frequency Divider Register (IBFD). 16

Figure 3-3 SCL divider and SDA hold . 18

Figure 3-4 IIC-Bus Control Register (IBCR) . 25

Figure 3-5 IIC Bus Status Register (IBSR) . 27

Figure 3-6 IIC Bus Data I/O Register (IBDR) . 29

Figure 4-1 IIC-Bus Transmission Signals . 30

Figure 4-2 Start and Stop conditions. 31

Figure 4-3 IIC-Bus Clock Synchronization . 33

Figure 5-1 Flow-Chart of Typical IIC Interrupt Routine . 39
5

Block Guide — IIC V02.07
6

Block Guide — IIC V02.07
List of Tables

Table 3-1 Module Memory Map . 15

Table 3-2 I-Bus Tap and Prescale Values . 16

Table 3-3 Multiplier Factor . 17

Table 3-4 IIC Divider and Hold Values. 18

Table 7-1 Interrupt Summary . 41
7

Block Guide — IIC V02.07
8

Block Guide — IIC V02.07
Preface

N/A.
9

Block Guide — IIC V02.07
10

Block Guide — IIC V02.07

ed for

een a
s for

ith
of

rate
at can

, wait
Section 1 Introduction

1.1 Overview

The Inter-IC Bus (IIC or I2C) is a two-wire, bidirectional serial bus that provides a simple, efficient
method of data exchange between devices Being a two-wire device, the IIC Bus minimizes the ne
large numbers of connections between devices, and eliminates the need for an address decoder.

This bus is suitable for applications requiring occasional communications over a short distance betw
number of devices. It also provides flexibility, allowing additional devices to be connected to the bu
further expansion and system development.

The interface will operate at baud rates of up to 100kbps with maximum capacitive bus loading.W
reduced bus slew rate, the device is capable of operating at higher baud rates, up to a maximum
[MCUbus]clock/20. The module can operate up to a baud rate of 400kbps provided the IIC bus slew
is less than 100ns. The maximum communication interconnect length and the number of devices th
be connected to the bus are limited by a maximum bus capacitance of 400pF in all instances.

1.2 Features

The IIC module has the following key features:

• Compatible with I2C Bus standard

• Multi-master operation

• Software programmable for one of 256 different serial clock frequencies

• Software selectable acknowledge bit

• Interrupt driven byte-by-byte data transfer

• Arbitration lost interrupt with automatic mode switching from master to slave

• Calling address identification interrupt

• Start and stop signal generation/detection

• Repeated start signal generation

• Acknowledge bit generation/detection

• Bus busy detection

1.3 Modes of Operation

The IIC functions the same in normal, special, and emulation modes. It has two low power modes
and stop modes.
11

Block Guide — IIC V02.07

 can
ff and

s not
• Run Mode

This is the basic mode of operation.

• Wait Mode

IIC operation in wait mode can be configured. Depending on the state of internal bits, the IIC
operate normally when the CPU is in wait mode or the IIC clock generation can be turned o
the IIC module enters a power conservation state during wait mode. In the latter case, any
transmission or reception in progress stops at wait mode entry.

• Stop Mode

The IIC is inactive in stop mode for reduced power consumption. The STOP instruction doe
affect IIC register states.

1.4 Block Diagram

The block diagram of the IIC module is shown inFigure 1-1

Figure 1-1 IIC Block Diagram

In/Out
Data
Shift
Register

Address
Compare

SDA

Interrupt

Clock
Control

Start
Stop
Arbitration
Control

SCL

bus_clock

IIC

Registers
12

Block Guide — IIC V02.07

tion.

ion.
Section 2 External Signal Description

2.1 Overview

The IIC module has a total of 2 external pins.

2.2 Detailed Signal Descriptions

2.2.1 SCL

This is the bidirectional Serial Clock Line (SCL) of the module, compatible to the IIC-Bus specifica

2.2.2 SDA

This is the bidirectional Serial Data line (SDA) of the module, compatible to the IIC-Bus specificat
13

Block Guide — IIC V02.07

ule and

register
ter

it is not
Section 3 Memory Map/Register Definition

3.1 Overview

This section provides a detailed description of all memory and registers for the IIC module.

3.2 Module Memory Map

The memory map for the IIC module is given below inTable 3-1. The Address listed for each register is
the address offset.The total address for each register is the sum of the base address for the IIC mod
the address offset for each register.

3.3 Register Descriptions

This section consists of register descriptions in address order.Each description includes a standard
diagram with an associated figure number. Details of register bit and field function follow the regis
diagrams, in bit order.

3.3.1 IIC Address Register

Figure 3-1 IIC Bus Address Register (IBAD)

Read and write anytime{iic_regs}

This register contains the address the IIC Bus will respond to when addressed as a slave; note that
the address sent on the bus during the address transfer.{iic_slave}

ADR7–ADR1 — Slave Address

Table 3-1 Module Memory Map

Address Use Access

Base Address + $_0 IIC-Bus Address Register (IBAD) Read/Write

Base Address + $_1 IIC-Bus Frequency Divider Register (IBFD) Read/Write

Base Address + $_2 IIC-Bus Control Register (IBCR) Read/Write

Base Address + $_3 IIC-Bus Status Register (IBSR) Read/Write

Base Address + $_4 IIC-Bus Data I/O Register (IBDR) Read/Write

Register address: Base Address + $0000)

7 6 5 4 3 2 1 0
R

ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1
0

W
RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
14

Block Guide — IIC V02.07

ler
Bit 1 to bit 7 contain the specific slave address to be used by the IIC Bus module.{iic_slave}

The default mode of IIC Bus is slave mode for an address match on the bus.

