
DOCUMENT NUMBER
S12IQUEV1/D
IQUE

Block Guide

V1.6

Original Release Date: 18 Oct 2001
Revised: 29 Nov 2004

TSPG 8/16 Bit MCU
Freescale Semiconductor, Inc.
Freescale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Freescale
Semiconductor does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under
its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor
product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated
with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.
FreescaleTM and the Freescale logo are registered trademarks of Freescale Semiconductor, Inc. Freescale Semiconductor, Inc. is an Equal Opportunity/Affirmative
Action Employer.

© Freescale Semiconductor, Inc., 2004

1Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

0.1 18 Oct 2001 18 Oct 2001 Jim Sibigtroth Initial release

0.2 20 Nov 2001 20 Nov 2001 Johnson Pang

Change from Que to Integrated Queue module
Add system and internal block diagram and description for Integrated
Queue module
Modify the Introduction, Memory/Register definition and section
Add 8-bit data transfer operation description
Add data transfer protocol diagram and description

0.3 28 Nov 2001 28 Nov 2001 Johnson Pang
Change QUE RAM Interface to QUE Integration Module
Add Application Information section

0.4 28 Dec 2001 28 Dec 2001 Johnson Pang

Revise Modes of Operation section
Add IQUE control register, including module reset and module enable
field.
Add Buffer full interrupt feature in each channel.
Revise Functional description and Application Information sections.

1.0 17 Jan 2002 17 Jan 2002 Johnson Pang
Revise the mode of operation section
Revise the Memory Map section
Revise the waveform diagrams in Function Description section

1.1 9 Apr 2002 9 Apr 2002 Johnson Pang Add Programming Information

1.2 30 Aug 2002 30 Aug 2002 Johnson Pang
Add Double Buffer mode freature descriptions and related registers
infromation

1.3 3 June 2003 3 June 2003 Johnson Pang
Change QC12DTR and QC34DTR to QC12DSHR and QC34DSHR
respectively.
Revise the address offset of QCnEP and QCnCR

1.4 5 Sept 2003 5 Sept 2003 Johnson Pang
Change the default value of QCnREQ register from 00 to 0F
Change the double buffer passthrough mode to double buffer mode

1.5 27 Nov 2003 27 Nov 2003 Johnson Pang

Revise the description in Modes of Operation section
Revise the Register definition description for Duble buffer operation
Revise the Modes of Operation
Remove the internal bus operation section

1.6 29 Nov 2004 29 Nov 2004 Wai-On Law Changed company logo.
2 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
Table of Contents

Section 1 Introduction

1.1 Overview. 11

1.2 Features . 11

1.3 Modes of Operation . 12

Section 2 External Signal Description

Section 3 Memory Map/Register Definition

3.1 Register Descriptions . 14

3.1.1 IQUE module Control Register (IQUECR) . 14

3.1.2 Queue Channel n FIFO Data Port Registers (QC1DR, QC2DR, QC3DR, QC4DR)15

3.1.3 Queue Channel n Begin Pointer (QC1BP, QC2BP, QC3BP, QC4BP) 16

3.1.4 Queue Channel n End Pointer (QC1EP, QC2EP, QC3EP, QC4EP) 17

3.1.5 Queue Channel n Control Register (QC1CR, QC2CR, QC3CR, QC4CR) 18

3.1.6 Queue Status Register (QCnSR) . 20

3.1.7 Buffer Size/Base Address (QC1SZB, QC2SZB, QC3SZB, QC4SZB) 21

3.1.8 Queue Channel Request Mapping Registers (QCnREQ) 22

3.1.9 Que Channel Double Buffer Control Register (QC12DCR, QC34DCR) 23

3.1.10 Que Channel Double Buffer Status Register (QC12DSR, QC34DSR) 25

3.1.11 Que Channel Double Buffer Counter Register (QCDCT). 26

3.1.12 Que Channel Double Buffer Software Handshake Register (QC12DSHR, QC34DSHR)
26

Section 4 Functional Description

4.1 QUE Integration Module . 29

4.2 QUE Controller . 29

4.3 Bus Interface . 30

Section 5 Initialization/Application Information

5.1 Initialization. 30

5.2 Application Information . 30
3Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
4 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
List of Figures

Figure 1-1 Block Diagram of an MCU with IQUE . 9

Figure 1-2 IQUE Block Diagram . 10

Figure 3-1 IQUE Module Control Register (IQUECR). 14

Figure 3-2 Queue Channel n FIFO Data Port Register (QCnDR). 16

Figure 3-3 Queue Channel n Begin Pointer (QCnBP) . 17

Figure 3-4 Queue Channel n End Pointer (QCnEP) . 18

Figure 3-5 Queue Channel n Control Register (QCnCR) . 18

Figure 3-6 Queue Channel n Status Register (QCnSR) . 20

Figure 3-7 Buffer Size/Base Address Register (QCnSZB) . 22

Figure 3-8 Queue Channel n Request Mapping Register (QCnREQ) 22

Figure 3-9 Queue Channel 1+2 Double Buffer Control Register (QC12DCR) 24

Figure 3-10 Queue Channel 1+2 Double Buffer Status Register (QC12DSR) 25

Figure 3-11 Queue Channel Double Buffer Counter Register (QCDCT) 26

Figure 3-12 Queue Channel 1+2 Double Buffer Software Handshake Register (QC12DSHR)
26
5Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
6 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
List of Tables

Table 1-1 Summary of IQUE data transfer modes. 13

Table 3-1 Module Memory Map . 13

Table 3-2 Queue Channel n Request Mapping . 23

Table 5-1 Example of operation mode selection . 33
7Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
8 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
Section 1 Introduction

This block guide describes a multi-channel general purpose Integrated Queue module (IQUE) that is
compatible with the IP bus used in the HCS12 MCU families. The module manages the movement of data
without any direct intervention from the CPU. A static 16-bit RAM block (QRAM) is embedded in the
module. Data is written into or transferred out of the QRAM in FIFO fashion. The basic IQUE design can
be adjusted to have from 2 to 8 channels.

Figure 1-1 is a high level block diagram of an MCU that includes the general purpose IQUE module. It
shows the CPU, main MCU memory, and IP Bus Interface (IPBI) interconnected by the CPU system bus.
Peripheral modules which require queue data transfer have direct data path and handshake control signals
connected to IQUE module. The QRAM data can be accessed by the CPU through IP bus data port or
directly through S12 Bus Interface with EEPROM address mapping, provided that the EEPROM module
is not used in the system. Synchronous time multiplexing is used to control whether the CPU or the QUE
controller has control of the QRAM FIFO buffer.

Figure 1-1 Block Diagram of an MCU with IQUE

CPU
PROGRAM MEMORY

ADDR

DATA

CTL
S12 BUS

IP BUS
INTERFACE

MORE
PERIPHERALS

INTEGRATED QUEUE

IP Module

Dout

Din

IP BUS

IP FIFO BUS

IP BUS

CTL

IP FIFO Bus Interface

S12 (EEPROM) Bus Interface
IP

 B
us

 In
te

rfa
ce

IP FIFO Bus Interface

IP
 B

us
 In

te
rfa

ce

ADDR

IP Module

DATA
9 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
Figure 1-2 is the block diagram of Integrated Queue module. It consists of three main blocks: QUE
controller, QUE Integration Module (QIM) and a 16-bit static RAM block (QRAM). QUE controller has
four channels that can move data one byte or one 16-bit word in a single IQUE clock cycle. The multiplex
and control logic in the QIM allows QRAM sharing between QUE controller accesses and CPU accesses.
The module has three interface ports: IP bus interface (SkyBlue-Line signals), IP FIFO interface
(ForestGreen-Line signals) and S12 core interface (EEPROM bus signals).

Figure 1-2 IQUE Block Diagram

The IQUE module operating clock frequency is targeted at 60MHz and CPU also operates at 60MHz or
its frequency divider. For example, if the clock frequency of IQUE and CPU are 60MHz and 30MHz
respectively. There would be four time slots for QRAM access for each CPU bus cycle in this case. One
of these slots would be reserved for use by the CPU if selects indicate the CPU needs access to the QRAM
during that bus cycle. The remaining slots are available to the QUE Controller. In a typical system, this
fast peripheral would use every-other QRAM cycle or two of the four available time slots.

In case the CPU clock is increased to higher than 30MHz(i.e. 60MHz), QIM will assert the ee_hold signal
to extend CPU read operation by one bus clock cycle, thus QRAM can be operating at constant speed.

