
DOCUMENT NUMBER
S12XGATEV1/D
XGATE

Block Guide

01.04

Original Release Date: 18 Jun 2003
Revised: 31 Mar 2004

8/16 Bit Division, TSPG
Motorola, Inc.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges
that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc.is an Equal
Opportunity/Affirmative Action Employer.

1

©Motorola, Inc., 2001

Block Guide — S12XGATEV1/D 01.04
Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

00.00
18 Jun
2003

18 Jun
2003

Initial release

01.00
28 Jan
2004

28 Jan
2004

First official release

01.02
19 Feb
2004

19 Feb
2004

Minor corrections

01.03
27 Feb
2004

27 Feb
2004

Removed reserved instructions from Table 4-2

01.04
31 Mar
2004

31 Mar
2004

Minor corrections
2

Block Guide — S12XGATEV1/D 01.04
Table of Contents

Section 1 Introduction

1.1 Overview. 11

1.2 Features . 12

1.3 Modes of Operation . 12

Section 2 External Signal Description

Section 3 Memory Map/Register Definition

3.1 Register Descriptions . 13

3.1.1 XGATE Module Control Register (XGMCTL). 14

3.1.2 XGATE Channel ID Register (XGCHID) . 16

3.1.3 XGATE Vector Base Address Register (XGVBR) . 16

3.1.4 XGATE Channel Interrupt Flag Vector (XGIF) . 17

3.1.5 XGATE Software Trigger Register (XGSWT) . 19

3.1.6 XGATE Semaphore Register (XGSEM). 20

3.1.7 XGATE Condition Code Register (XGCCR) . 21

3.1.8 XGATE Program Counter Register (XGPC) . 22

3.1.9 XGATE Register 1 (XGR1) . 22

3.1.10 XGATE Register 2 (XGR2) . 22

3.1.11 XGATE Register 3 (XGR3) . 23

3.1.12 XGATE Register 4 (XGR4) . 23

3.1.13 XGATE Register 5 (XGR5) . 24

3.1.14 XGATE Register 6 (XGR6) . 24

3.1.15 XGATE Register 7 (XGR7) . 25

Section 4 Functional Description

4.1 XGATE RISC Core . 26

4.1.1 Programmer’s Model . 26

4.1.2 Memory Map . 27

4.2 Semaphores . 28

4.3 Software Error Detection . 30

4.4 Interrupts . 31

4.4.1 Incoming Interrupt Requests . 31
3

Block Guide — S12XGATEV1/D 01.04
4.4.2 Outgoing Interrupt Requests . 31

4.5 Debug Mode. 31

4.5.1 Debug Features . 31

4.5.2 Entering Debug Mode . 32

4.5.3 Leaving Debug Mode . 33

4.6 Security. 33

4.7 Instruction Set. 33

4.7.1 Addressing Modes . 33

4.7.2 Instruction Summary and Usage . 37

4.7.3 Cycle Notation . 39

4.7.4 Thread Execution . 39

4.7.5 Instruction Glossary . 40

4.7.6 Instruction Coding . 113

Section 5 Initialization/Application Information

5.1 Initialization. 115

5.2 Code Example (transmit "Hello World!" on SCI). 115
4

Block Guide — S12XGATEV1/D 01.04
List of Figures

Figure 1-1 XGATE Block Diagram . 11

Figure 3-1 XGATE Module Control Register (XGMCTL) . 14

Figure 3-2 XGATE Channel ID Register (XGCHID) . 16

Figure 3-3 XGATE Vector Base Address Register (XGVBR) . 16

Figure 3-4 XGATE Channel Interrupt Flag Vector (XGIF). 18

Figure 3-5 XGATE Software Trigger Register (XGSWT) . 19

Figure 3-6 XGATE Semaphore Register (XGSEM) . 20

Figure 3-7 XGATE Condition Code Register (XGCCR) . 21

Figure 3-8 XGATE Program Counter Register (XGPC) . 22

Figure 3-9 XGATE Register 1 (XGR1) . 22

Figure 3-10 XGATE Register 2 (XGR2) . 23

Figure 3-11 XGATE Register 3 (XGR3) . 23

Figure 3-12 XGATE Register 4 (XGR4) . 24

Figure 3-13 XGATE Register 5 (XGR5) . 24

Figure 3-14 XGATE Register 6 (XGR6) . 25

Figure 3-15 XGATE Register 7 (XGR7) . 25

Figure 4-1 Programmer’s Model . 26

Figure 4-2 XGATE Memory Map. 27

Figure 4-3 XGATE Vector Block . 28

Figure 4-4 Semaphore State Transitions . 29

Figure 4-5 Algorithm for Locking and Releasing Semaphores . 30

Figure 4-6 Bit Field Addressing. 38
5

Block Guide — S12XGATEV1/D 01.04
6

Block Guide — S12XGATEV1/D 01.04
List of Tables

Table 3-1 Module Memory Map . 13

Table 4-1 Access Detail Notation. 39

Table 4-2 Instruction Set Summary . 113
7

Block Guide — S12XGATEV1/D 01.04
8

Block Guide — S12XGATEV1/D 01.04

dule

Flag)

$09.

(see

st.

s the
Preface

Terminology

XGATE Request:

A service request from a peripheral module which is directed to the XGATE by the S12X_INT mo
(seeFigure 1-1).

XGATE Channel

The resources in the XGATE module (i.e. Channel ID number, Service Request Vector, Interrupt
that are associated with a particular XGATE Request.

XGATE Channel ID

Each XGATE request has a 7-bit identifier. In S12X designs valid Channel IDs range from $78 to

XGATE Channel Interrupt

An S12X_CPU interrupt that is triggered by a code sequence running on the XGATE module.

XGATE Software Channel

Special XGATE channel that is not associated with any peripheral service request. A Software
Channel is triggered by its Software Trigger Bit which is implemented in the XGATE module.

XGATE Semaphore

A set of hardware flip-flops that can be exclusively set by either the S12X_CPU or the XGATE.
4.2)

XGATE Thread

A code sequence that is executed by the XGATE’s RISC core after receiving an XGATE reque

XGATE Debug Mode

A special mode in which the XGATE’s RISC core is halted for debug purposes. This mode enable
XGATE’s debug features (see4.5).

XGATE Software Error

The XGATE is able to detect a number of error conditions caused by erratic software (see4.3). These
error conditions will cause the XGATE to seize program execution and flag an Interrupt to the
S12X_CPU.

Word

A 16-bit entity.

Byte

An 8-bit entity.
9

Block Guide — S12XGATEV1/D 01.04
10

Block Guide — S12XGATEV1/D 01.04

 the

U’s
Section 1 Introduction

The XGATE module is a peripheral co-processor that allows autonomous data transfers between
MCU’s peripherals and the internal RAM. It has a built in RISC core that is able to pre-process the
transferred data and perform complex communication protocols.

The XGATE module is intended to increase the MCU’s data throughput by lowering the S12X_CP
interrupt load.

Figure 1-1 is a block diagram of the XGATE module.