RESERVED

Bit 0 of the IBAD is reserved for future compatibility. This bit will always read 0.{iic_regs}

3.3.2 IIC Frequency Divider Register

Figure 3-2 IIC Bus Frequency Divider Register (IBFD)

Read and write anytime{iic_regs}

IBC7–IBC0 — I-Bus Clock Rate 7–0

This field is used to prescale the clock for bit rate selection. {iic_div} The bit clock generator is
implemented as a prescale divider - IBC7-6, prescaled shift register - IBC5-3 select the presca
divider and IBC2-0 select the shift register tap point.{iic_div} The IBC bits are decoded to give the
Tap and Prescale values as shown inTable 3-2 {iic_div}

Register address: Base address + $0001
7 6 5 4 3 2 1 0

R
IBC7 IBC6 IBC5 IBC4 IBC3 IBC2 IBC1 IBC0

W
RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 3-2 I-Bus Tap and Prescale Values

IBC2-0
(bin)

SCL Tap
(clocks)

SDA Tap
(clocks)

000 5 1

001 6 1

010 7 2

011 8 2

100 9 3

101 10 3

110 12 4

111 15 4
15

Block Guide — IIC V02.07

own

DA
The number of clocks from the falling edge of SCL to the first tap (Tap[1]) is defined by the values sh
in the scl2tap column ofTable 3-2 , all subsequent tap points are separated by 2IBC5-3 as shown in the
tap2tap column inTable 3-2 .{iic_div} The SCL Tap is used to generated the SCL period and the S
Tap is used to determine the delay from the falling edge of SCL to SDA changing, the SDA hold
time.{iic_div}

IBC7-6 defines the multiplier factor MUL.{iic_div, iic_ack_addon}The values of MUL are shown in the
Table 3-3 {iic_div, iic_ack_addon}

IBC5-3
(bin)

scl2start
(clocks)

scl2stop
(clocks)

scl2tap
(clocks)

tap2tap
(clocks)

000 2 7 4 1

001 2 7 4 2

010 2 9 6 4

011 6 9 6 8

100 14 17 14 16

101 30 33 30 32

110 62 65 62 64

111 126 129 126 128

Table 3-3 Multiplier Factor

IBC7-6 MUL

00 01

01 02

10 04

11 RESERVED
16

Block Guide — IIC V02.07
Figure 3-3 SCL divider and SDA hold

The equation used to generate the divider values from the IBFD bits is:

SCL Divider = MUL x {2 x (scl2tap + [(SCL_Tap -1) x tap2tap] + 2)}{iic_div}

The SDA hold delay is equal to the CPU clock period multiplied by the SDA Hold value shown in
Table 3-4. {iic_div} The equation used to generate the SDA Hold value from the IBFD bits is:

 SCL Divider

SDA Hold

SCL

SDA

SDA

 SCL

START condition STOP condition

SCL Hold(start) SCL Hold(stop)
17

Block Guide — IIC V02.07
SDA Hold = MUL x {scl2tap + [(SDA_Tap - 1) x tap2tap] + 3}{iic_div}

The equation for SCL Hold values to generate the start and stop conditions from the IBFD bits is:

SCL Hold(start) = MUL x [scl2start + (SCL_Tap - 1) x tap2tap] {iic_div}

SCL Hold(stop) = MUL x [scl2stop + (SCL_Tap - 1) x tap2tap]{iic_div}

Table 3-4 IIC Divider and Hold Values
IBC[7:0]

(hex)
SCL Divider

(clocks)
SDA Hold
(clocks)

SCL Hold
(start)

SCL Hold
(stop)

MUL=1

00 20 7 6 11

01 22 7 7 12

02 24 8 8 13

03 26 8 9 14

04 28 9 10 15

05 30 9 11 16

06 34 10 13 18

07 40 10 16 21

08 28 7 10 15

09 32 7 12 17

0A 36 9 14 19

0B 40 9 16 21

0C 44 11 18 23

0D 48 11 20 25

0E 56 13 24 29

0F 68 13 30 35

10 48 9 18 25

11 56 9 22 29

12 64 13 26 33

13 72 13 30 37

14 80 17 34 41

15 88 17 38 45

16 104 21 46 53

17 128 21 58 65
18

Block Guide — IIC V02.07
18 80 9 38 41

19 96 9 46 49

1A 112 17 54 57

1B 128 17 62 65

1C 144 25 70 73

1D 160 25 78 81

1E 192 33 94 97

1F 240 33 118 121

20 160 17 78 81

21 192 17 94 97

22 224 33 110 113

23 256 33 126 129

24 288 49 142 145

25 320 49 158 161

26 384 65 190 193

27 480 65 238 241

28 320 33 158 161

29 384 33 190 193

2A 448 65 222 225

2B 512 65 254 257

2C 576 97 286 289

2D 640 97 318 321

2E 768 129 382 385

2F 960 129 478 481

30 640 65 318 321

31 768 65 382 385

32 896 129 446 449

33 1024 129 510 513

34 1152 193 574 577

35 1280 193 638 641

36 1536 257 766 769

37 1920 257 958 961

IBC[7:0]
(hex)

SCL Divider
(clocks)

SDA Hold
(clocks)

SCL Hold
(start)