IP Bus

QUE Controller

(F
o

re
st

G
re

e
n

-L
in

e
 S

ig
n

a
ls

)

QUE Integration Module QRAM

CTL Data Addr

Data Data

(SkyBlue-Line & Green-Line Signals)

CTL Data Addr

ipf_xmit_data[15:0]

ipf_rcv_data_s1~n[15:0]

Data

CTL

CTL

CTL

CTL CTL

Addr

Data

CTL

S12 Bus

Addr Addr Addr

ipf_xmit_req_s1~n

ipf_module_en_s1~n

ipf_rcv_eq_s1~n

ipf_module_en_s1~n

ipf_xmit_xfr_wait_s1~n

ipf_rcv_xfr_wait_s1~n

Integrated Queue Module
10 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
1.1 Overview

IQUE allows automatic block data transfer without CPU intervention, and there is no need to steal CPU
bus cycles because queue data transfers take place during time slots where the CPU is not using the
QRAM. A fast channel is dedicated for higher data rate peripheral. This channel has guaranteed bandwidth
which data transfer rate is not reduced even CPU utilizing the QRAM. Unlike a typical DMA controller,
IQUE is specifically designed for use in an MCU in order to simplify some control logic and thus fit in a
smaller die area. One side of every queue data transfer is always a data value from an internal MCU
peripheral, and the other side of the transfer is always the QRAM. This greatly reduces the size and
complexity of pointers, counters, and other control logic so the die area is much less than would be
required for a traditional DMA controller.

During an automated queue data transfer, data is written into the QRAM or transferred out of the QRAM
in FIFO fashion. The CPU can write information into the QRAM or read information out of the QRAM
through registers in the QUE controller that act as FIFO data ports. In addition, the CPU can access
information in the QRAM in random fashion with ordinary CPU read and write accesses. When
information is accessed through the FIFO data port registers, pointers are automatically updated so the
QRAM buffer behaves as a circular or linear FIFO. User can also directly write to the FIFO begin and end
pointers.

The number of queue requesting sources are usually more than queue channels. IQUE includes control
structure to allow a user to select one of several sources as the source for queue requests for each queue
channel. At chip integration time, the system design engineer for a particular chip will assign (connect)
peripheral requests and acknowledge signals to the appropriate inputs and outputs of IQUE according to
their required data rate and priority. A bandwidth guaranteed queue channel (either channel 1 or 2) is
designed for IP module which requires higher data transfer rate (Max. 60M btye/s).

1.2 Features

The IQUE module includes these distinctive features:

• Four channels (each channel programmable for 8-bit or 16-bit transfers)

• Up to 4K bytes of static RAM (QRAM) for queue buffers

• QRAM buffers act as circular or linear FIFOs

– Independently programmable buffer sizes from 16 to 4K bytes

– Independently programmable buffer base address within 4K bytes QRAM

– QRAM buffers can act as software FIFOs when queue channel is disabled

– Begin and end pointers are writable so software can undo a partial message transfer

• Flexible mapping of peripheral requests to queue channels

• Queue data transfers do not affect real time operation of the CPU

– Data transfer rate up to one transfer per two QRAM clock cycles per channel (almost 30 million
16-bit transfers per second)
11Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
• Status flags for valid FIFO data, FIFO empty and full for each channel

– each channel can optionally interrupt on valid data, empty or full condition

1.3 Modes of Operation

 Queue channels can operate as either Receive queue or Transmit queue mode. Passthrough mode
associates a receive channel and a transmit channel to the same QRAM FIFO buffer so data can be
transferred from one peripheral to another through the buffer without any CPU intervention. In addition,
the FIFO buffers associated with a queue channel can function as software FIFOs when the queue channel
is disabled. Table 1-1summarize the data transfer operation modes supported by IQUE module.

• Receive queue mode

When a queue channel is enabled and configured as Receive queue mode, data is automatically
written into the FIFO buffer in response to a peripheral request. The user application program
(CPU) reads data out of the FIFO buffer through data port register. If CPU do not request for data
transfer, other peripheral will occupy the rest of the data transfer bandwidth. In this mode, CPU
requests to write data into FIFO buffer through data port register are ignored.

• Transmit queue mode

When a queue channel is enabled and configured as Transmit queue mode, the user application
program (CPU) writes data into the FIFO buffer through data port register. Data is automatically
read from the FIFO buffer in response to a peripheral request. If CPU do not request for data
transfer, other peripheral will occupy the rest of the data transfer bandwidth. In this mode, CPU
requests to read data from FIFO buffer through data port register are ignored.

• Passthrough mode

Passthrough mode are supported to allow two queue channels to be linked so they share the same
FIFO buffer. Data can be transferred into the FIFO buffer through a receive channel and
automatically be sent out through a transmit queue channel - all without any CPU intervention other
than the initialization instructions that established the passthrough setup. In this mode, CPU
requests FIFO buffer read/write through data port registers are ignored. But CPU is allowed to
access the QRAM data in random access fashion through S12 EEPROM bus interface.

• Block Base Trasnfer (Single or Double Buffer Tranfer) mode

Double Buffer mode is supported to allow two queue channels to be linked so they share the same
FIFO buffer similar to Passthrough mode with additional Ping-Pong double buffering feature.
Unlike circular buffer in the other modes, in double buffer mode, two buffers are accessed in buffer
base, i.e. buffer empty, valid and full is determined from entire buffer point of view. Buffer can only
be read after the entire buffer is full, or written after entire buffer is empty. After one buffer is full,
pointer will automatically switch to next buffer for further writting, provided that the next buffer is
empty. When this mode is enabled, the actual total buffer size is equal to twice of the size specified
in buffer size field. Buffer to be accessed is toggled automatically. The number of buffers to be
transfered is programmable. The buffer empty and full status information is shown in the control
and status registers.
12 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
• Software FIFO mode

When a queue channel is disabled, peripheral requests are ignored and the queue channel does not
request hardware interrupts. CPU accesses to the FIFO data port still access the QRAM in FIFO
fashion through data port register, pointers are still updated normally, and the valid data and full
status flags still operate normally. This allows a user to treat the QRAM buffer as a software FIFO.

• Stop and Wait mode

When the MCU is in stop mode, no queue transfers take place in the queue system, and the
operation of IQUE will be suspended immediately. It will be resumed once MCU is out of stop
mode. When the MCU is in wait mode, queue transfers can continue to take place. Queue system
interrupts can be used to wake the MCU from wait mode. Some peripheral modules have control
bits that determine whether or not the peripheral remains active when the MCU is in wait mode.
These controls would affect whether or not the peripheral would continue to issue queue requests
when the MCU was in wait mode.

Section 2 External Signal Description

There are no external signals (external pins) associated with the queue module.

Section 3 Memory Map/Register Definition

Table 3-1 shows the registers associated with the IQUE module.

Table 1-1 Summary of IQUE data transfer modes

Circular Buffer Block BaseTransfer

Software FIFO
Tx Que
Rx Que

Passthrough

Single Buffer Double Buffer

Software FIFO
Tx Que
Rx Que

Passthrough

Table 3-1 Module Memory Map

Address
Offset Use Access

$00 IQUE Module Control Register(IQUECR) R/W

$01 Reserved

$02 QUE Ch. 1 FIFO Data Register (QC1DRH:QC1DRL) R/W1

$04 QUE Ch. 1 Begin Pointer Register (QC1BP) R/W

$06 QUE Ch. 1 End Pointer Register (QC1EP) R/W

$08 QUE Ch. 1 Control Register (QC1CR) R/W

$09 QUE Ch. 1 Status Register (QC1SR) R2

$0A QUE Ch. 1 Size/Base Register (QC1SZB) R/W
13Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
3.1 Register Descriptions

This section consists of register descriptions in address order. This block guide describes a 4-channel
IQUE module, but the module is intended to be expandable from two to eight channels.