Figure 1-1 XGATE Block Diagram

1.1 Overview

This document describes the functionality of the XGATE module, including:

• XGATE registers (Section 3)

• XGATE RISC core (Section 4.1)

• XGATE memory map and vector map (Section 4.1.2)

• Hardware semaphores (Section 4.2)

• Software error detection (Section 4.3)

• Interrupt handling (Section 4.4)

RISC Core

RAM

S12X_INT

XGATE

Peripherals

Semaphores

Interrupt Flags

Software Triggers

Peripheral Interrupts

Software
Triggers

X
G

A
T

E
In

te
rr

up
ts

X
G

A
T

E
R

eq
ue

st
s

D
at

a

D
at

a

C
od

e

S12X_DBG
11

Block Guide — S12XGATEV1/D 01.04

odule.

r
l and the
eserved
• Debug features (Section 4.5)

• Security (Section 4.6)

• Instruction set (Section 4.7)

1.2 Features

The XGATE module includes these features:

• Data movement between RAM and peripheral modules.

• Data manipulation through built in RISC core

• Provides up to 112 XGATE channels

– - 104 hardware triggered channels

– - 8 software triggered channels

• Hardware semaphores which are shared between the S12X_CPU and the XGATE module

• Able to trigger S12X_CPU interrupts upon completion of an XGATE transfer

1.3 Modes of Operation

There are four run modes on S12X devices.

• Run Mode, Wait Mode, Stop Mode

The XGATE is able to operate in all of these three system modes. Clock activity will be
automatically stopped when the XGATE module is idle.

• Freeze Mode (BDM active)

In freeze mode all clocks of the XGATE module may be stopped, depending on the module
configuration (see3.1.1).

Section 2 External Signal Description

The XGATE module has no external pins.

Section 3 Memory Map/Register Definition

This section provides a detailed description of address space and registers used by the XGATE m

The memory map for the XGATE module is given below inTable 3-1 .The address listed for each registe
is the sum of a base address and an address offset. The base address is defined at the SoC leve
address offset is defined at the module level. Reserved registers read zero. Write accesses to the r
registers have no effect.
12

Block Guide — S12XGATEV1/D 01.04

register
ter
3.1 Register Descriptions

This section consists of register descriptions in address order. Each description includes a standard
diagram with an associated figure number. Details of register bit and field function follow the regis
diagrams, in bit order.

Table 3-1 Module Memory Map

Address Use Access

+$00 XGATE Module Control Register (XGMCTL) Read/Write1

NOTES:
1. Certain bits are not writable.

+$01 Reserved None

+$02 XGATE Channel ID Register (XGCHID) Read

+$03 Reserved None

+$04, +$05
+$06, +$07 XGATE Vector Base Address (XGVBR) Read/Write

+$08, +$09,
+$0A, +$0B,
+$0C, +$0D,
+$0E, +$0F,
+$10, +$11,
+$12, +$13,
+$14, +$15,
+$16, +$17

XGATE Interrupt Flag Vector (XGIF) Read/Write1

+$18, +$19 XGATE Software Trigger Register (XGSWT) Read/Write

+$1A, +$1B XGATE Semaphore Register (XGSEM) Read/Write2

2. see 4.2

+$1C Reserved None

+$1D XGATE Condition Code Register (XGCCR) Read/Write1,3

3. Write only if in Debug Mode.

+$1E, +$1F XGATE Program Counter (XGPC) Read/Write3

+$20, +$21 Reserved None

+$22, +$23 XGATE Register 1 (XGR1) Read/Write3

+$24, +$25 XGATE Register 2 (XGR2) Read/Write3

+$26, +$27 XGATE Register 3 (XGR3) Read/Write3

+$28, +$29 XGATE Register 4 (XGR4) Read/Write3

+$2A,+$2B XGATE Register 5 (XGR5) Read/Write3

+$2C, +$2D XGATE Register 6 (XGR6) Read/Write3

+$2E, +$2F XGATE Register 7 (XGR7) Read/Write3

+$30, +$31,
+$32, +$33,
+$34, +$35,
+$36, +$37,
+$38, +$39

Reserved None
13

Block Guide — S12XGATEV1/D 01.04

will
ue to

 if a
3.1.1 XGATE Module Control Register (XGMCTL)

All module level switches and flags are located in the Module Control RegisterFigure 3-1 .

Figure 3-1 XGATE Module Control Register (XGMCTL)

Read: anytime
Write: anytime

XGE - XGATE Module Enable

This bit enables the XGATE module. If the XGATE module is disabled, pending XGATE requests
be ignored. The thread that is executed by the RISC core while the XGE bit is cleared will contin
run.

Read:
1 = XGATE module is enabled
0 = XGATE module is disabled

Write:
1 = Enable XGATE module
0 = Disable XGATE module

XGFRZ - Stop XGATE in Freeze Mode

The XGFRZ bit controls the XGATE operation in Freeze Mode (BDM active).

Read:
1 = RISC core stops in Freeze Mode (BDM active)
0 = RISC core operates normally in Freeze (BDM active)

Write:
1 = Stop RISC core in Freeze Mode (BDM active)
0 = Don’t stop RISC core in Freeze Mode (BDM active)

XGDBGM - XGATE Debug Mode Mask

This bit controls the write access to the XGDBG bit. The XGDBG bit can only be set or cleared
"1" is written to the XGDBGM bit in the same register access.

Read:
This bit will always read "0".

Write:
1 = Enable write access to the XGDBG in the same bus cycle

XGATE+$00

7 6 5 4 3 2 1 0
R

XGE XGFRZ
0

XGDBG
0 0

XGSWEIF XGIE
W XGDBGM XGSS

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
14

Block Guide — S12XGATEV1/D 01.04

are

ition
nt
0 = Disable write access to the XGDBG in the same bus cycle

XGDBG - XGATE Debug Mode

This bit indicates that the XGATE is in Debug Mode (see4.5). Debug Mode can be entered by
Software Breakpoints (BRK instruction), Tagged or Forced Breakpoints (seeS12X_DBG Block User
Guide), or by writing a "1" to this bit.

Read:
1 = RISC core is in Debug Mode
0 = RISC core is not in Debug Mode

Write:
1 = Enter Debug Mode
0 = Leave Debug Mode

NOTE: Freeze Mode and Software Error Interrupts have no effect on the XGDBG bit.

XGSS - XGATE Single Step

This bit forces the execution of a single instruction if the XGATE is in DEBUG Mode and no softw
error has occurred (XGSWEIF cleared).

Read:
This bit will always read "0".

Write
1 = Execute a single RISC instruction
0 = No effect

XGSWEIF - XGATE Software Error Interrupt Flag

This bit signals a pending Software Error Interrupt. It is set if the RISC core detects an error cond
(see4.3). The RISC core is stopped while this bit is set. Clearing this bit will terminate the curre
thread and cause the XGATE to become idle.

Read:
1 = Software Error Interrupt is pending if XGIE is set
0 = Software Error Interrupt is not pending

Write:
1 = Clears the XGSWEIF bit
0 = No effect

XGIE - XGATE Interrupt Enable

This bit acts as a global interrupt enable for the XGATE module

Read:
1 = All XGATE interrupts enabled
0 = All XGATE interrupts disabled

Write:
1 = Enable all XGATE interrupts
15

Block Guide — S12XGATEV1/D 01.04

ister
0 = Disable all XGATE interrupts

3.1.2 XGATE Channel ID Register (XGCHID)

The XGATE Channel ID register (Figure 3-2) shows the identifier of the XGATE channel that is
currently active. This register will read “$00” if the XGATE module is idle. In Debug mode this reg
can be used to start and terminate threads (see4.5.1).