SCL Hold
(stop)
19

Block Guide — IIC V02.07
38 1280 129 638 641

39 1536 129 766 769

3A 1792 257 894 897

3B 2048 257 1022 1025

3C 2304 385 1150 1153

3D 2560 385 1278 1281

3E 3072 513 1534 1537

3F 3840 513 1918 1921

MUL=2

40 40 14 12 22

41 44 14 14 24

42 48 16 16 26

43 52 16 18 28

44 56 18 20 30

45 60 18 22 32

46 68 20 26 36

47 80 20 32 42

48 56 14 20 30

49 64 14 24 34

4A 72 18 28 38

4B 80 18 32 42

4C 88 22 36 46

4D 96 22 40 50

4E 112 26 48 58

4F 136 26 60 70

50 96 18 36 50

51 112 18 44 58

52 128 26 52 66

53 144 26 60 74

54 160 34 68 82

55 176 34 76 90

56 208 42 92 106

IBC[7:0]
(hex)

SCL Divider
(clocks)

SDA Hold
(clocks)

SCL Hold
(start)

SCL Hold
(stop)
20

Block Guide — IIC V02.07
57 256 42 116 130

58 160 18 76 82

59 192 18 92 98

5A 224 34 108 114

5B 256 34 124 130

5C 288 50 140 146

5D 320 50 156 162

5E 384 66 188 194

5F 480 66 236 242

60 320 28 156 162

61 384 28 188 194

62 448 32 220 226

63 512 32 252 258

64 576 36 284 290

65 640 36 316 322

66 768 40 380 386

67 960 40 476 482

68 640 28 316 322

69 768 28 380 386

6A 896 36 444 450

6B 1024 36 508 514

6C 1152 44 572 578

6D 1280 44 636 642

6E 1536 52 764 770

6F 1920 52 956 962

70 1280 36 636 642

71 1536 36 764 770

72 1792 52 892 898

73 2048 52 1020 1026

74 2304 68 1148 1154

75 2560 68 1276 1282

76 3072 84 1532 1538

IBC[7:0]
(hex)

SCL Divider
(clocks)

SDA Hold
(clocks)

SCL Hold
(start)

SCL Hold
(stop)
21

Block Guide — IIC V02.07
77 3840 84 1916 1922

78 2560 36 1276 1282

79 3072 36 1532 1538

7A 3584 68 1788 1794

7B 4096 68 2044 2050

7C 4608 100 2300 2306

7D 5120 100 2556 2562

7E 6144 132 3068 3074

7F 7680 132 3836 3842

MUL=4

80 80 28 24 44

81 88 28 28 48

82 96 32 32 52

83 104 32 36 56

84 112 36 40 60

85 120 36 44 64

86 136 40 52 72

87 160 40 64 84

88 112 28 40 60

89 128 28 48 68

8A 144 36 56 76

8B 160 36 64 84

8C 176 44 72 92

8D 192 44 80 100

8E 224 52 96 116

8F 272 52 120 140

90 192 36 72 100

91 224 36 88 116

92 256 52 104 132

93 288 52 120 148

94 320 68 136 164

95 352 68 152 180

IBC[7:0]
(hex)

SCL Divider
(clocks)

SDA Hold
(clocks)

SCL Hold
(start)

SCL Hold
(stop)
22

Block Guide — IIC V02.07
96 416 84 184 212

97 512 84 232 260

98 320 36 152 164

99 384 36 184 196

9A 448 68 216 228

9B 512 68 248 260

9C 576 100 280 292

9D 640 100 312 324

9E 768 132 376 388

9F 960 132 472 484

A0 640 68 312 324

A1 768 68 376 388

A2 896 132 440 452

A3 1024 132 504 516

A4 1152 196 568 580

A5 1280 196 632 644

A6 1536 260 760 772

A7 1920 260 952 964

A8 1280 132 632 644

A9 1536 132 760 772

AA 1792 260 888 900

AB 2048 260 1016 1028

AC 2304 388 1144 1156

AD 2560 388 1272 1284

AE 3072 516 1528 1540

AF 3840 516 1912 1924

30 2560 260 1272 1284

B1 3072 260 1528 1540

B2 3584 516 1784 1796

B3 4096 516 2040 2052

B4 4608 772 2296 2308

B5 5120 772 2552 2564

IBC[7:0]
(hex)

SCL Divider
(clocks)

SDA Hold
(clocks)

SCL Hold
(start)

SCL Hold
(stop)
23

Block Guide — IIC V02.07

slave
dition is
 the
or the
3.3.3 IIC Control Register

Figure 3-4 IIC-Bus Control Register (IBCR)

Read and write anytime{iic_regs}

IBEN — I-Bus Enable

This bit controls the software reset of the entire IIC Bus module.
0 = The module is reset and disabled.{iic_disable} This is the power-on reset situation. When low

the interface is held in reset but registers can still be accessed{iic_disable}
1 = The IIC Bus module is enabled.{iic_div, iic_ack, iic_receive, iic_transmit}This bit must be set

before any other IBCR bits have any effect{iic_disable}

If the IIC Bus module is enabled in the middle of a byte transfer the interface behaves as follows:
mode ignores the current transfer on the bus and starts operating whenever a subsequent start con
detected.Master mode will not be aware that the bus is busy, hence if a start cycle is initiated then
current bus cycle may become corrupt. This would ultimately result in either the current bus master
IIC Bus module losing arbitration, after which bus operation would return to normal.