3.1.1 IQUE module Control Register (IQUECR)

Figure 3-1 IQUE Module Control Register (IQUECR)

$0B QUE Ch. 1 Request Mapping (QC1REQ) R/W

$0C QUE Ch. 2 FIFO Data Register (QC2DR) R/W1

$0E QUE Ch. 2 Begin Pointer Register (QC2BP) R/W

$10 QUE Ch. 2 End Pointer Register (QC2EP) R/W

$12 QUE Ch. 2 Control Register (QC2CR) R/W

$13 QUE Ch. 2 Status Register (QC2SR) R2

$14 QUE Ch. 2 Size/Base Register (QC2SZB) R/W

$15 QUE Ch. 2 Request Mapping (QC2REQ) R/W

$16 QUE Ch. 3 FIFO Data Register (QC3DR) R/W1

$18 QUE Ch. 3 Begin Pointer Register (QC3BP) R/W

$1A QUE Ch. 3 End Pointer Register (QC3EP) R/W

$1C QUE Ch. 3 Control Register (QC3CR) R/W

$1D QUE Ch. 3 Status Register (QC3SR) R2

$1E QUE Ch. 3 Size/Base Register (QC3SZB) R/W

$1F QUE Ch. 3 Request Mapping (QC3REQ) R/W

$20 QUE Ch. 4 FIFO Data Register (QC4DR) R/W1

$22 QUE Ch. 4 Begin Pointer Register (QC4BP) R/W

$24 QUE Ch. 4 End Pointer Register (QC4EP) R/W

$26 QUE Ch. 4 Control Register (QC4CR) R/W

$27 QUE Ch. 4 Status Register (QC4SR) R2

$28 QUE Ch. 4 Size/Base Register (QC4SZB) R/W

$29 QUE Ch. 4 Request Mapping (QC4REQ) R/W

$2A QC12 Double Buffer Control Status Register(QC12DCS) R/W

$2C QC34 Double Buffer Control Status Register(QC34DCS) R/W

$2E QC Double Buffer Software Handshake Register(QCDSHR) R/W

NOTES:
1. Normally read-only for a receive queue or write-only for a transmit queue
2. Normally read-only, write (ones) used in clearing sequences.

Address Offset: $00 (IQUECR)

7 6 5 4 3 2 1 0
R 0 0 0

QC34DBE QC12DBE
0 0

IQUEEN
W IQUERST

RESET: 0 0 0 0 0 0 0 0

= Reserved

Table 3-1 Module Memory Map
14 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
The IQUE module can be disabled for power saving purpose. When the module is disabled, the write
access of all registers are suspended except for IQUECR. QRAM directly accessed by CPU is allowed
even the module is disabled.

IQUEEN — IQUE Module Enable

This read/write control bit determines whether the IQUE module is enabled. When this bit change from
zero to one, all registers in the module will be reset.

1 = IQUE module is enabled.
0 = IQUE module is disabled.

IQUERST — IQUE Module Reset

This read/write control bit reset all registers in the module.
1 = All registers in IQUE module reset in next clock cycle.
0 = Unaffected.

QC12DBE — QUE channel 1+2 block base single or double buffer mode

This read/write control bit determines whether the QUE channel 1+2 operates in block base single or
double buffer mode.

1 = Enable block base buffering mode.
0 = Circular buffer mode.

QC34DBE — QUE channel 3+4 block base single or double buffer mode

This read/write control bit determines whether the QUE channel 3+4 operates in block base single or
double buffer mode.

1 = Enable block base buffering mode.
0 = Circular buffer mode.

3.1.2 Queue Channel n FIFO Data Port Registers (QC1DR, QC2DR, QC3DR,
QC4DR)

The Queue Channel n FIFO Data Port Registers provides access information in the QRAM buffers in FIFO
fashion. When a channel is configured as a receive queue, data is read out from the QRAM through the
QUE Channel n FIFO Data Port Register. The current value of data port register is reflecting the data
content of QRAM pointed by the current pointer register. After any read/write operation of data port
register, pointer value will increment and update the content of data port register. When a queue is
configured as a transmit queue, data is written into the QRAM through the Queue Channel n FIFO Data
Port Register.

It is normally considered an error to write to the data register of a receive queue or to read the data port
register of a transmit queue. These actions could interfere with normal operation of internal FIFO pointers.
It is also possible to access the data in the QRAM buffer through reads and writes to 64K bytes addresses
in the CPU memory map without affecting FIFO pointers.
15Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
Figure 3-2 Queue Channel n FIFO Data Port Register (QCnDR)

When a queue channel is configured for 16-bit queue transfers, it always use 16-bit accesses to read or
write the data port registers. If two bytes accesses are used to access data in a 16-bit wide queue channel,
FIFO pointers can be updated inappropriately between these accesses. When the corresponding queue
channel is configured for 8-bit queue transfers, the 8-bit queue data is located in the higher order 8 bits of
this register and the lower order 8 bits are unused.

The values read from these register locations are not meaningful after reset because the FIFOs contain no
meaningful information at that time. Accesses to these register locations are redirected to QRAM locations
and reset does not affect the contents of any QRAM locations.

3.1.3 Queue Channel n Begin Pointer (QC1BP, QC2BP, QC3BP, QC4BP)

The Queue Channel Begin Pointer registers access the FIFO begin pointer for each queue channel. In the
case of an 8-bit queue, each time a byte of data is read out of a queue channel FIFO (due to an automatic
transfer from a transmit queue or due to a CPU read of QCnDR), the begin pointer is incremented by one.
In the case of a 16-bit queue, each time a word of data is read out of a queue channel FIFO, the begin
pointer is incremented by two. When the queue channel begin pointer equals the queue channel end
pointer, the FIFO is empty and so the begin pointer cannot be advanced.

Reset forces all begin and end pointers to point at the start of the QRAM. Other conditions, such as
changing the QCnSZB register, also force corresponding begin and end pointers to be reset, but in those
cases the pointers are reset to the start of the buffer which is determined from the values in QnSML bit in
QCnCR and QBASE field in QCnSZB. When QnSML=0, the base address of a queue buffer is formed by
using the current value of the QBASE field in QCnSZB for bits 11 through 8, and forcing bits 7 through
0 to zero. When QnSML=1, the base address of a queue buffer is formed by using the current value of the
QBASE field in QCnSZB for bits 7 through 4, and forcing bits 11 through 8 and bits 3 through 0 to zero.
Bits 15 through 12 of the address are determined by controls the QRAM within the 64K bytes CPU
memory map.

Address Offset: $02 (QC2DR@$0C, QC3DR@$16, and QC4DR@$20)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R

QnDATA1

NOTES:
1. When the corresponding queue channel is configured for 8-bit queue transfers, the 8-bit queue data is located in the higher

order 8 bits of this register and the lower order 8-bits are unused

W
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
Figure 3-3 Queue Channel n Begin Pointer (QCnBP)

BEGPTR — Begin Pointer for Queue Channel n FIFO

This 12-bit field specifies the next address where data would be read out of a queue channel n FIFO.
The upper four bits of the address in the 64K bytes address space are determined by the location of the
4K bytes QRAM within the MCU memory map.

If the increment operation would advance the pointer beyond the end of the space allocated to that
queue channel, the pointer is reset to the start of the buffer (the FIFO buffers are circular). If the begin
pointer and end pointer are equal before an increment operation, it indicates that the FIFO is empty and
so the begin pointer cannot be advanced.

When Passthrough mode is selected, QCnBP registers for even numbered channels are ignored and all
queue read transfers use QCnBP for the odd numbered channel in the passthrough channel pair. For
example if Q1THRU in QC1CR is set, channels 1 and 2 act as a pair and QC2BP is ignored while
QC1BP acts as the begin pointer for both channels 1 and 2 in the passthrough pair.

3.1.4 Queue Channel n End Pointer (QC1EP, QC2EP, QC3EP, QC4EP)

The Queue Channel End Pointer accesses the FIFO end pointer for each queue channel. In the case of an
8-bit queue, each time a byte of data is written into a queue channel FIFO (due to an automatic transfer to
a receive queue or due to a CPU write to QCnDR), the end pointer is incremented by one. In the case of a
16-bit queue, each time a word of data is written into a queue channel FIFO, the end pointer is incremented
by two. When the queue channel end pointer would equal the queue channel begin pointer after the
increment, the FIFO is full and so no new data can be written into the FIFO and the end pointer is not
incremented.

Reset forces all begin and end pointers to point at the start of the QRAM. Other conditions such as
changing the QCnSZB register also force corresponding begin and end pointers to be reset, but in those
cases the pointers are reset to the start of the buffer which is determined from the values in QnSML in
QCnCR and QBASE in QCnSZB. When QnSML=0, the base address of a queue buffer is formed by using
the current value of the QBASE field in QCnSZB for bits 11 through 8, and forcing bits 7 through 0 to
zero. When QnSML=1, the base address of a queue buffer is formed by using the current value of the
QBASE field in QCnSZB for bits 7 through 4, and forcing bits 11 through 8 and bits 3 through 0 to zero.