Figure 3-2 XGATE Channel ID Register (XGCHID)

Read: anytime
Write: in Debug Mode

XGCHID[6:0] - Request Identifier

ID of the currently active channel

3.1.3 XGATE Vector Base Address Register (XGVBR)

The Vector Base Address Register (Figure 3-3) determines the location of the XGATE vector block.

Figure 3-3 XGATE Vector Base Address Register (XGVBR)

Read: anytime
Write: only if the module is disabled (XGE=0) and idle (XGCHID=$00))

XGATE+$02

7 6 5 4 3 2 1 0
R 0 XGCHID[6:0]
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

XGATE+$04

+$04 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R 0 0 0 0 0 0 0 0 0 0 0 0

XGVBR[19:16]
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

+$06 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R

XGVBR[15:1]
0

W
RESET: 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
16

Block Guide — S12XGATEV1/D 01.04

pper

ach
XGVBR - Vector Base Address

The XGVBR register holds the start address of the vector block in the global memory map. The u
address bits are read-only depending on the size of the internal RAM (seeSoC Guide).

512K ≥ RAM size > 256K:
XGVBR[19] is read only.

256K ≥ RAM size > 128K:
XGVBR[19:18] is read only.

128K ≥ RAM size > 64K:
XGVBR[19:17] is read only.

64K ≥ RAM size > 32K:
XGVBR[19:16] is read only.

32K ≥ RAM size > 16K:
XGVBR[19:15] is read only.

16K ≥ RAM size > 8K:
XGVBR[19:14] is read only.

8K ≥ RAM size > 4K:
XGVBR[19:13] is read only.

4K ≥ RAM size > 2K:
XGVBR[19:12] is read only.

NOTE: Suggested Mnemonics for accessing the Vector Base Register on a word basis are:
XGVBR_HI (XGVBR[31:16]),
XGVBR_LO (XGVBR[15:0])

3.1.4 XGATE Channel Interrupt Flag Vector (XGIF)

The Interrupt Flag Vector (Figure 3-4) provides access to the Interrupt Flags bits of each channel. E
flag may be cleared by writing a "1" to its bit location.
17

Block Guide — S12XGATEV1/D 01.04
Figure 3-4 XGATE Channel Interrupt Flag Vector (XGIF)

Read: anytime
Write: anytime

XGIF_F0...XG_12 - Channel Interrupt Flags

XGATE+$08

+$08 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112
R 0 0 0 0 0 0 0

XGIF_78 XGF_77 XGIF_76 XGIF_75 XGIF_74 XGIF_73 XGIF_72 XGIF_71 XGIF_70
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+$0A 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96
R

XGIF_6F XGIF_6E XGIF_6D XGIF_6C XGIF_6B XGIF_6A XGIF_69 XGIF_68 XGF_67 XGIF_66 XGIF_65 XGIF_64 XGIF_63 XGIF_62 XGIF_61 XGIF_60
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+$0C 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80
R

XGIF_5F XGIF_5E XGIF_5D XGIF_5C XGIF_5B XGIF_5A XGIF_59 XGIF_58 XGF_57 XGIF_56 XGIF_55 XGIF_54 XGIF_53 XGIF_52 XGIF_51 XGIF_50
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+$0E 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64
R

XGIF_4F XGIF_4E XGIF_4D XGIF_4C XGIF_4B XGIF_4A XGIF_49 XGIF_48 XGF_47 XGIF_46 XGIF_45 XGIF_44 XGIF_43 XGIF_42 XGIF_41 XGIF_40
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+$10 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48
R

XGIF_3F XGIF_3E XGIF_3D XGIF_3C XGIF_3B XGIF_3A XGIF_39 XGIF_38 XGF_37 XGIF_36 XGIF_35 XGIF_34 XGIF_33 XGIF_32 XGIF_31 XGIF_30
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+$12 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
R

XGIF_2F XGIF_2E XGIF_2D XGIF_2C XGIF_2B XGIF_2A XGIF_29 XGIF_28 XGF_27 XGIF_26 XGIF_25 XGIF_24 XGIF_23 XGIF_22 XGIF_21 XGIF_20
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+$14 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R

XGIF_1F XGIF_1E XGIF_1D XGIF_1C XGIF_1B XGIF_1A XGIF_19 XGIF_18 XGF_17 XGIF_16 XGIF_15 XGIF_14 XGIF_13 XGIF_12 XGIF_11 XGIF_10
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+$16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R

XGIF_0F XGIF_0E XGIF_0D XGIF_0C XGIF_0B XGIF_0A XGIF_09
0 0 0 0 0 0 0 0 0

W
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
18

Block Guide — S12XGATEV1/D 01.04

can be
fer

ware
he
ritten

"1"
These bits signal pending Channel Interrupts. They can only be set by the RISC core. Each flag
cleared by writing a "1" to its bit location. Unimplemented interrupt flags will always read "0". Re
to Section 5 of theSoC Guide for a list of implemented Interrupts.

Read:
1 = Channel Interrupt is pending if XGIE is set
0 = Channel Interrupt is not pending

Write:
1 = Clears the Interrupt Flag
0 = No effect

NOTE: Suggested Mnemonics for accessing the Interrupt Flag Vector on a word basis are:
XGIF_7F_70 (XGIF[127:112]),
XGIF_6F_60 (XGIF[111:96]),
XGIF_5F_50 (XGIF[95:80]),
XGIF_4F_40 (XGIF[79:64]),
XGIF_3F_30 (XGIF[63:48]),
XGIF_2F_20 (XGIF[47:32]),
XGIF_1F_10 (XGIF[31:16]),
XGIF_0F_00 (XGIF[15:0])

3.1.5 XGATE Software Trigger Register (XGSWT)

The eight Software Triggers of the XGATE module can be set and cleared through the XGATE Soft
Trigger Register (Figure 3-5). The upper byte of this register, the Software Trigger Mask, controls t
write access to the lower byte, the Software Trigger bits. These bits can be set or cleared if a "1" is w
to the associated mask in the same bus cycle.

Figure 3-5 XGATE Software Trigger Register (XGSWT)

Read: anytime
Write: anytime

XGSWTM[7:0] - Software Trigger Mask

These bits control the write access to the XGSWT bits. Each XGSWT bit can only be written if a
is written to the corresponding XGSWTM bit in the same access.

Read:

XGATE+$18

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0

XGSWT[7:0]
W XGSWTM[7:0]

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
19

Block Guide — S12XGATEV1/D 01.04

nly be

PU and
ed by
M
ister
These bits will always read "0".

Write:
1 = Enable write access to the corresponding XGSWT bit in the same bus cycle
0 = Disable write access to the XGSWT in the same bus cycle

XGSWT[7:0] - Software Trigger Bits

These bits act as interrupt flags that are able to trigger XGATE software channels. They can o
set and cleared by software.

Read:
1 = Software trigger pending if the XGIE bit is set
0 = No software trigger pending

Write:
1 = Set Software Trigger
0 = Clear Software Trigger

NOTE: The XGATE Channel IDs that are associated with the eight Software Triggers are
determined on chip integration level. (see Section 5 of theSoc Guide)

NOTE: XGATE Software Triggers work like any peripheral interrupt. They can be used as
XGATE Requests as well as S12X_CPU Interrupts. The target of the software
trigger must be selected in the S12X_INT module.