IBIE — I-Bus Interrupt Enable
0 = Interrupts from the IIC Bus module are disabled.{iic_int} Note that this does not clear any

currently pending interrupt condition.{iic_int}

B6 6144 1028 3064 3076

B7 7680 1028 3832 3844

B8 5120 516 2552 2564

B9 6144 516 3064 3076

BA 7168 1028 3576 3588

BB 8192 1028 4088 4100

BC 9216 1540 4600 4612

BD 10240 1540 5112 5124

BE 12288 2052 6136 6148

BF 15360 2052 7672 7684

Register address: Base address + $0002
7 6 5 4 3 2 1 0

R
IBEN IBIE MS/SL Tx/Rx TXAK

0 0
IBSWAI

W RSTA
RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

IBC[7:0]
(hex)

SCL Divider
(clocks)

SDA Hold
(clocks)

SCL Hold
(start)

SCL Hold
(stop)
24

Block Guide — IIC V02.07

ted on

 master
ycles,

slave

 byte

rent

, will

t, all
1 = Interrupts from the IIC Bus module are enabled.{iic_int} An IIC Bus interrupt occurs provided
the IBIF bit in the status register is also set.{iic_int}

MS/SL — Master/Slave mode select bit

Upon reset, this bit is cleared. When this bit is changed from 0 to 1, a START signal is genera
the bus, and the master mode is selected.{iic_receive, iic_transmit} When this bit is changed from 1
to 0, a STOP signal is generated and the operation mode changes from master to slave.{iic_receive,
iic_transmit}A STOP signal should only be generated if the IBIF flag is set. MS/SL is cleared without
generating a STOP signal when the master loses arbitration.

0 = Slave Mode
1 = Master Mode

Tx/Rx — Transmit/Receive mode select bit

This bit selects the direction of master and slave transfers.{iic_receive, iic_transmit}When addressed
as a slave this bit should be set by software according to the SRW bit in the status register. In
mode this bit should be set according to the type of transfer required. Therefore, for address c
this bit will always be high.

0 = Receive
1 = Transmit

TXAK — Transmit Acknowledge enable

This bit specifies the value driven onto SDA during data acknowledge cycles for both master and
receivers.{iic_receive, iic_transmit} The IIC module will always acknowledge address matches,
provided it is enabled, regardless of the value of TXAK. {iic_ack}Note that values written to this bit
are only used when the IIC Bus is a receiver, not a transmitter.

0 = An acknowledge signal will be sent out to the bus at the 9th clock bit after receiving one
data{iic_receive, iic_transmit}

1 = No acknowledge signal response is sent (i.e., acknowledge bit = 1){iic_receive, iic_transmit}

RSTA — Repeat Start

Writing a 1 to this bit will generate a repeated START condition on the bus, provided it is the cur
bus master.{iic_receive, iic_transmit}This bit will always be read as a low.{iic_regs, iic_receive,
iic_transmit}Attempting a repeated start at the wrong time, if the bus is owned by another master
result in loss of arbitration.

1 = Generate repeat start cycle

RESERVED

Bit 1 of the IBCR is reserved for future compatibility. This bit will always read 0.

{iic_regs}

IBSWAI — I-Bus Interface Stop in WAIT mode
0 = IIC Bus module clock operates normally{iic_wait}
1 = Halt IIC Bus module clock generation in WAIT mode{iic_wait}

Wait mode is entered via execution of a CPU WAI instruction. In the event that the IBSWAI bit is se
clocks internal to the IIC will be stopped and any transmission currently in progress will halt.{iic_wait} If
25

Block Guide — IIC V02.07

would

rway.
sion
tively.

 9th
r to

bit is

TOP
the CPU were woken up by a source other than the IIC module, then clocks would restart and the IIC
continue where it left off in the previous transmission.{iic_wait} It is not possible for the IIC to wake up
the CPU when its internal clocks are stopped.

If it were the case that the IBSWAI bit was cleared when the WAI instruction was executed, the IIC
internal clocks and interface would remain alive, continuing the operation which was currently unde
It is also possible to configure the IIC such that it will wake up the CPU via an interrupt at the conclu
of the current operation. See the discussion on the IBIF and IBIE bits in the IBSR and IBCR, respec

3.3.4 IIC Status Register

Figure 3-5 IIC Bus Status Register (IBSR)

This status register is read-only with exception of bit 1 (IBIF) and bit 4 (IBAL), which are software
clearable{iic_regs}

TCF — Data transferring bit

While one byte of data is being transferred, this bit is cleared. It is set by the falling edge of the
clock of a byte transfer. Note that this bit is only valid during or immediately following a transfe
the IIC module or from the IIC module.{iic_int}

0 = Transfer in progress
1 = Transfer complete

IAAS — Addressed as a slave bit

When its own specific address (I-Bus Address Register) is matched with the calling address, this
set.{iic_slave}The CPU is interrupted provided the IBIE is set.{iic_int} Then the CPU needs to check
the SRW bit and set its Tx/Rx mode accordingly.Writing to the I-Bus Control Register clears this
bit.{iic_int}

0 = Not addressed
1 = Addressed as a slave

IBB — Bus busy bit

This bit indicates the status of the bus. When a START signal is detected, the IBB is set. If a S
signal is detected, IBB is cleared and{iic_receive, iic_transmit}

0 = the bus enters idle state.
1 = Bus is busy

IBAL — Arbitration Lost

Register address: Base address + $0003

7 6 5 4 3 2 1 0
R TCF IAAS IBB

IBAL
0 SRW

IBIF
RXAK

W
RESET: 1 0 0 0 0 0 0 0

= Unimplemented or Reserved
26

Block Guide — IIC V02.07

n is

ive

.

from

d with

of the

are,

AK)

he
The arbitration lost bit (IBAL) is set by hardware when the arbitration procedure is lost. Arbitratio
lost in the following circumstances:

1. SDA sampled low when the master drives a high during an address or data transmit cycle.{iic_arb}

2. SDA sampled low when the master drives a high during the acknowledge bit of a data rece
cycle.{iic_arb}

3. A start cycle is attempted when the bus is busy.{iic_arb}

4. A repeated start cycle is requested in slave mode.{iic_arb}

5. A stop condition is detected when the master did not request it.{iic_arb}

This bit must be cleared by software, by writing a one to it. A write of zero has no effect on this bit

RESERVED

Bit 3 of IBSR is reserved for future use. A read operation on this bit will return 0.{iic_regs}

SRW — Slave Read/Write

When IAAS is set this bit indicates the value of the R/W command bit of the calling address sent
the master. {iic_receive, iic_transmit}

This bit is only valid when the I-Bus is in slave mode, a complete address transfer has occurre
an address match and no other transfers have been initiated.