Address Offset: $04 (QC2BP@$0E, QC3BP@$18, and QC4BP@$22)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R 0

BEGPTR
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
17Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
Figure 3-4 Queue Channel n End Pointer (QCnEP)

ENDPTR — End Pointer for Queue Channel n FIFO

This 12-bit field specifies the next address where data would be written into a queue channel n FIFO.
The upper four bits of the address in the 64K bytes address space are determined by the location of the
4K bytes QRAM within the MCU memory map.

If the increment operation would advance the pointer beyond the end of the space allocated to that
queue channel, the pointer is reset to the start of the buffer (the FIFO buffers are circular). If the begin
pointer and end pointer would be equal after an increment operation, it indicates that the FIFO is full
and so no new data can be written into the FIFO and no increment takes place.

When Passthrough mode is selected, QCnEP registers for even numbered channels are ignored and all
queue write transfers use QCnEP for the odd numbered channel in the passthrough channel pair. For
example if Q1THRU in QC1CR is set, channels 1 and 2 act as a pair and QC2EP is ignored while
QC1EP acts as the end pointer for both channels 1 and 2 in the passthrough pair.

3.1.5 Queue Channel n Control Register (QC1CR, QC2CR, QC3CR, QC4CR)

Figure 3-5 Queue Channel n Control Register (QCnCR)

QnVIE — Queue Channel n Valid Interrupt Enable

This read/write control bit determines whether the QnVF status flag of QCnSR causes hardware
interrupt requests to be generated when the flag is set.

1 = Hardware interrupt requested when QnEN=QnVIF=1.
0 = Hardware interrupt requests from QnVIF are disabled.

Address Offset: $06 (QC2EP@$10, QC3EP@$1A, and QC4EP@$24)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R 0

ENDPTR
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Address Offset: $08 (QC2CR@$12, QC3CR@$1C, and QC4CR@$26)

7 6 5 4 3 2 1 0
R

QnVIE QnEIE QnFIE QnEN QnSML Qn16EN QnTHRU1

NOTES:
1. In QCnCR for odd-numbered channels this bit position is used for the QnTHRU bit. In even-numbered

channels this bit position is unimplemented and always reads zero.

0
W QnPRST

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
18 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
QnEIE — Queue Channel n Empty Interrupt Enable

This read/write control bit determines whether the QnEIF status flag of QCnSR causes hardware
interrupt requests to be generated when the flag is set.

1 = Hardware interrupt requested when QnEN=1 and QnEIF=1.
0 = Hardware interrupt requests from QnEIF are disabled.

QnFIE — Queue Channel n Full Interrupt Enable

This read/write control bit determines whether the QnFIF status flag of QCnSR causes hardware
interrupt requests to be generated when the flag is set.

1 = Hardware interrupt requested when QnEN=QnFIF=1.
0 = Hardware interrupt requests from QnFIF are disabled.

QnEN — Queue Channel n Enable

The queue channel enable controls whether interrupts can be generated and whether requests from
peripheral modules trigger automatic data transfers into or out of the QRAM. CPU reads or writes to
the QCnDR still cause data to be transferred out of and into the QRAM in FIFO fashion so the QRAM
associated with a queue channel can be used as a software FIFO.

Disabling QnEN does not affect the begin and end pointers for the associated queue channel so these
pointers can still be used after a channel has been disabled.

Changing QnSML, QnTHRU, QnEN, or Qn16EN while a queue channel is enabled or a FIFO is
operating is ambiguous so it should be considered illegal. This would confuse the logic controlling
pointer updates and might lead to unexpected operation.

1 = Queue channel n is enabled.
0 = Queue channel n is disabled.

QnSML — Queue Channel n Small Buffer Select

This read/write control bit determines the resolution of the QSIZE setting for channel n. Any change
to the value of QnSML causes the begin and end pointers (QCnBP and QCnEP) for the associated
queue channel to be reset to point at the base address for that queue. The base address for each queue
buffer is determined by QnSML and QCnSZB.

1 = Queue channel n is configured for small buffer size (16 to 256 bytes in steps of 16 bytes as set
by the QSIZE field in QCnSZB).

0 = Queue channel n is configured for large buffer size (256 to 4K bytes in steps of 256 bytes as set
by the QSIZE field in QCnSZB).

Qn16EN — Configure Channel n for 16-bit/8-bit Transfers

This read/write control bit determines the width of queue data transfers for queue channel n. The width
selected determines whether the begin and end pointers get incremented by two or one for each queue
transfer. Any change to the value of Qn16EN causes the begin and end pointers (QCnBP and QCnEP)
for the associated queue channel to be reset to point at the base address for that queue.

1 = 16-bit transfers.
0 = 8-bit transfers.

In 8-bit transfer mode, data aligns to the most significant byte of the data bus (i.e. bit 8 to bit 15)

QnPRST — Queue Channel n Pointers Reset
19Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
When QnRST=1, it causes the begin, end pointers (QCnBP and QCnEP) and status registers (QCnSR)
for the associated queue channel to be reset to point at the base address for that queue.

1 = Reset both Begin, End Pointer and Control Status Registers.
0 = Unaffected.

Q1THRU (Q3THRU) — Select Passthrough Mode Involving Queue Channel 1+2 (3+4)

These read/write bits are used to select a passthrough mode where two queue channels share a single
set of begin and end pointers. In passthrough mode, data is automatically entered into the queue buffer
in response to requests from one peripheral module and data is read out of the same queue buffer in
response to requests from another peripheral module. In effect, once the queue module and peripherals
have been setup, this causes data to be passed directly from one peripheral module to another through
the queue FIFO buffer without any CPU intervention.

1 = Channel 1 (3) is configured for passthrough to/from channel 2 (4).
0 = No passthrough mode is selected.

3.1.6 Queue Status Register (QCnSR)

Figure 3-6 Queue Channel n Status Register (QCnSR)

This register consists of queue channel status and interrupt flags. The status flags indicate when each queue
channel has valid data, is empty or full. These flags become set and latched when the corresponding
condition first becomes true. The status flags can be forced to 1 by writing a 1 to the QnVS, QnFS and
QnES bits. So that data can be read or write again into the same buffer location.

The interrupt flags also become set and latched when the corresponding condition first becomes true. But
these flags can only be cleared by writing 0 to flag bit position for interrupt acknowledgement.

QnVSF — Queue Channel n Valid Data Control and Status Flag
1 = Set when queue channel n FIFO has at least one valid entry.
0 = Queue channel n FIFO is empty.

QnFSF — Queue Channel n Full Status Flag
1 = Set when queue channel n FIFO becomes full.
0 = Queue channel n FIFO is not full.

QnESF — Queue Channel n Empty Status Flag

The reset value of this bit is 1. After module reset or queue channel pointer reset, the Empty status bit
is set.

1 = Set when queue channel n FIFO becomes empty.

Address Offset: $09 (QC2SR@$13, QC3SR@$1D, QC4SR@$27)

7 6 5 4 3 2 1 0
R

QnVSF QnFSF QnESF
QnVIF QnFIF QnEIF

W 0 0 0
RESET: 0 0 1 0 0 1 0 0

= Unimplemented or Reserved
20 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
0 = Queue channel n FIFO is not empty.

QnVIF — Queue Channel n Valid Data Interrupt Flag

This Interrupt Flag can be cleared only. Interrupt will not be generated unless the QnVIE bit in QCnCR
register is enabled.

1 = Set when queue channel n FIFO has at least one valid entry.
0 = Queue channel n FIFO is empty.

QnFIF — Queue Channel n Full Interrupt Flag

This Interrupt Flag can be cleared only. Interrupt will not be generated unless the QnFIE bit in QCnCR
register is enabled.

1 = Set when queue channel n FIFO becomes full.
0 = Queue channel n FIFO is not full.

QnEIF — Queue Channel n Empty Interrupt Flag

This Interrupt Flag can be cleared only. The reset value of this bit is 1. After module reset or queue
channel pointer reset, the Empty status bit is set. Interrupt will not be generated unless the QnEIE bit
in QCnCR register is enabled.

1 = Set when queue channel n FIFO becomes empty.
0 = Queue channel n FIFO is not empty.