3.1.6 XGATE Semaphore Register (XGSEM)

The XGATE provides a set of eight hardware semaphores that can be shared between the S12X_C
the XGATE RISC Core. Each semaphore can either be unlocked, locked by the S12X_CPU or lock
the RISC core. The RISC core is able to lock and unlock a semaphore through its SSEM and CSE
instructions. The S12X_CPU has access to the semaphores through the XGATE Semaphore Reg
(Figure 3-6). Refer to section4.2 for details.

Figure 3-6 XGATE Semaphore Register (XGSEM)

Read: anytime
Write: anytime (see4.2)

XGSEMM[7:0] - Semaphore Mask

These bits control the write access to the XGSEM bits.

XGATE+$1A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0

XGSEM[7:0]
W XGSEMM[7:0]

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
20

Block Guide — S12XGATEV1/D 01.04

mpted
rite
o the
Read:
These bits will always read "0".

Write:
1 = Enable write access to the XGSEM in the same bus cycle
0 = Disable write access to the XGSEM in the same bus cycle

XGSEM[7:0] - Semaphore Bits

These bits indicate whether a semaphore is locked by the S12X_CPU. A semaphore can be atte
to be set by writing a "1" to the XGSEM bit and to the corresponding XGSEMM bit in the same w
access. Only unlocked semaphores can be set. A semaphore can be cleared by writing a "0" t
XGSEM bit and a "1" to the corresponding SGSEMM bit in the same write access.
Read:

1 = Semaphore is locked by the S12X_CPU
0 = Semaphore is unlocked or locked by the RISC core

Write:
1 = Attempt to lock semaphore by the S12X_CPU
0 = No effect

3.1.7 XGATE Condition Code Register (XGCCR)

The XGCCR register (Figure 3-7) provides access to the RISC core’s Condition Code Register.

Figure 3-7 XGATE Condition Code Register (XGCCR)

Read: in Debug Mode if unsecured
Write: in Debug Mode if unsecured

XGN - Sign Flag

The RISC core’s Sign flag

XGZ - Zero Flag

The RISC core’s Zero flag

XGV - Overflow Flag

The RISC core’s Overflow flag

XGC - Carry Flag

The RISC core’s Carry flag

XGATE+$1D

7 6 5 4 3 2 1 0
R 0 0 0 0

XGN XGZ XGV XGC
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
21

Block Guide — S12XGATEV1/D 01.04
3.1.8 XGATE Program Counter Register (XGPC)

The XGPC register (Figure 3-8) provides access to the RISC core’s Program Counter.

Figure 3-8 XGATE Program Counter Register (XGPC)

Read: in Debug Mode if unsecured
Write: in Debug Mode if unsecured

XGPC - Program Counter

The RISC core’s Program Counter

3.1.9 XGATE Register 1 (XGR1)

The XGR1 register (Figure 3-9) provides access to the RISC core’s Register 1.

Figure 3-9 XGATE Register 1 (XGR1)

Read: in Debug Mode if unsecured
Write: in Debug Mode if unsecured

XGR1 - R1

The RISC core’s Register 1

3.1.10 XGATE Register 2 (XGR2)

The XGR2 register (Figure 3-10) provides access to the RISC core’s Register 2.

XGATE+$1E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R

XGPC
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

XGATE+$22

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R

XGR1
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
22

Block Guide — S12XGATEV1/D 01.04
Figure 3-10 XGATE Register 2 (XGR2)

Read: in Debug Mode if unsecured
Write: in Debug Mode if unsecured

XGR2 - R2

The RISC core’s Register 2

3.1.11 XGATE Register 3 (XGR3)

The XGR3 register (Figure 3-11) provides access to the RISC core’s Register 3.

Figure 3-11 XGATE Register 3 (XGR3)

Read: in Debug Mode if unsecured
Write: in Debug Mode if unsecured

XGR3 - R3

The RISC core’s Register 3

3.1.12 XGATE Register 4 (XGR4)

The XGR4 register (Figure 3-12) provides access to the RISC core’s Register 4.

XGATE+$24

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R

XGR2
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

XGATE+$26

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R

XGR3
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
23

Block Guide — S12XGATEV1/D 01.04
Figure 3-12 XGATE Register 4 (XGR4)

Read: in Debug Mode if unsecured
Write: in Debug Mode if unsecured

XGR4 - R4

The RISC core’s Register 4

3.1.13 XGATE Register 5 (XGR5)

The XGR5 register (Figure 3-13) provides access to the RISC core’s Register 5.

Figure 3-13 XGATE Register 5 (XGR5)

Read: in Debug Mode if unsecured
Write: in Debug Mode if unsecured

XGR5 - R5

The RISC core’s Register 5

3.1.14 XGATE Register 6 (XGR6)

The XGR6 register (Figure 3-14) provides access to the RISC core’s Register 6.

XGATE+$28

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R

XGR4
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

XGATE+$2A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R

XGR5
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
24

Block Guide — S12XGATEV1/D 01.04

and
 by

tionally
new
comes
Figure 3-14 XGATE Register 6 (XGR6)

Read: in Debug Mode if unsecured
Write: in Debug Mode if unsecured

XGR6 - R6

The RISC core’s Register 6

3.1.15 XGATE Register 7 (XGR7)

The XGR7 register (Figure 3-15) provides access to the RISC core’s Register 7.

Figure 3-15 XGATE Register 7 (XGR7)

Read: in Debug Mode if unsecured
Write: in Debug Mode if unsecured

XGR7 - R7

The RISC core’s Register 7

Section 4 Functional Description

The core of the XGATE module is a RISC processor which is able to access the MCU’s internal RAM
peripherals (seeFigure 1-1). The RISC processor always remains in an idle state until it is triggered
an XGATE request. Then it executes a code sequence that is associated with the request and op
triggers an interrupt to the S12X_CPU upon completion. Code sequences are not interruptible. A
XGATE request can only be serviced when the previous sequence is finished and the RISC core be
idle.

XGATE+$2C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R

XGR6
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

XGATE+$2E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R

XGR7
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
25

Block Guide — S12XGATEV1/D 01.04

data

t

ore will

ISC
RAM

PU bus

heral

n
ty. It
The XGATE module also provides a set of hardware semaphores which are necessary to ensure
consistency whenever RAM locations or peripherals are shared with the S12X_CPU.

The following sections describe the components of the XGATE module in further detail.

4.1 XGATE RISC Core

The RISC core is a 16-bit processor with an instruction set that is well suited for data transfers, bi
manipulations, and simple arithmetic operations (see4.7).

It is able to access the MCU’s RAM and peripherals without blocking these resources from the
S12X_CPU. Whenever the S12X_CPU and the RISC core access the same resource, the RISC c
be stalled until the resource becomes available again.

The XGATE offers a high access rate to the MCU’s internal RAM. Depending on the bus load, the R
core can perform up to two RAM accesses per S12X_CPU bus cycle. A minimum throughput of one
access per S12X_CPU bus cycle is guaranteed.

Bus accesses to peripheral registers are slower. A transfer rate of one register access per S12X_C
cycle can not be exceeded.

The XGATE module is intended to execute short interrupt service routines that are triggered by perip
modules or by software.