Checking this bit, the CPU can select slave transmit/receive mode according to the command
master.

0 = Slave receive, master writing to slave
1 = Slave transmit, master reading from slave

IBIF — I-Bus Interrupt

The IBIF bit is set when one of the following conditions occurs:

– arbitration lost (IBAL bit set)

– byte transfer complete (TCF bit set)

– addressed as slave (IAAS bit set)

It will cause a processor interrupt request if the IBIE bit is set. This bit must be cleared by softw
writing a one to it. A write of zero has no effect on this bit.

RXAK — Received Acknowledge

The value of SDA during the acknowledge bit of a bus cycle. If the received acknowledge bit (RX
is low, it indicates an acknowledge signal has been received after the completion of 8 bits data
transmission on the bus.{iic_ack} If RXAK is high, it means no acknowledge signal is detected at t
9th clock.{iic_ack}

0 = Acknowledge received
1 = No acknowledge received
27

Block Guide — IIC V02.07

ta

d

ing the

e or
us,

ith the
3.3.5 IIC Data I/O Register

Figure 3-6 IIC Bus Data I/O Register (IBDR)

In master transmit mode, when data is written to the IBDR a data transfer is initiated.{iic_transmit}The
most significant bit is sent first. In master receive mode, reading this register initiates next byte da
receiving.{iic_receive} In slave mode, the same functions are available after an address match has
occurred.{iic_receive, iic_transmit}Note that the Tx/Rx bit in the IBCR must correctly reflect the desire
direction of transfer in master and slave modes for the transmission to begin.{iic_receive, iic_transmit}
For instance, if the IIC is configured for master transmit but a master receive is desired, then read
IBDR will not initiate the receive.

Reading the IBDR will return the last byte received while the IIC is configured in either master receiv
slave receive modes.{iic_receive}The IBDR does not reflect every byte that is transmitted on the IIC b
nor can software verify that a byte has been written to the IBDR correctly by reading it back.

In master transmit mode, the first byte of data written to IBDR following assertion of MS/SL is used for
the address transfer and should com.prise of the calling address (in position D7-D1) concatenated w
required R/W bit (in position D0).

Register address

7 6 5 4 3 2 1 0
R

D7 D6 D5 D4 D3 D2 D1 D0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
28

Block Guide — IIC V02.07

. All
cised

and
Section 4 Functional Description

4.1 General

This section provides a complete functional description of the IIC.

4.2 I-Bus Protocol

The IIC Bus system uses a Serial Data line (SDA) and a Serial Clock Line (SCL) for data transfer
devices connected to it must have open drain or open collector outputs. Logic AND function is exer
on both lines with external pull-up resistors. The value of these resistors is system dependent.

Normally, a standard communication is composed of four parts: START signal, slave address
transmission, data transfer and STOP signal. They are described briefly in the following sections
illustrated inFigure 4-1.

Figure 4-1 IIC-Bus Transmission Signals

SCL

SDA

Start
Signal

Ack
Bit

1 2 3 4 5 6 7 8

MSB LSB

1 2 3 4 5 6 7 8

MSB LSB

Stop
Signal

No

SCL

SDA

1 2 3 4 5 6 7 8

MSB LSB

1 2 5 6 7 8

MSB LSB

Repeated

3 4

9 9

AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W XXX D7 D6 D5 D4 D3 D2 D1 D0

Calling Address Read/ Data Byte

AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W

New Calling Address

9 9

XX

Ack
BitWrite

Start
Signal

Start
Signal

Ack
Bit

Calling Address Read/
Write

Stop
Signal

No
Ack
Bit

Read/
Write
29

Block Guide — IIC V02.07

gical
ART
ning
 out of

by the
esired

 by
 4-1).

smit an
e

d

4.2.1 START Signal

When the bus is free, i.e. no master device is engaging the bus (both SCL and SDA lines are at lo
high), a master may initiate communication by sending a START signal.As shown in Figure 4-1, a ST
signal is defined as a high-to-low transition of SDA while SCL is high. This signal denotes the begin
of a new data transfer (each data transfer may contain several bytes of data) and brings all slaves
their idle states.

Figure 4-2 Start and Stop conditions

4.2.2 Slave Address Transmission

The first byte of data transfer immediately after the START signal is the slave address transmitted
master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the d
direction of data transfer.

1 = Read transfer, the slave transmits data to the master.
0 = Write transfer, the master transmits data to the slave.

Only the slave with a calling address that matches the one transmitted by the master will respond
sending back an acknowledge bit. This is done by pulling the SDA low at the 9th clock (see Figure

No two slaves in the system may have the same address. If the IIC Bus is master, it must not tran
address that is equal to its own slave address. The IIC Bus cannot be master and slave at the sam
time.However, if arbitration is lost during an address cycle the IIC Bus will revert to slave mode an
operate correctly even if it is being addressed by another master.

SDA

 SCL

START condition STOP condition
30

Block Guide — IIC V02.07

ection

address

while
eing
 the

s nine

. The
to

ns 'end
signal.

ver, the
 signal
hile

he slave

ting
nother

If two
nes the
 the

 a data
smits
tput.
hile, a
4.2.3 Data Transfer

Once successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a dir
specified by the R/W bit sent by the calling master

All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-
information for the slave device.

Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable
SCL is high as shown in Figure 4-1. There is one clock pulse on SCL for each data bit, the MSB b
transferred first. Each data byte has to be followed by an acknowledge bit, which is signalled from
receiving device by pulling the SDA low at the ninth clock. So one complete data byte transfer need
clock pulses.

If the slave receiver does not acknowledge the master, the SDA line must be left high by the slave
master can then generate a stop signal to abort the data transfer or a start signal (repeated start)
commence a new calling.

If the master receiver does not acknowledge the slave transmitter after a byte transmission, it mea
of data' to the slave, so the slave releases the SDA line for the master to generate STOP or START

4.2.4 STOP Signal

The master can terminate the communication by generating a STOP signal to free the bus. Howe
master may generate a START signal followed by a calling command without generating a STOP
first. This is called repeated START. A STOP signal is defined as a low-to-high transition of SDA w
SCL at logical “1” (seeFigure 4-1).

The master can generate a STOP even if the slave has generated an acknowledge at which point t
must release the bus.

4.2.5 Repeated START Signal

As shown inFigure 4-1, a repeated START signal is a START signal generated without first genera
a STOP signal to terminate the communication. This is used by the master to communicate with a
slave or with the same slave in different mode (transmit/receive mode) without releasing the bus.

4.2.6 Arbitration Procedure

The Inter-IC bus is a true multi-master bus that allows more than one master to be connected on it.
or more masters try to control the bus at the same time, a clock synchronization procedure determi
bus clock, for which the low period is equal to the longest clock low period and the high is equal to
shortest one among the masters. The relative priority of the contending masters is determined by
arbitration procedure, a bus master loses arbitration if it transmits logic “1” while another master tran
logic “0”. The losing masters immediately switch over to slave receive mode and stop driving SDA ou
In this case the transition from master to slave mode does not generate a STOP condition. Meanw
status bit is set by hardware to indicate loss of arbitration.
31

Block Guide — IIC V02.07

ck has
w to
n its
d.

high.
es start
.

ay hold
forces

. After
se it.If
al low
4.2.7 Clock Synchronization

Since wire-AND logic is performed on SCL line, a high-to-low transition on SCL line affects all the
devices connected on the bus. The devices start counting their low period and once a device's clo
gone low, it holds the SCL line low until the clock high state is reached.However, the change of lo
high in this device clock may not change the state of the SCL line if another device clock is still withi
low period. Therefore, synchronized clock SCL is held low by the device with the longest low perio
Devices with shorter low periods enter a high wait state during this time (seeFigure 4-2). When all devices
concerned have counted off their low period, the synchronized clock SCL line is released and pulled
There is then no difference between the device clocks and the state of the SCL line and all the devic
counting their high periods.The first device to complete its high period pulls the SCL line low again

Figure 4-3 IIC-Bus Clock Synchronization

4.2.8 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices m
the SCL low after completion of one byte transfer (9 bits). In such case, it halts the bus clock and
the master clock into wait states until the slave releases the SCL line.

4.2.9 Clock Stretching

The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer
the master has driven SCL low the slave can drive SCL low for the required period and then relea
the slave SCL low period is greater than the master SCL low period then the resulting SCL bus sign
period is stretched.

SCL1

SCL2

SCL

Internal Counter Reset

WAIT Start Counting High Period
32

Block Guide — IIC V02.07

, wait

erate
dule
ion in

ffect
4.3 Modes of Operation

The IIC functions the same in normal, special, and emulation modes. It has two low power modes
and stop modes

4.3.1 Run Mode

This is the basic mode of operation.

4.3.2 Wait Mode

IIC operation in wait mode can be configured. Depending on the state of internal bits, the IIC can op
normally when the CPU is in wait mode or the IIC clock generation can be turned off and the IIC mo
enters a power conservation state during wait mode. In the later case, any transmission or recept
progress stops at wait mode entry.

4.3.3 Stop Mode

The IIC is inactive in stop mode for reduced power consumption. The STOP instruction does not a
IIC register states.
33

Block Guide — IIC V02.07

ansfer

SCL

ster
s Busy

e data
tion of

 built
ystem
ress
ple.

slave

ion if
Section 5 Initialization/Application Information

5.1 IIC Programming Examples

5.1.1 Initialization Sequence

Reset will put the IIC Bus Control Register to its default status. Before the interface can be used to tr
serial data, an initialization procedure must be carried out, as follows:

1. Update the Frequency Divider Register (IBFD) and select the required division ratio to obtain
frequency from system clock.

2. Update the IIC Bus Address Register (IBAD) to define its slave address.

3. Set the IBEN bit of the IIC Bus Control Register (IBCR) to enable the IIC interface system.

4. Modify the bits of the IIC Bus Control Register (IBCR) to select Master/Slave mode,
Transmit/Receive mode and interrupt enable or not.

5.1.2 Generation of START

After completion of the initialization procedure, serial data can be transmitted by selecting the 'ma
transmitter' mode. If the device is connected to a multi-master bus system, the state of the IIC Bu
bit (IBB) must be tested to check whether the serial bus is free.

If the bus is free (IBB=0), the start condition and the first byte (the slave address) can be sent. Th
written to the data register comprises the slave calling address and the LSB set to indicate the direc
transfer required from the slave.