3.1.7 Buffer Size/Base Address (QC1SZB, QC2SZB, QC3SZB, QC4SZB)

These four read/write registers specify the size and base address for the RAM buffers associated with each
queue channel. The queue n small buffer select(QnSML) control bit in QCnCR determines whether QSIZE
specifies the number of 16-byte blocks or 256-byte blocks that are associated with queue channel n and
determines how the QBASE field is interpreted. When QnSML=0, QSIZE determines the number of
256-byte blocks are assigned to queue channel n and QBASE determines one of 16 possible starting points
for the queue channel n FIFO buffer in the 4K bytes QRAM. When QnSML=1, QSIZE determines the
number of 16-byte blocks are assigned to queue channel n and QBASE determines one of 16 possible
starting points for the queue channel n FIFO buffer in the first 256-byte block of the 4K bytes QRAM.

Any write to QCnSZB causes the begin and end pointers (QCnBP and QCnEP) for the associated queue
channel to be reset to point at the base address for that queue. The base address for each queue buffer is
determined by QnSML and QCnSZB. When passthrough mode is selected, the size and base address for
the QRAM buffer is specified by the first (odd numbered) QCnSZB register and the second (even
numbered) QCnSZB register of the passthrough pair is ignored.

The user is responsible for making sure that the base address plus the size does not cause the FIFO buffer
to extend past the base address of the QRAM plus 4K bytes. Failure to follow this guideline can cause the
FIFO buffer to be mapped to unexpected locations.
21Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
Figure 3-7 Buffer Size/Base Address Register (QCnSZB)

QSIZE — Queue Channel n Buffer Size

When QnSML=0, this 4-bit field specifies the number of 256-byte blocks of QRAM that are assigned
to the associated queue channel. 0000 corresponds to 1 block of 256 bytes and 1111 corresponds to 16
blocks of 256 bytes (or 4K bytes).

When QnSML=1, this 4-bit field specifies the number of 16-byte blocks of QRAM that are assigned
to the associated queue channel. 0000 corresponds to 1 block of 16 bytes and 1111 corresponds to 16
blocks of 16 bytes (or 256 bytes).

QBASE — Queue Channel n Buffer Base Address

This 4-bit field specifies the base (starting) address of the QRAM buffer that is assigned to the
associated queue channel. When QnSML=0, these four bits effectively become address bits 8 through
11 of the address used to access the QRAM during FIFO data transfers. When QnSML=1, the address
used to access the QRAM during FIFO data transfers has address bits 8 through 11 forced to zero and
the four QBASE bits effectively become address bits 4 through 7.

3.1.8 Queue Channel Request Mapping Registers (QCnREQ)

The QCnREQ registers are used to specify which peripheral is associated with each queue channel.
Selecting a request source also controls routing of the acknowledge signal from the queue channel to the
selected peripheral and the direction of queue transfers is implied. If there are simultaneous requests from
more than one slow peripheral, queue channel 1 has the highest priority and channel 4 has the lowest
priority.

Figure 3-8 Queue Channel n Request Mapping Register (QCnREQ)

QnREQ — Select Peripheral Request for Queue Channel n

These bits specify which peripheral function is associated with queue channel n. Depending on the
implementation of a specific device derivative, one or more of the high order bits of this field may be
eliminated. Any such unused bits will become unimplemented bits that always read zero.

Address Offset: $0A (QC2SZB@$14, QC3SZB@$1E, and QC4SZB@$28)

7 6 5 4 3 2 1 0
R

QSIZE QBASE
W

RESET: 0 0 0 0 0 0 0 0

Address Offset: $0B (QC2REQ@$15, QC3REQ@$1F, QC4REQ@$29)

7 6 5 4 3 2 1 0
R

QnREQ
W

RESET: 0 0 0 0 1 1 1 1
= Unimplemented or Reserved
22 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
Selecting a peripheral function causes the queue system logic to logically connect the channel request
and acknowledge signals to the selected peripheral and sets the direction for queue transfers for this
queue channel. (These settings are determined at the time of chip integration so this column would be filled in at that time.)

3.1.9 Que Channel Double Buffer Control Register (QC12DCR, QC34DCR)

The Que Channel Double Buffer Control Register is activated only when transferring data in block base
style. Unlike Circular buffering, the data read/write in Block Base data transfer mode depends on the
empty and full status of the entire block. For example, data can only be read out from the buffer once the
buffer is full, or data can only be written into the buffer once the buffer is empty. Double Buffer mode
enable bit (QC12DBE or QC34DBE) of IQUECR must be set before using this block base single or double
buffering feature.

There are two options in Block Base buffering transfer mode, they are Single and Double Block Transfer
mode. In single block transfer mode, data can be read out from the buffer once the whole buffer is full.
And data can only be written into the buffer once the buffer is empty. So either read or write operation is
allowed during the same period.

In double block transfer mode, data written into and read out from IQUE buffer in PING-PONG buffering
style. Data read and write operations are allowed at the same time. Once the first buffer is full, data can be
written into the second buffer continuously while data can be read out from the first buffer at the same
time.

Table 3-2 Queue Channel n Request Mapping

QnREQ Peripheral Function Direction (Rx/Tx)

0000 source01

NOTES:
1. During definition of a specific derivative, peripheral re-

quest and acknowledge signals are connected to module
inputs and outputs. The setting in QnREQ determines
which peripheral is associated with each queue channel.
See the associated device user’s guide.

Rx

0001 source11 Tx

0010 source21 Rx

0011 source31 Tx

0100 source41 Rx

0101 source51 Tx

0110 source61 Rx

0111 source71 Tx

1000 source81 Rx

1001 source91 Tx

1010 source101 Rx

1011 source111 Tx

1111 Disabled Disabled
23Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
Address Offset: $2A (QC34DCR@$2B)

Figure 3-9 Queue Channel 1+2 Double Buffer Control Register (QC12DCR)

SBTE — Single Bock Transfer mode enable

This read/write control bit determines whether the IQUE operates in block based transfer for a single
block data transfer. When switching from Double buffer mode to Single buffer, Status and Pointer
registers of the associated channel will be reset.

1 = Enable Single Block Transfer mode.
0 = Disable Single Block Transfer mode.

DBTIE — Double Buffer Block Transfer Complete Interrupt Enable

This read/write control bit determines whether the DBTCIF status flag of causes hardware interrupt
requests to be generated when the flag is set.

1 = Hardware interrupt requested when DBTRANxx is set.
0 = Hardware interrupt requests from DBCTIF are disabled.

DBEIE — Queue Channel Double Buffer Empty Interrupt Enable

This read/write control bit determines whether the DBEIF status flag of causes hardware interrupt
requests to be generated when the flag is set.

1 = Hardware interrupt requested when both buffers are empty. (i.e. DBEIF = 1)
0 = Hardware interrupt requests from DBEIF are disabled.

DBFIE — Queue Channel Double Buffer Full Interrupt Enable

This read/write control bit determines whether the DBFIF status flag of causes hardware interrupt
requests to be generated when the flag is set.

1 = Hardware interrupt requested when both buffers are full. (i.e. DBFIF = 1)
0 = Hardware interrupt requests from DBFIF are disabled.

DBRST — Double Buffer Status and Pointer Register Reset

When DBRST=1, it causes QC12DSR (or QC34DSR) registers to be reset, and the begin and end
pointers (QCnBP and QCnEP) for the associated queue channel to be reset to point at the base address
for that queue. This bit has to be written a one to enable the reset function.

1 = Reset both Begin, End Pointer and Status registers.
0 = Unaffected.

7 6 5 4 3 2 1 0
R

SBTE DBTIE DBEIE DBFIE
0

W DBRST
RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
24 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
3.1.10 Que Channel Double Buffer Status Register (QC12DSR, QC34DSR)

This Double Buffer Status register indicates the status of buffers when Double Buffer is enabled.
Otherwise, the content of this register will not be changed.

Address Offset: $2C (QC34DSR@$2D)

Figure 3-10 Queue Channel 1+2 Double Buffer Status Register (QC12DSR)

DBTCIF — Block Transfer Complete Interrupt Flag

This flag indicates whether the number of buffers to be transfered specified in DBTRANxx field of
QCDCT register has completed or not. This flag can be cleared by writing a zero to this bit.

1 = Set when DBTRAN12 (or DBTRAN34) field of QCDCT register = $0000.
0 = Block Transfer Complete not complete.