4.1.1 Programmer’s Model

Figure 4-1 Programmer’s Model

The programmer’s model of the XGATE RISC core is shown inFigure 4-1 . The processor offers a set
of seven general purpose registers (R1 - R7), which serve as accumulators and index registers. A
additional eighth register (R0) is tied to the value “$0000”. Register R1 has an additional functionali
is preloaded with the initial variable pointer of the channel’s service request vector (seeFigure 4-3). The
initial content of the remaining general purpose registers is undefined.

R7

R6

R5

R4

R3

R2

R1

R0=0

V C

Register Block Program Counter

Condition
Code

Register

15

15

15

15

15

15

15

15

0

0

0

0

0

0

0

0

1 0

(Variable Pointer)

PC
15 0

N Z
3 2
26

Block Guide — S12XGATEV1/D 01.04

(V)

ts: the

e.

ress
ffect.

e

The 16 bit program counter allows the addressing of a 64 kbyte address space (seeFigure 4-2).

The Condition Code Register contains four bits: The Sign bit (S), the Zero flag (Z), the Overflow flag
and the Carry bit (C). The initial content of the Condition Code Register is undefined.

4.1.2 Memory Map

Figure 4-2 XGATE Memory Map

The XGATE module is able to access an address space of 64 kb, which is divided into three segmen
Register Space, the RAM Space, and the Unmapped Address Space.Figure 4-2 shows the XGATE
memory map for RAM sizes smaller then 64 kb.

The 2 kb Register Space of the S12X MCU ranges from address $0000 - $0800.

The RAM Address Space is aligned to address $FFFF. Its start address depends on the RAM siz

For RAM sizes smaller than 62 kb, there will be a range of unmapped addresses (Unmapped Add
Space). Read accesses to this address range will return the value zero. Write accesses have no e

For RAM sizes larger than 62 kb, the Register Space and The RAM Space will overlap. In this cas
accesses to the address range $0000 to $0800 will still address the Register Space.

$0000

$0800

$FFFF - RAM size

$FFFF

$00_0000

$00_0800

XGVBR[15:0]

XGVBR[19:0]

$0F_FFFF - RAM size

XGATE S12X Global
Memory MapMemory Map

RegistersRegisters

XGATE
Vector Block

RAM

XGATE
Vector Block

RAM

EEPROM

U
nm

ap
pe

d
Ad

dr
es

s
Sp

ac
e

$0F_FFFF

Reserved
RAM

Space
27

Block Guide — S12XGATEV1/D 01.04

of the

t must

t
before
. This

hanism
n.
For RAM sizes larger than 64 kb only a 64 kb window of the RAM can be mapped into the XGATE
address space. This window is determined by bits 19 to 16 of the XGATE Vector Base Register
(XGVBR[19:16], see3.1.3)

Within the RAM space, certain regions can be protected from XGATE accesses. Refer to section 4
XSRAM Block User Guide for a detailed description.

The XGATE vector block assigns a start address and a variable pointer to each XGATE channel. I
be located in the RAM space. Its exact position can be adjusted through the XGVBR register (see3.1.3).
Figure 4-3 shows the layout of the vector block. Each vector consists of two 16-bit words. The firs
contains the start address of the service routine. This value will be loaded into the Program Counter
a service routine is executed. The second word is a pointer to the service routine’s variable space
value will be loaded into register R1 before a service routine is executed.

Figure 4-3 XGATE Vector Block

4.2 Semaphores

The XGATE module offers a set of eight hardware semaphores. These semaphores provide a mec
to protect system resources that are shared between two concurrent threads of program executio
Typically one thread will run on the S12X_CPU and one will run on the XGATE RISC core.

+$0000

unused

+$0024

+$0028

+$002C

+$0030

+$01E0

Code

Variables

Code

Variables

XGVBR

Channel $0A Initial Program Counter

Channel $0A Initial Variable Pointer

Channel $09 Initial Program Counter

Channel $09 Initial Variable Pointer

Channel $0B Initial Program Counter

Channel $0B Initial Variable Pointer

Channel $0C Initial Program Counter

Channel $0C Initial Variable Pointer

Channel $78 Initial Program Counter

Channel $78 Initial Variable Pointer
28

Block Guide — S12XGATEV1/D 01.04

cked
phore

will be

er is
source.

equence
Each semaphore can only be in one of the three states: “Unlocked”, “Locked by S12X_CPU”, and “Lo
by XGATE”. The S12X_CPU can check and change a semaphore’s state through the XGATE sema
register (XGSEM, see3.1.6). The RISC core does this through its SSEM and CSEM instructions.

If the S12X_CPU and the RISC core attempt to lock an unlocked semaphore at the same time, it
locked by the S12X_CPU.

Figure 4-4 illustrates the valid state transitions.

Figure 4-4 Semaphore State Transitions

Figure 4-5 gives an example of the typical usage of the XGATE hardware semaphores:

Two concurrent threads are running on the system. One is running on the S12X_CPU and the oth
running on the RISC core. They both have a critical section of code that accesses the same system re
To guarantee that the system resource is only accessed by one thread at a time, the critical code s
must be embedded in a Semaphore lock/release sequence as shown.

UNLOCKED

LOCKED BY
S12X_CPU

LOCKED BY
XGATE

CSEM Instruction
%0 ⇒ XGSEM

CSEM Instruction
SSEM Instruction
%1 ⇒ XGSEM

SSEM Instruction
%0 ⇒ XGSEM
%1 ⇒ XGSEM

CSEM

In
str

uc
tio

n
%

0 ⇒
 XGSEM

%1 ⇒
 XGSEM SSEM

In
str

uc
tio

n
or

%1 ⇒
 XGSEM

and SSEM Instr.
29

Block Guide — S12XGATEV1/D 01.04

on

ugh
Figure 4-5 Algorithm for Locking and Releasing Semaphores

4.3 Software Error Detection

The XGATE module will immediately terminate program execution after detecting an error conditi
caused by erratic application code. These Error conditions are:

• Vector fetches from peripheral address space

• Vector fetches from unmapped address space

• Misaligned opcode fetches

• Opcode fetches from peripheral address space

• Opcode fetches from unmapped address space

• Misaligned load/store word accesses

• Load/store accesses to unmapped address space

• Illegal Opcodes

As soon as an error condition is detected, the XGSWEIF bit will be set. Clearing the XGSWEIF thro
the S12X_CPU will put the RISC core into idle mode.

Illegal bus accesses will be executed before the XGATE stops on the error condition.

SSEM

XGSEM ≡ %1?

XGSEM ⇒ %0

BCC?

%1 ⇒ XGSEMx

CSEM

.........

..................

critical
code

sequence

critical
code

sequence

S12X_CPU XGATE
30

Block Guide — S12XGATEV1/D 01.04

e

ctor
are
 its

rupts

 the
All opcodes which are not listed in section4.7.5 are considered illegal opcodes.

NOTE: Executing an instructions which is located at address $FFFE will result in a
Software Error because an opcode prefetch to address $0000 will occur.

4.4 Interrupts

4.4.1 Incoming Interrupt Requests

XGATE threads are triggered by interrupt requests which are routed to the XGATE module (see
S12X_INT Block User Guide). Only a subset of the MCU’s interrupt requests can be routed to th
XGATE. Which specific interrupt requests these are and which channel ID they are assigned to is
documented in section5.2 of theSoC Guide .