The bus free time (i.e., the time between a STOP condition and the following START condition) is
into the hardware that generates the START cycle. Depending on the relative frequencies of the s
clock and the SCL period it may be necessary to wait until the IIC is busy after writing the calling add
to the IBDR before proceeding with the following instructions. This is illustrated in the following exam

An example of a program which generates the START signal and transmits the first byte of data (
address) is shown below:

5.1.3 Post-Transfer Software Response

Successful transmission or reception of a byte will set the TCF (data transferring) bit and the IBIF
(interrupt flag) bit in the IBSR status register. An interrupt service routine can be called by this act

CHFLAG BRSET IBSR,#$20,* ;WAIT FOR IBB FLAG TO CLEAR

TXSTART BSET IBCR,#$30 ;SET TRANSMIT AND MASTER MODE;i.e. GENERATE START CONDITION

MOVB CALLING,IBDR ;TRANSMIT THE CALLING ADDRESS, D0=R/W

IBFREE BRCLR IBSR,#$20,* ;WAIT FOR IBB FLAG TO SET
34

Block Guide — IIC V02.07

 in
sfer

. This
 that

ion
on is

nsmit
BDR,

e the
 data
ine

e .

simply
g how

XAK)
the IBIE (interrupt enable) bit in the IBCR control register is set. The IBIF (interrupt flag) bit can be
cleared by writing 1 (in the interrupt service routine, if interrupts are used).

The TCF bit will be cleared to indicate data transfer in progress by reading the IBDR data register
receive mode or writing the IBDR in transmit mode. The TCF bit should not be used as a data tran
complete flag as the flag timing is dependent on a number of factors including the IIC bus frequency
bit may not conclusively provide an indication of a transfer complete situation. It is recommended
transfer complete situations are detected using the IBIF flag

Software may service the IIC I/O in the main program by monitoring the IBIF bit if the interrupt funct
is disabled. Note that polling should monitor the IBIF bit rather than the TCF bit since their operati
different when arbitration is lost.

Note that when an interrupt occurs at the end of the address cycle the master will always be in tra
mode, i.e. the address is transmitted. If master receive mode is required, indicated by R/W bit in I
then the Tx/Rx bit should be toggled at this stage.

During slave mode address cycles (IAAS=1) the SRW bit in the status register is read to determin
direction of the subsequent transfer and the Tx/Rx bit is programmed accordingly. For slave mode
cycles (IAAS=0) the SRW bit is not valid, the Tx/Rx bit in the control register should be read to determ
the direction of the current transfer.

The following is an example of a software response by a 'master transmitter' in the interrupt routin

5.1.4 Generation of STOP

A data transfer ends with a STOP signal generated by the 'master' device. A master transmitter can
generate a STOP signal after all the data has been transmitted. The following is an example showin
a stop condition is generated by a master transmitter.

If a master receiver wants to terminate a data transfer, it must inform the slave transmitter by not
acknowledging the last byte of data which can be done by setting the transmit acknowledge bit (T

ISR BCLR IBSR,#$02 ;CLEAR THE IBIF FLAG
BRCLR IBCR,#$20,SLAVE ;BRANCH IF IN SLAVE MODE
BRCLR IBCR,#$10,RECEIVE ;BRANCH IF IN RECEIVE MODE
BRSET IBSR,#$01,END ;IF NO ACK, END OF TRANSMISSION

TRANSMIT MOVB DATABUF,IBDR ;TRANSMIT NEXT BYTE OF DATA

MASTX TST TXCNT ;GET VALUE FROM THE TRANSMITING COUNTER
BEQ END ;END IF NO MORE DATA
BRSET IBSR,#$01,END ;END IF NO ACK
MOVB DATABUF,IBDR ;TRANSMIT NEXT BYTE OF DATA
DEC TXCNT ;DECREASE THE TXCNT
BRA EMASTX ;EXIT

END BCLR IBCR,#$20 ;GENERATE A STOP CONDITION
EMASTX RTI ;RETURN FROM INTERRUPT
35

Block Guide — IIC V02.07

 be
ceiver.

other
m

check

ting
rrupt
ent data
R,

 low

g the
t must
e SCL
before reading the 2nd last byte of data. Before reading the last byte of data, a STOP signal must
generated first. The following is an example showing how a STOP signal is generated by a master re

5.1.5 Generation of Repeated START

At the end of data transfer, if the master still wants to communicate on the bus, it can generate an
START signal followed by another slave address without first generating a STOP signal. A progra
example is as shown.

5.1.6 Slave Mode

In the slave interrupt service routine, the module addressed as slave bit (IAAS) should be tested to
if a calling of its own address has just been received . If IAAS is set, software should set the
transmit/receive mode select bit (Tx/Rx bit of IBCR) according to the R/W command bit (SRW). Wri
to the IBCR clears the IAAS automatically. Note that the only time IAAS is read as set is from the inte
at the end of the address cycle where an address match occurred, interrupts resulting from subsequ
transfers will have IAAS cleared. A data transfer may now be initiated by writing information to IBD
for slave transmits, or dummy reading from IBDR, in slave receive mode. The slave will drive SCL
in-between byte transfers, SCL is released when the IBDR is accessed in the required mode.

In slave transmitter routine, the received acknowledge bit (RXAK) must be tested before transmittin
next byte of data. Setting RXAK means an 'end of data' signal from the master receiver, after which i
be switched from transmitter mode to receiver mode by software. A dummy read then releases th
line so that the master can generate a STOP signal.