DBEIF — Double Buffer Empty Interrupt Flag

This Interrupt Flag can be cleared by user or reset. Interrupt will not be generated unless the DBEIE
bit in QC12DCR (or QC34DCR) register is enabled. This flag can be cleared by writing a one to this
bit.

1 = Set when both buffers are empty.
0 = At lease one buffer is full.

DBFIF — Double Buffer Full Interrupt Flag

This Interrupt Flag can be cleared by user or reset. Interrupt will not be generated unless the DBFIE
bit in QC12DCR (or QC34DCR) register is enabled. This flag can be cleared by writing a zero to this
bit.

1 = Set when at lease one buffer is full.
0 = Both buffers are empty.

DBSF — Double Buffer Status Flag

This read only buffer status flag indicates the full or empty status of the buffers.

00 = Both buffers are empty.
01 = One buffer is empty, one buffer is full.
10 = Both buffers are full.
11 = reserved

7 6 5 4 3 2 1 0
R

DBTCIF DBEIF DBFIF
DBSF

W
RESET: 0 1 0 0 0 0 0 0

= Unimplemented or Reserved
25Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
3.1.11 Que Channel Double Buffer Counter Register (QCDCT)

Figure 3-11 Queue Channel Double Buffer Counter Register (QCDCT)

DBTRAN12 — Number of buffers to be transfered for Queue Channel 1+2

This 8-bits read/write register specifies the number buffers to be transfered. The register will count
down to zero when transfer complete.

DBTRAN34 — Number of buffers to be transfered for Queue Channel 3+4

This 8-bits read/write register specifies the number buffers to be transfered. The register will count
down to zero when transfer complete.

3.1.12 Que Channel Double Buffer Software Handshake Register
(QC12DSHR, QC34DSHR)

This Double Buffer Software Handshake register controls the handshake signaling in Double Buffer mode
through software. When the Software Handshake control mode of transmit or receive que channel is
enabled. Data being transmitted or received have to be acknowledged or qualified to be valid data before
changing the status of buffer. Also, data can be flushed or resend before data are qualified to be valid data.
When the software handshake mode is disabled. Buffer status registers automatically updated once the
status buffer status has changed.

Address Offset: $30 (QC34DSHR@$31)

Figure 3-12 Queue Channel 1+2 Double Buffer Software Handshake Register
(QC12DSHR)

DTHE — Queue Channel Double Buffer Transmit Handshake Enable

This control bit determines whether Transmitted Data Acknowledge/Resend Transmitted Data
handshake control protocol is enable.

1 = Double Buffer Transmit handshake protocol is enabled.

Address Offset: $2E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R

DBTRAN34 DBTRAN12
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

7 6 5 4 3 2 1 0
R 0 0 0 0

DRHE DTHE
W RXDF RXDA TXRD TXDA

RESET: 0 0 0 0 0 0 0 0
= Unimplemented or Reserved
26 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
0 = Double Buffer Transmit handshake protocol is disabled.

DRHE — Queue Channel Double Buffer Receive Handshake Enable

This control bit determines whether Received Data Flush/Received Data Valid handshake control
protocol is enable.

1 = Double Buffer Receive handshake protocol is enabled.
0 = Double Buffer Receive handshake protocol is disabled.

TXDA — Transmitted Data Acknowledge

This control bit acknowledges the data transmitted from queue channel is consumed. Buffer status
registers advance when this bit asserts. This bit will be deserted in next cycle automatically.
Transmitted data of last buffer will be flushed and overrided by next write cycle.

1 = Transmitted Data Acknowledged.
0 = Transmitted data of last buffer accessed cannot be overrided and DBFIF will not be set.

TXRD — Resend Transmitted Data

This control bit requests resend the data of last buffer accessed. Buffer status register will keep
unchanged and the pointer register will be reset for resending data. If TXDA bit is set, data will be
flushed and resend operation is not allowed.

1 = Request resend data of last buffer accessed.
0 = Unaffected.

RXDA — Received Data Acknowledge

This control bit acknowledges the data of last buffer accessed received by queue channel to qualify the
received data is valid. Buffer and pointer status advance when this bit asserts. Data is ready for
transmit.

1 = Received Data is valid, advance buffer status.
0 = Received data of last buffer accessed cannot be overrided.

RXDF — Received Data Flush

Setting of this control bit discards the data of last buffer accessed received by queue channel.
1 = Received Data Flush. Discard buffer data of last buffer accessed. Data will be resent.
0 = Received data of last buffer accessed cannot be overrided.

Section 4 Functional Description

The IQUE module includes four independent queue channels that are independently programmable for
8-bit or 16-bit transfers. Up to 4K bytes of static RAM is used for FIFO buffers for queue channels. Each
queue channel controls the transfer of data bytes or 16-bit words between an MCU on-chip peripheral and
the FIFO buffer. Pair of queue channels can be configured for passthrough mode where data is effectively
passed from one peripheral to another with the FIFO buffer acting as an elastic buffer between the
peripherals.
27Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
Peripheral requests are each wired to a request input to the IQUE module. Inside the module these request
inputs are wired to one or more channel request input multiplexer. Depending upon the number of potential
request sources that could be associated with each queue channel in a specific derivative MCU. At run time
a user writes to QnREQ of Request Mapping register fields to specify which peripheral request source is
connected to each queue channel. Peripheral sources are typically wired to the channel request input
multiplexer of all queue channels unless there are more than 16 request sources. The direction of transfers
is implied based on which peripheral function is selected. Selecting a request source also causes the queue
channel acknowledge signal to be logically routed to the same peripheral function. The acknowledge
signal acknowledges the peripheral for data transfer request and indicates the completion of data transfer.

In receive queue mode, data is automatically written into the FIFO buffer in response to a request from a
peripheral and it causes the FIFO end pointer to be incremented. Data is read out of a receive queue by a
CPU read of the FIFO data port register and it causes FIFO begin pointer to be incremented. If the source
with Rx direction is assigned, channel is enabled and passthrough mode is disabled, IQUE will operate in
receive mode automatically. FIFO pointers will not be affected even by a CPU write of the FIFO data port
register.

Similarly in transmit queue mode, data is automatically written into the FIFO buffer by a CPU write of the
FIFO data port register and it causes the FIFO end pointer to be incremented. Data is read out of the FIFO
buffer in response to a request from a peripheral and it causes FIFO begin pointer to be incremented. If
source with Tx direction is assigned, channel is enabled and passthrough mode is disabled, IQUE will
operate in transmit mode automatically. FIFO pointers will not be affected even by a CPU read out of the
FIFO data port register.

In both receive and transmit queue modes, half of the total data transfer bandwidth is assigned to CPU
access through data port registers, and one of the channels with the highest priority occupies rest half of
the bandwidth even there are more than one requests from peripherals simultaneously. If CPU do not
request for data transfer, all data transfer bandwidth will be assigned to two channels associated with
peripherals. CPU has higher priority than peripheral so that it can access QRAM FIFO buffer through data
port register read/write anytime by suspending one channel which associated with peripheral.

In passthrough mode, channel 1 (or 3) can be linked to channel 2 (or 4). One channel acts as a receive
queue while the linked channel acts as a transmit queue. Data received by one channel is automatically
transmitted on the linked channel. As long as the receive queue is not full, a new data transfer is triggered
each time that channel’s request signal is active. Whenever there is any data in the queue, a new transfer
out of the FIFO buffer is triggered each time the linked channel’s request signal is active. The FIFO buffer
acts as an elastic buffer between the receive peripheral and the transmit peripheral. In this mode, the size
and base address of the FIFO buffer is determined by controls for the odd-numbered channel of the
passthrough pair and all control and status for the even-numbered channel is ignored except the setting in
Queue Request Mapping register that selects the peripheral function associated with the even-numbered
channel of the passthrough pair. The two channels of each passthrough pair are not allowed to be
configured as the same data transfer direction (ie. both Rx or both Tx). Otherwise, requests from
even-numbered channels are ignored.

In the passthrough mode, requests from CPU through data port register read/write are ignored. CPU
read/write the data port register cannot change the value of FIFO pointer and the content of data port
registers. However, CPU still can access the QRAM through S12 EEPROM bus interface. The bandwidth
28 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
guaranteed channel (channel 1) is provided to allow guaranteed data transfer bandwidth for either one of
the channels without degraded by this kind of CPU’s QRAM access. If there are simultaneous requests
from all four channels, channel 1 has the highest priority to be served.