4.4.2 Outgoing Interrupt Requests

There are three types of interrupt requests which can be triggered by the XGATE module:

• Channel Interrupts:
For each XGATE channel there is an associated interrupt flag in the XGATE Interrupt Flag Ve
(XGIF, see3.1.4). These flags can be set through the "SIF" instruction by the RISC core. They
typically used to flag an interrupt to the S12X_CPU when the XGATE has completed one of
tasks.

• Software Triggers:
Software Triggers are interrupt flags, which can be set and cleared by software (see3.1.5). They
are typically used to trigger XGATE tasks by the S12X_CPU software. However these inter
can also be routed to the S12X_CPU (seeS12X_INT Block User Guide) and triggered by the
XGATE software.

• Software Error Interrupt:
The Software Error Interrupt signals to the S12X_CPU the detection of an error condition in
XGATE application code (see4.3).

All XGATE Interrupts can be disabled by the XGIE bit in the XGATE Module Control Register
(XGMCTL, see3.1.1).

4.5 Debug Mode

The XGATE Debug Mode is a feature to allow debugging of application code.

4.5.1 Debug Features

In Debug mode the RISC core will be halted and the following debug features will be enabled:

• Read and Write accesses to RISC core registers (XGCCR, XGPC, XGR1-XGR7)1
31

Block Guide — S12XGATEV1/D 01.04

tinue

re

the

n
ug

r

are
.

ode.
4.9 of
All RISC core registers can be modified. Leaving Debug Mode will cause the RISC core to con
program execution with the modified register values.

• Single Stepping1

Writing a "1" to the XGSS bit will call the RISC core to execute a single instruction. All RISC co
registers will be updated accordingly.

• Write accesses to the XGCHID register

Three operations can be performed by writing to the XGCHID register:

– Change of channel ID:

If a non-zero value is written to the XGCHID while a thread is active (XGCHID ≠ $00), then
the current channel ID will be changed without any influence on the program counter or
other RISC core registers.

– Start of a thread:

If a non-zero value is written to the XGCHID while the XGATE is idle (XGCHID = $00), the
the thread that is associated with the new channel ID will be executed upon leaving Deb
Mode.

– Termination of a thread:

If zero is written to the XGCHID while a thread is active (XGCHID ≠ $00), then the current
thread will be terminated and the XGATE will become idle.

4.5.2 Entering Debug Mode

Debug Mode can be entered in four ways:

• Setting XGDBG to "1"

Writing a "1" to XGDBG and XGDBGM in the same write access causes the XGATE to ente
Debug Mode upon completion of the current instruction.

NOTE: After writing to the XGDBG bit the XGATE will not immediately enter Debug
Mode. Depending on the instruction that is executed at this time there may be a
delay of several clock cycles. The XGDBG will read "0" until Debug Mode is
entered.

• Software Breakpoints

XGATE programs are stored in RAM which allows the use of Software Breakpoints. A Softw
Breakpoint is set by replacing an instruction of the program code with the "BRK" instruction

As soon as the program execution reaches the "BRK" instruction, the XGATE enters Debug M
Additionally a Software Breakpoint Request is sent to the S12X_DBG module (see section
theS12X_DBG Block User Guide).

NOTES:
1. Only possible if MCU is unsecured
32

Block Guide — S12XGATEV1/D 01.04

er

ction

ter

on

een

bug

s all
 their
Upon entering Debug Mode, the program counter will point to the "BRK" instruction. The oth
RISC core register will hold the result of the previous instruction.

To resume program execution, the "BRK" instruction must be replaced by the original instru
before leaving Debug Mode.

• Tagged Breakpoints

The S12X_DBG module is able to place tags on fetched opcodes. The XGATE is able to en
Debug Mode right before a tagged opcode is executed (see section 4.9 of theS12X_DBG Block
User Guide). Upon entering Debug Mode, the program counter will point to the tagged
instruction. The other RISC core register will hold the result of the previous instruction.

• Forced Breakpoints

Forced breakpoints are triggered by the S12X_DBG module (see section 4.9 of theS12X_DBG
Block User Guide). When a forced breakpoint occurs, the XGATE will enter Debug Mode up
completion of the current instruction.

4.5.3 Leaving Debug Mode

Debug Mode can only be left by setting the XGDBG bit to "0". If a thread is active (XGCHID has not b
cleared in Debug Mode), program execution will resume at the value of XGPC.

4.6 Security

In order to protect XGATE application code on secured S12X devices, a few restrictions in the de
features have been made. These are:

• Registers XGCCR, XGPC, and XGR1 - XGR7 will read zero on a secured device

• Registers XGCCR, XGPC, and XGR1 - XGR7 can not be written on a secured device

• Single Stepping is not possible on a secured device

4.7 Instruction Set

4.7.1 Addressing Modes

For the ease of implementation the architecture is a strict Load/Store RISC machine, which mean
operations must have one of the eight general purpose registers R0 … R7 as their source as well
destination.

All word accesses must work with a word aligned address e.g. A0 = 0!

4.7.1.1 Naming Conventions

RD - destination register, allowed range is R0 - R7
RD.L - low byte of the destination register, bits [7:0]
RD.H - high byte of the destination register, bits [15:8]
33

Block Guide — S12XGATEV1/D 01.04

GATE

to the

to the
RS, RS1, RS2 - source register, allowed range is R0 - R7
RS.L, RS1.L, RS2.L - low byte of the source register, bits [7:0]
RS.H, RS1.H, RS2.H - high byte of the source register, bits[15:8]

RB - base register for indexed addressing modes, allowed range is R0 - R7
RI - offset register for indexed addressing modes with register offset, allowed range is R0 - R7
RI+ - offset register for indexed addressing modes with register offset and post-increment,

 allowed range is R0 - R7 (R0+ is equivalent to R0)
-RI - offset register for indexed addressing modes with register offset and pre-decrement,

 allowed range is R0 - R7 (-R0 is equivalent to R0)

NOTE: Even though register R1 is intended to be used as a pointer to the variable segment,
it may be used as a general purpose data register as well.

NOTE: Selecting R0 as destination register will discard the result of the instruction. Only
the Condition Code Register will be updated

4.7.1.2 Inherent Addressing Mode (INH)

Instructions that use this addressing mode either have no operands or all operands are in internal X
registers.

Examples

BRK
RTS

4.7.1.3 Immediate 3 Bit Wide (IMM3)

Operands for immediate mode instructions are included in the instruction stream and are fetched in
instruction queue along with the rest of the 16 Bit instruction. The ’#’ symbol is used to indicate an
immediate addressing mode operand. This address mode is used for shift instructions.

Examples:

CSEM #1 ; Unlock semaphore 1
SSEM #3 ; Lock Semaphore 3

4.7.1.4 Immediate 4 Bit Wide (IMM4)

Operands for immediate mode instructions are included in the instruction stream and are fetched in
instruction queue along with the rest of the 16 Bit instruction. The ’#’ symbol is used to indicate an
immediate addressing mode operand. This address mode is used for shift instructions.