MASR DEC RXCNT ;DECREASE THE RXCNT
BEQ ENMASR ;LAST BYTE TO BE READ
MOVB RXCNT,D1 ;CHECK SECOND LAST BYTE
DEC D1 ;TO BE READ
BNE NXMAR ;NOT LAST OR SECOND LAST

LAMAR BSET IBCR,#$08 ;SECOND LAST, DISABLE ACK
;TRANSMITTING

BRA NXMAR
ENMASR BCLR IBCR,#$20 ;LAST ONE, GENERATE ‘STOP’ SIGNAL
NXMAR MOVB IBDR,RXBUF ;READ DATA AND STORE

RTI

RESTART BSET IBCR,#$04 ;ANOTHER START (RESTART)
MOVB CALLING,IBDR ;TRANSMIT THE CALLING ADDRESS;D0=R/W
36

Block Guide — IIC V02.07

the
byte

sfer
aged
out
pt to

AL first
5.1.7 Arbitration Lost

If several masters try to engage the bus simultaneously, only one master wins and the others lose
arbitration. The devices which lost arbitration are immediately switched to slave receive mode by
hardware. Their data output to the SDA line is stopped, but SCL is still generated until the end of the
during which arbitration was lost. An interrupt occurs at the falling edge of the ninth clock of this tran
with IBAL=1 and MS/SL=0. If one master attempts to start transmission while the bus is being eng
by another master, the hardware will inhibit the transmission; switch the MS/SL bit from 1 to 0 with
generating STOP condition; generate an interrupt to CPU and set the IBAL to indicate that the attem
engage the bus is failed. When considering these cases, the slave service routine should test the IB
and the software should clear the IBAL bit if it is set.
37

Block Guide — IIC V02.07
Figure 5-1 Flow-Chart of Typical IIC Interrupt Routine

Clear

Master
Mode

?

Tx/Rx
?

Last Byte
Transmitted

?

RXAK=0
?

End Of
Addr Cycle
(Master Rx)

?

Write Next
Byte To IBDR

Switch To
Rx Mode

Dummy Read
From IBDR

Generate
Stop Signal

Read Data
From IBDR
And Store

Set TXAK =1 Generate
Stop Signal

2nd Last
Byte To Be Read

?

Last
Byte To Be Read

?

Arbitration
Lost

?

Clear IBAL

IAAS=1
?

IAAS=1
?

SRW=1
?

TX/RX
?

Set TX
Mode

Write Data
To IBDR

Set RX
Mode

Dummy Read
From IBDR

ACK From
Receiver

?

Tx Next
Byte

Read Data
From IBDR
And Store

Switch To
Rx Mode

Dummy Read
From IBDR

RTI

Y N

Y

Y Y

Y

Y

Y

Y

Y

Y

N

N

N

NN

N

N

N

N

Y

TX RX

RX

TX(Write)

(Read)

N

IBIF

Address Transfer Data Transfer
38

Block Guide — IIC V02.07
Section 6 Resets

6.1 General

The reset state of each individual bit is listed within the Register Description section (seeSection 3
Memory Map/Register Definition) which details the registers and their bit-fields.
39

Block Guide — IIC V02.07

errupt

g ‘1’
Section 7 Interrupts

7.1 General

IIC uses only one interrupt vector.

Table 7-1 Interrupt Summary

7.2 Interrupt Description

Internally there are three types of interrupts in IIC. The interrupt service routine can determine the int
type by reading the Status Register.

IIC Interrupt can be generated on

1. Arbitration Lost condition (IBAL bit set)

2. Byte Transfer condition (TCF bit set)

3. Address Detect condition (IAAS bit set)

The IIC interrupt is enabled by the IBIE bit in the IIC Control Register. It must be cleared by writin
to the IBIF bit in the interrupt service routine.

Interrupt Offset Vector Priority Source Description

IIC
Interrupt

- - -
IBAL, TCF, IAAS

bits in IBSR
register

When either of IBAL, TCF or IAAS bits is set
may cause an interrupt based on Arbitration
lost, Transfer Complete or Address Detect
conditions.
40

Block Guide — IIC V02.07
41

Block Guide — IIC V02.07
42

Block Guide — S12IICV2/D V02.06
43

Block Guide — S12IICV2/D V02.06
44

Block Guide — IIC V02.07
Block Guide End Sheet
45

Block Guide — IIC V02.07
FINAL PAGE OF
46

PAGES
46

	Revision History
	Table of Contents
	Section 1 Introduction
	Section 2 External Signal Description
	Section 3 Memory Map/Register Definition
	Section 4 Functional Description
	Section 5 Initialization/Application Information
	Section 6 Resets
	Section 7 Interrupts

	List of Figures
	List of Tables
	Preface
	Section 1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation
	1.4 Block Diagram

	Section 2 External Signal Description
	2.1 Overview
	2.2 Detailed Signal Descriptions
	2.2.1 SCL
	2.2.2 SDA

	Section 3 Memory Map/Register Definition
	3.1 Overview
	3.2 Module Memory Map
	3.3 Register Descriptions
	3.3.1 IIC Address Register
	3.3.2 IIC Frequency Divider Register
	3.3.3 IIC Control Register
	3.3.4 IIC Status Register
	3.3.5 IIC Data I/O Register

	Section 4 Functional Description
	4.1 General
	4.2 I-Bus Protocol
	4.2.1 START Signal
	4.2.2 Slave Address Transmission
	4.2.3 Data Transfer
	4.2.4 STOP Signal
	4.2.5 Repeated START Signal
	4.2.6 Arbitration Procedure
	4.2.7 Clock Synchronization
	4.2.8 Handshaking
	4.2.9 Clock Stretching

	4.3 Modes of Operation
	4.3.1 Run Mode
	4.3.2 Wait Mode
	4.3.3 Stop Mode

	Section 5 Initialization/Application Information
	5.1 IIC Programming Examples
	5.1.1 Initialization Sequence
	5.1.2 Generation of START
	5.1.3 Post-Transfer Software Response
	5.1.4 Generation of STOP
	5.1.5 Generation of Repeated START
	5.1.6 Slave Mode
	5.1.7 Arbitration Lost

	Section 6 Resets
	6.1 General

	Section 7 Interrupts
	7.1 General
	7.2 Interrupt Description
	Block Guide End Sheet