For example, in a system that has four RAM access time slots per CPU bus cycle (numbered 1, 2, 3, 4),
slots 1 and 3 are available for this fast peripheral channel. That means the data transfer rate with using these
channels are guaranteed to be 60M byte/s when the IQUE module core clock is equal to 60MHz. If the
CPU requests access to the QRAM through S12 bus, slot 2 becomes available for another channel and the
CPU uses slot 4 for the QRAM access. If the CPU is not accessing QRAM, both slot 2 and 4 can be used
by other channels.

Similar to Passthrough mode, IQUE module supports two pairs of channel in double buffer mode. The
actual total buffer size of the two buffers for each channel pair is equal to twice the size specified in the
QSIZE field of QCnSZB register. The buffer to be accessed is toggled automatically. The number of
buffers to be transferred is programmable in the DBTRAN12 and DBTRAN34 field of QCDCT register
for channel 1+2 and 3+4 respectively. The buffer empty and full status information is shown in the control
and status registers QC1SR and QC3SR for channel 1+2 and 3+4 respectively. Unlike normal Passthrough
mode, this double buffer mode is operating in linear ping-pong buffering instead of circular buffering
style. So both of the start and end address used to determine the empty and full status of the buffer is fixed.
Unlike circular buffer, in double buffer mode, two buffers are accessed in buffer base, i.e. buffer empty,
valid and full is determined based on one buffer. Buffer can only be read after the entire buffer is full, or
written after entire buffer is empty. After one buffer is full, pointer will automatically switch to next buffer
for further writting, provided that the next buffer is empty.

4.1 QUE Integration Module

QUE Integration Module (QIM) is an interface between QUE Controller, CPU and QRAM to allow
accesses of QRAM in a time multiplexed fashion.

QIM will notify QUE Controller about the start of bus cycle to allow time slots allocation. Normally, for
all time slots, QUE Controller provides control and address, and selects which channel will be the input to
the QRAM. When there is CPU access to the QRAM, QIM will notify the QUE controller that the CPU
requests access to the QRAM. QUE Controller will be selected to take control of the QRAM in slot 1,2
and 3, but CPU will be selected to access the QRAM in slot 4.

4.2 QUE Controller

QUE Controller manages the QRAM read and write control and data path switching in the QIM. It consists
of a FSM and control status register sets for each channel. The FSM controls the RAM read/write timing
and data path switching, and handles the handshake signals between IQUE and other queue request
peripherals. All registers are accessible through IP bus interface.

QUE Controller also maintains FIFO begin and end pointers (QCnBP and QCnEP) as well as a Queue
Channel n FIFO data register (QCnDR) for each queue channel. This allows the QRAM buffers to be
accessed as circular or linear FIFOs. The QnSML bit in QCnCR and the QCnSZB register allow a user to
29Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
specify the size and base address for the FIFO buffer for each queue channel in the QRAM. QnSML
(queue channel n small buffer select) chooses the resolution for setting the size of the FIFO buffer. When
QnSML=1, the 4-bit QSIZE field in QCnSZB sets the number (1 to 16) of 16-byte blocks of QRAM to
assign to the FIFO buffer for channel n and the 4-bit QBASE field sets the starting address of the buffer
within the first 256 bytes of the queue RAM to one of 16 16-byte boundaries. When QnSML=0, QSIZE
sets the number of 256-byte blocks of queue RAM to assign to the FIFO buffer for channel n and QBASE
sets the starting address of the buffer within the 4K bytes QRAM to 1-of-16 256-byte boundaries.

Each queue channel has a FIFO valid data status flag (QnVF) and a FIFO full status flag (QnFF). Three
other control bits (QnVIE, QnEIE and QnFIE) control whether these flags also cause hardware interrupt
requests. After reset all of these flags are cleared and all local enable bits (QnVIE, QnEIE and QnFIE) are
clear to disable hardware interrupt requests. Flags are set and latched when the associated condition
becomes true. Flags are cleared by reading the status register while the flag is set and then writing a one
to the flag that is to be cleared.

IQUE module can be disabled for power saving purpose by setting the IQUEEN bit in IQUECR register.
All registers in the module remain unchanged when the module is disabled. They can be reset to default
value by hardware reset or software reset through setting the IQUERST bit in IQUECR register. Also,
individual Queue Channel pointer register can be reset by setting the QnRST bit in QCnCR register.

4.3 Bus Interface

There are three bus interface ports in IQUE module including IP bus interface, IP FIFO bus interface
(ForestGreen-Line signals) and S12 Bus interface. All the ForestGreen-Line handshake and data signals
are synchronized with the 60MHz IQUE clock.

Section 5 Initialization/Application Information

5.1 Initialization

After reset, the IQUE remains in an idle state, initialization of registers should be performed before any
data transfer operations. All registers will be reset to the default values. An MCU RESET forces all register
bits to be cleared. The begin and end FIFO pointers are cleared (which effectively forces the FIFOs to the
empty condition). All of the interrupt flags and local enable bits are cleared to disable hardware interrupt
requests.

5.2 Application Information

During operation of a typical application, user software will write to control registers in IQUE to decide
which request source is connected to each QUE channel at any particular time. These assignments can also
be changed during the course of executing an application program so that the IQUE could be used for one
peripheral at one time and later the same queue channel might be used for other peripheral. This structure
allows up to 16 request sources per queue channel but some requests could be mapped to more than one
30 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
queue channel. When every source is connected to all queue channels. This allows complete freedom to
assign any combination of peripheral requests to any combination of queue channels.

Receive queue mode

For a receive queue that is not already full, data is automatically written into the FIFO buffer in
response to a request from a peripheral. This automatic write also causes the FIFO end pointer
(QCnEP) to be incremented. Data is read out of a receive queue by a CPU read of the FIFO data port
register (QCnDR). This CPU read of QCnDR also causes the begin pointer (QCnBP) to be
incremented. If the increment of either pointer would cause it to point past the last location in the
buffer, it is reset to the starting address of the buffer (wraps around). The FIFO buffer is said to be
empty if the begin pointer is equal to the end pointer. The FIFO buffer is full if the end pointer is one
less than the begin pointer (or if the begin pointer is at the start of the buffer and the end pointer is at
the end of the buffer). If the FIFO buffer is full, peripheral requests cannot write more data into the
queue. If the FIFO buffer is empty, a CPU read of QCnDR returns the data from the buffer location
pointed to by the end pointer but the begin pointer is not incremented.

Transmit queue mode

For a transmit queue, data is written into the FIFO buffer by a CPU write to QCnDR. This CPU write
to FIFO data port register also causes the end pointer to be incremented. Data is automatically read
out of the FIFO buffer in response to a peripheral request. This automatic read also causes the FIFO
begin pointer to be incremented. If the increment of either pointer would cause it to point past the last
location in the buffer, it is reset to the starting address of the buffer (wraps around). The FIFO buffer
is said to be empty if the begin pointer is equal to the end pointer. The FIFO is full if the end pointer
is one less than the begin pointer (or if the begin pointer is at the start of the buffer and the end pointer
is at the end of the buffer). If the FIFO is full, a CPU write to QCnDR is ignored and the end pointer
is not incremented. If the FIFO is empty, peripheral requests are ignored and no data transfer to the
peripheral occurs.

Passthrough mode

When the passthrough mode bit is enabled (QnTHRU=1), pairs of queue channels are configured for
a passthrough mode where data enters a queue FIFO RAM buffer in response to requests from one
peripheral device and this data is automatically passed through to another peripheral device. In this
mode, pairs of channels share a common block of memory and common begin and end pointers. This
allows data to be passed without any CPU intervention from one peripheral to another using the
queue FIFO RAM as an intermediate elastic buffer. CPU is not allowed to access the QRAM FIFO
buffer through read/write data port registers in this mode. CPU can only access the QRAM through
S12 EEPROM bus read/write operation.

Software FIFO mode

When a queue channel is disabled (QnEN=0), the QRAM buffer still functions as a FIFO so it can be
used by a programmer as a software FIFO. In this mode, data is written into the FIFO by a CPU write
to QCnDR and data is read from the FIFO by a CPU read of QCnDR. FIFO writes cause the end
pointer to be incremented (wraps around if incrementing past the end of the buffer). FIFO reads cause
the begin pointer to be incremented (wraps around if incrementing past the end of the buffer). A FIFO
is said to be empty if the begin pointer is equal to the end pointer. The FIFO is full if the end pointer
31Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
is one less than the begin pointer (or if the begin pointer is at the start of the buffer and the end pointer
is at the end of the buffer). If the FIFO is full, a CPU write to QCnDR is ignored and the end pointer
is not incremented. If the FIFO is empty, a CPU read of QCnDR returns the data from the buffer
location pointed to by the end pointer but the begin pointer is not incremented.