RD = RD✻ imm4

Examples:

LSL R4,#1 ; R4 = R4 << 1; shift register R4 by 1 bit to the left
LSR R4,#3 ; R4 = R4 >> 3; shift register R4 by 3 bits to the right
34

Block Guide — S12XGATEV1/D 01.04

to the
te an

e

 as

d RS
the
r shift

of the
n code
4.7.1.5 Immediate 8 Bit Wide (IMM8)

Operands for immediate mode instructions are included in the instruction stream and are fetched in
instruction queue along with the upper byte of the 16 bit instruction. The ’#’ symbol is used to indica
immediate addressing mode operand. Four major commands (ADD, SUB, LD, CMP) support this
addressing mode.

RD = RD✻ imm8

Examples:

ADDL R1,#IMM8 ; adds an 8 Bit value to register R1
SUBL R2,#IMM8 ; subtracts an 8 Bit value from register R2
LDH R3,#IMM8 ; loads an 8 bit immediate into the high byte of Register R3
CMPL R4,#IMM8 ; compares the low byte of register R4 with an immediate value

4.7.1.6 Monadic Addressing (MON)

In this addressing mode only one operand is explicitly given. This operand can either be the sourc
(f(RD)), the target (RD =f()), or both source and target of the operation (RD =f(RD)).

Examples:

JAL R1 ; PC = R1, R1 = PC+2
SIF R2 ; Trigger IRQ associated with the channel number in R2.L

4.7.1.7 Dyadic Addressing (DYA)

In this mode the result of an operation between two registers is stored in one of the registers used
operands.

RD = RD✻ RS is the general register to register format, with register RD being the first operand an
the second. RD and RS can be any of the 8 general purpose registers R0 … R7. If R0 is used as
destination register, only the condition code flags are updated. This addressing mode is used only fo
operations with a variable shift value

Examples:

LSL R4,R5 ; R4 = R4 << R5
LSR R4,R5 ; R4 = R4 >> R5

4.7.1.8 Triadic Addressing (TRI)

In this mode the result of an operation between two or three registers is stored into a third one.
RD = RS1✻ RS2 is the general format used in the order RD, RS1, RS1. RD, RS1, RS2 can be any
8 general purpose registers R0 … R7. If R0 is used as the destination register RD, only the conditio
flags are updated. This addressing mode is used for all arithmetic and logical operations.

Examples:

ADC R5,R6,R7 ; R5 = R6 + R7 + Carry
SUB R5,R6,R7 ; R5 = R6 - R7
35

Block Guide — S12XGATEV1/D 01.04

for the

n case

ory. In
ill be
4.7.1.9 Relative Addressing 9 Bit Wide (REL9)

A 9-bit signed address offset is included in the instruction word. This addressing mode is used for
conditional branch instructions.

Examples:

BCC REL9 ; PC = PC + 2 + (REL9 << 1)
BEQ REL9 ; PC = PC + 2 + (REL9 << 1)

4.7.1.10 Relative Addressing 10 Bit Wide (REL10)

An 11-bit signed address offset is included in the instruction word. This addressing mode is used
unconditional branch instruction.

Examples:

BRA REL10 ; PC = PC + 2 + (REL10 << 1)

4.7.1.11 Index Register plus Immediate Offset (IDO5)

(RS, #offset5) provides an unsigned offset from the base register.

Examples:

LDB R4,(R1,#offset) ; loads a byte from R1+offset into R4
STW R4,(R1,#offset) ; stores R4 as a word to R1+offset

4.7.1.12 Index Register plus Register Offset (IDR)

For load and store instructions (RS, RI) provides a variable offset in a register.

Examples:

LDB R4,(R1,R2) ; loads a byte from R1+R2 into R4
STW R4,(R1,R2) ; stores R4 as a word to R1+R2

4.7.1.13 Index Register plus Register Offset with Post-increment (IDR+)

[RS, RI+] provides a variable offset in a register, which is incremented after accessing the memory. I
of a byte access the index register will be incremented by one. In case of a word access it will be
incremented by two.

Examples:

LDB R4,(R1,R2+) ; loads a byte from R1+R2 into R4, R2+=1
STW R4,(R1,R2+) ; stores R4 as a word to R1+R2, R2+=2

4.7.1.14 Index Register plus Register Offset with Pre-decrement (-IDR)

[RS, -RI] provides a variable offset in a register, which is decremented before accessing the mem
case of a byte access the index register will be decremented by one. In case of a word access it w
decremented by two.
36

Block Guide — S12XGATEV1/D 01.04

ressing

will
Examples:

LDB R4,(R1,-R2) ; R2 -=1, loads a byte from R1+R2 into R4
STW R4,(R1,-R2) ; R2 -=2, stores R4 as a word to R1+R2

4.7.2 Instruction Summary and Usage

4.7.2.1 Load & Store Instructions

Any register can be loaded either with an immediate or from the address space using indexed add
modes.

LDL RD,#IMM8 ; loads an immediate 8 bit value to the lower byte of RD
LDW RD,(RB,RI); loads data using RS+RI as effective address

LDB RD,(RB, RI+) ; loads data using RS+RI as effective address
; followed by an increment of RI depending on
; the size of the operation

The same set of modes is available for the store instructions

STB RS,(RB, RI) ; stores data using RS+RI as effective address

STW RS,(RB, RI+) ; stores data using RS+RI as effective address
; followed by an increment of RI depending on
; the size of the operation.

4.7.2.2 Logic and Arithmetic Instructions

All logic and arithmetic instructions support the 8-bit immediate addressing mode (IMM8: RD = RD✻
#IMM8) and the triadic addressing mode (TRI: RD = RS1✻ RS2).

All arithmetic is considered as signed, sign, overflow, zero and carry flag will be updated. The carry
not be affected for logical operations.

ADDL R2,#1 ; increment R2
ANDH R4,#$FE ; R4.H = R4.H & $FE, clear lower bit of higher byte

ADD R3,R4,R5 ; R3 = R4 + R5
SUB R3,R4,R5 ; R3 = R4 - R5

AND R3,R4,R5 ; R3 = R4 & R5 logical AND on the whole word
OR R3,R4,R5 ; R3 = R4 | R5

4.7.2.3 Register - Register transfers

This group comprises transfers from and to some special registers

TFR R3,CCR ; transfers the condition code register to the low byte of
; register R3
37

Block Guide — S12XGATEV1/D 01.04

ince
by 2.

rd.
bits.

. The
er byte
tions
4.7.2.4 Branch Instructions

The branch offset is +255 words or -256 words counted from the beginning of the next instruction. S
instructions have a fixed 16 bit width, the branch offsets are word aligned by shifting the offset value

BEQ label ; if Z flag = 1 branch to label

An unconditional branch allows a +511 words or -512 words branch distance.

BRA label

4.7.2.5 Shift Instructions

Shift operations allow the use of a 4 bit wide immediate value to identify a shift width within a 16 bit wo
For shift operations a value of 0 does not shift at all, while a value of 15 shifts the register RD by 15
In a second form the shift value is contained in the bits 3:0 of the register RS.

Examples:

LSL R4,#1 ; R4 = R4 << 1; shift register R4 by 1 bit to the left
LSR R4,#3 ; R4 = R4 >> 3; shift register R4 by 3 bits to the right
ASR R4,R2 ; R4 = R4 >> R2;arithmetic shift register R4 right by the amount

; of bits contained in R2[3:0].

4.7.2.6 Bit Field Operations

This addressing mode is used to identify the position and size of a bit field for insertion or extraction
width and offset are coded in the lower byte of the source register 2, RS2. The content of the upp
is ignored. An offset of 0 denotes the right most position and a width of 0 denotes 1 bit. These instruc
are very useful to extract, insert, clear, set or toggle portions of a 16 bit word.