Programming Information

To use and initialise IQUE module, the following registers have to be programmed.

1. IQUE Module Control Register, IQUECR
2. Que Channel N Control Register, QCnCR
3. Que Channel N Size and Base Address Register, QCnSZB
4. Que Channel N Request Mapping Register, QCnREQ (For Passthrough, Tx Que, Rcv Que mode)

To access QRAM via CPU EE Bus, only need to enable IQUE module, no any other registers have to
be programmed. CPU can also access via EE Bus any time in any operation mode.

A. Initialize IQUECR
bit 0 - IQUEEN, module enable
bit 1 - IQUERST, module reset
bit 3 - QC12DBE, QC12 Block Base Transfer mode enable
bit 4 - QC34DBE, QC34 Block Base Transfer mode enable

IQUEEN bit must be set to 1 to enable the module before read/write of other IQUE module registers.

B. Initialize QCnCR
bit 0 - QnPRST, Channel n Pointer value reset
bit 1 - QnTHRU, Channel n/n+1 Pass through mode enable
bit 2 - Qn16EN, Channel n 16 bit transfer mode enable
bit 3 - QnSML, Channel n small buffer size select

1 = 16 to 256 bytes in steps of 16 bytes
0 = 256 to 4k bytes in steps of 256 bytes

bit 4 - QnEN, Channel n enable for Passthru, Tx and Rx que mode
Disable this bit for Software FIFO mode

bit 5 - QnFIE, Channel n buffer full interrupt enable
bit 6 - QnEIE, Channel n buffer empty interrupt enable
bit 7 - QnVIE, Channel n buffer has valid data interrupt enable
32 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
C. Setting of buffer size and base address, QCnSZB

When QnSML(QCnCR) = 0:
Buffer base address = {QCnSZB[3:0], 0000, 0000}
Buffer size = 256 bytes x (QCnSZB[7:4] + 1)

When QnSML(QCnCR) = 1:
Buffer base address = {0000, QCnSZB[3:0], 0000}
Buffer size = 16 bytes x (QCnSZB[7:4] + 1)

D. Assign Tx/Rcv source modules

 (for Passthrough, TxQue and RcvQue mode only)

Programming Examples:

Example 1: Setup Que Channel 1 & 2 in Passthrough mode
(i.e. Passthrough mode, 16 bit transfer, 256 byte block size, all interrupts disabled;
Buffer size of 256 bytes, base address = $0200;
Source 1 = Tx, Source 4 = Rx)

1. Enable IQUE module
Write 0000 0001 to IQUECR

Table 5-1 Example of operation mode selection

Operation mode IQUECR QC12DCR/
QC34DCR QCnCR Remarks

Circular
Buffer

Software FIFO mode

0000 00X1 0000 0000

XXX0 XX00 -

Pass through mode XXX1 XX10
QnREQ set to

Rx & Tx

Rceive Que mode XXX1 XX00 QnREQ set to Rx

Transmit Que mode XXX1 XX00 QnREQ set to Tx

Block Base
(Single
Buffer)

Software FIFO mode 0000 10X1
(for QC12)

0001 00X1
(for QC34)

0001 XXXX

XXX0 XX00 -

Pass through mode XXX1 XX10
QnREQ set to

Rx & Tx

Rceive Que mode XXX1 XX00 QnREQ set to Rx

Transmit Que mode XXX1 XX00 QnREQ set to Tx

Block Base
(Double
Buffer)

Software FIFO mode 0000 10X1
(for QC12)

0001 00X1
(for QC34)

0000 XXXX

XXX0 XX00 -

Pass through mode XXX1 XX10
QnREQ set to

Rx & Tx

Rceive Que mode XXX1 XX00 QnREQ set to Rx

Transmit Que mode XXX1 XX00 QnREQ set to Tx
33Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
2. Initialize QC1CR
Write 0001 1110 to QC1CR

3. Set Buffer size and base address of QC1SZB
Write 0001 0010 to QC1SZB

4. Assign IPF modules to request mapping register QC1REQ
Write 0011 to QC1REQ;
Write 1000 to QC2REQ

Example 2: Setup Que Channel 2 in Software FIFO mode:
(i.e. Passthru mode, 8 bit transfer, 256 byte block size, all interrupts enabled;

 Buffer size of 256 bytes, base address = $0200)

1. Enable IQUE module
Write 0000 0001 to IQUECR

2. Initialize QC2CR
Write 0000 1000 to QC1CR

3. Set Buffer size and base address of QC2SZB
Write 0001 0010 to QC2SZB

 Example 3: Setup Que Channel 3 in Transmit Que mode:
(ie. Tx Que, 8 bit enable, 16 bytes block size, all interrupts enable;
Buffer size of 64 bytes, base address = $0010, Source 3 = Tx)

1. Enable IQUE module
Write 0000 0001 to IQUECR

2. Initialize QC3CR
Write 1111 1000 to QC3CR

3. Set Buffer size and base address of QC3SZB
Write 0011 0001 to QC3SZB

4. Assign IPF module to request mapping register QC1REQ
Write 0111 to QC3REQ
34 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
Index

–I–

Initialization/application information 30
35Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
36 Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
Block Guide End Sheet
37Freescale Semiconductor

Block Guide — S12IQUEV1/D V1.6
FINAL PAGE OF
38

PAGES
38 Freescale Semiconductor

	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Section 1 Introduction
	Figure 1-1 Block Diagram of an MCU with IQUE
	Figure 1-2 IQUE Block Diagram
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation
	Table 1-1 Summary of IQUE data transfer modes

	Section 2 External Signal Description
	Section 3 Memory Map/Register Definition
	Table 3-1 Module Memory Map
	3.1 Register Descriptions
	3.1.1 IQUE module Control Register (IQUECR)
	Figure 3-1 IQUE Module Control Register (IQUECR)
	3.1.2 Queue Channel n FIFO Data Port Registers (QC1DR, QC2DR, QC3DR, QC4DR)
	Figure 3-2 Queue Channel n FIFO Data Port Register (QCnDR)
	3.1.3 Queue Channel n Begin Pointer (QC1BP, QC2BP, QC3BP, QC4BP)
	Figure 3-3 Queue Channel n Begin Pointer (QCnBP)
	3.1.4 Queue Channel n End Pointer (QC1EP, QC2EP, QC3EP, QC4EP)
	Figure 3-4 Queue Channel n End Pointer (QCnEP)
	3.1.5 Queue Channel n Control Register (QC1CR, QC2CR, QC3CR, QC4CR)
	Figure 3-5 Queue Channel n Control Register (QCnCR)
	3.1.6 Queue Status Register (QCnSR)
	Figure 3-6 Queue Channel n Status Register (QCnSR)
	3.1.7 Buffer Size/Base Address (QC1SZB, QC2SZB, QC3SZB, QC4SZB)
	Figure 3-7 Buffer Size/Base Address Register (QCnSZB)
	3.1.8 Queue Channel Request Mapping Registers (QCnREQ)
	Figure 3-8 Queue Channel n Request Mapping Register (QCnREQ)
	Table 3-2 Queue Channel n Request Mapping
	3.1.9 Que Channel Double Buffer Control Register (QC12DCR, QC34DCR)
	Figure 3-9 Queue Channel 1+2 Double Buffer Control Register (QC12DCR)
	3.1.10 Que Channel Double Buffer Status Register (QC12DSR, QC34DSR)
	Figure 3-10 Queue Channel 1+2 Double Buffer Status Register (QC12DSR)
	3.1.11 Que Channel Double Buffer Counter Register (QCDCT)
	Figure 3-11 Queue Channel Double Buffer Counter Register (QCDCT)
	3.1.12 Que Channel Double Buffer Software Handshake Register (QC12DSHR, QC34DSHR)
	Figure 3-12 Queue Channel 1+2 Double Buffer Software Handshake Register (QC12DSHR)

	Section 4 Functional Description
	4.1 QUE Integration Module
	4.2 QUE Controller
	4.3 Bus Interface

	Section 5 Initialization/Application Information
	5.1 Initialization
	5.2 Application Information
	Table 5-1 Example of operation mode selection

	Index
	Block Guide End Sheet