Figure 4-6 Bit Field Addressing

BFEXT R3,R4,R5 ; R5: W4 bits offset O4, will be extracted from R4 into R3

W4 O4

15 025

W4=3, O4=2

15 03

Bit Field Extract

Bit Field Insert

RS2
38

Block Guide — S12XGATEV1/D 01.04

and

letter
t
every
ations.

ion. If
e

4.7.2.7 Special Instructions for DMA usage

The XGATE offers a number of additional instructions for flag manipulation, program flow control
debugging:

1. SIF: Set a channel interrupt flag

2. SSEM: Test and set a hardware semaphore

3. CSEM: Clear a hardware semaphore

4. BRK: Software breakpoint

5. NOP: No Operation

6. RTS: Terminate the current thread

4.7.3 Cycle Notation

Table 4-1 show the XGATE access detail notation. Each code letter equals one XGATE cycle. Each
implies additional wait cycles if RAM or peripherals are not accessible. RAM or peripherals are no
accessible if they are blocked by the S12X_CPU. In addition to this Peripherals are only accessible
other XGATE cycle. Uppercase letters denote 16-bit operations. Lowercase letters denote 8-bit oper
The XGATE is able to perform two bus or wait cycles per S12X_CPU cycle.

4.7.4 Thread Execution

When the RISC core is triggered by an interrupt request (seeFigure 1-1) it first executes a vector fetch
sequence which performs three bus accesses:

1. A V-cycle to fetch the initial content of the program counter.

2. A V-cycle to fetch the initial content of the data segment pointer (R1).

3. A P-cycle to load the initial opcode.

Afterwards a sequence of instructions (thread) is executed which is terminated by an "RTS" instruct
further interrupt requests are pending after a thread has been terminated, a new vector fetch will b

Table 4-1 Access Detail Notation

V — Vector fetch: always an aligned word read, lasts for at least one RISC core cycle

P — Program word fetch: always an aligned word read, lasts for at least one RISC core cycle

r — 8-bit data read: lasts for at least one RISC core cycle

R — 16-bit data read: lasts for at least one RISC core cycle

w — 8-bit data write: lasts for at least one RISC core cycle

W— 16-bit data write: lasts for at least one RISC core cycle

A — Alignment cycle: no read or write, lasts for zero or one RISC core cycles

f — Free cycle: no read or write, lasts for one RISC core cycles

Special Cases

PP/P — Branch: PP if branch taken, P if not
39

Block Guide — S12XGATEV1/D 01.04

n not
performed. Otherwise the RISC core will idle until a new interrupt request is received. A thread ca
be interrupted by an interrupt request.

4.7.5 Instruction Glossary

The following section describes the XGATE instruction set in alphabetical order.
40

Block Guide — S12XGATEV1/D 01.04
Operation

RS1 + RS2 + C ⇒ RD

Adds the content of register RS1, the content of register RS2 and the value of the Carry bit using
binary addition and stores the result in the destination register RD. The Zero Flag is also carried
forward from the previous operation allowing 32 and more bit additions.

Example:
ADC R6,R2,R2
ADC R7,R3,R3 ; R7:R6 = R5:R4 + R3:R2
BCC ; conditional branch on 32 bit addition

CCR Effects

Code and CPU Cycles

ADC Add with Carry ADC

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000 and Z was set before this operation; cleared otherwise.
V: Set if a two´s complement overflow resulted from the operation; cleared otherwise.

RS1[15] & RS2[15] & RD[15]new | RS1[15] & RS2[15] & RD[15]new

C: Set if there is a carry from bit 15 of the result; cleared otherwise.
RS1[15] & RS2[15] | RS1[15] & RD[15]new | RS2[15] & RD[15]new

Source Form Address
Mode Machine Code Cycles

ADC RD, RS1, RS2 TRI 0 0 0 1 1 RD RS1 RS2 1 1 P
41

Block Guide — S12XGATEV1/D 01.04
Operation

RS1 + RS2 ⇒ RD

Adds the content of register RS1and the content of register RS2 using binary addition and stores
the result in the destination register RD.

CCR Effects

Code and CPU Cycles

ADD Add without Carry ADD

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: Set if a two´s complement overflow resulted from the operation; cleared otherwise.

RS1[15] & RS2[15] & RD[15]new | RS1[15] & RS2[15] & RD[15]new

C: Set if there is a carry from bit 15 of the result; cleared otherwise.
RS1[15] & RS2[15] | RS1[15] & RD[15]new | RS2[15] & RD[15]new

Source Form Address
Mode Machine Code Cycles

ADD RD, RS1, RS2 TRI 0 0 0 1 1 RD RS1 RS2 1 0 P
42

Block Guide — S12XGATEV1/D 01.04
Operation

RD + IMM8:$00 ⇒ RD

Adds the content of high byte of register RD and a signed immediate 8-Bit constant using binary
addition and stores the result in the high byte of the destination register RD. This instruction can
be used after an ADDL for a 16-bit immediate addition.

EXAMPLE:
ADDL R2,#LOWBYTE
ADDH R2,#HIGHBYTE ; R2 = R2 + 16 Bit immediate

CCR Effects

Code and CPU Cycles

ADDH Add Immediate 8-Bit Constant
(High Byte) ADDH

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: Set if a two´s complement overflow resulted from the operation; cleared otherwise.

RD[15]old & IMM8[7] & RD[15]new | RD[15]old & IMM8[7] & RD[15]new

C: Set if there is a carry from the bit 15 of the result; cleared otherwise.
RD[15]old & IMM8[7] | RD[15]old & RD[15]new | IMM8[7] & RD[15]new

Source Form Address
Mode Machine Code Cycles

ADDH RD, #IMM8 IMM8 1 1 1 0 1 RD IMM8 P
43

Block Guide — S12XGATEV1/D 01.04
Operation

RD + $00:IMM8 ⇒ RD

Adds the content of register RD and an unsigned immediate 8-Bit constant using binary addition
and stores the result in the destination register RD. This instruction must be used first for a 16-bit
immediate addition in conjunction with the ADDH instruction.

CCR Effects

Code and CPU Cycles

ADDL Add Immediate 8-Bit Constant
(Low Byte) ADDL

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: Set if a two´s complement overflow resulted from the 8-bit operation; cleared otherwise.

RD[15]old & RD[15]new

C: Set if there is a carry from bit 7 to bit 8 of the result; cleared otherwise.
RD[15]old & RD[15]new

Source Form Address
Mode Machine Code Cycles

ADDL RD, #IMM8 IMM8 1 1 1 0 0 RD IMM8 P
44

Block Guide — S12XGATEV1/D 01.04
Operation

RS1 & RS2 ⇒ RD

Performs a bit wise logical AND between the content of register RS1 and the content of register
RS2 and stores the result in the destination register RD.

Remark: There is no complement to the BITH and BITL functions. This can be imitated by using
R0 as a destination register. AND R0, RS1, RS2 performs a bit wise test without storing a result.

CCR Effects

Code and CPU Cycles

AND Logical AND AND

N Z V C

∆ ∆ 0 −

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

AND RD, RS1, RS2 TRI 0 0 0 1 0 RD RS1 RS2 0 0 P
45

Block Guide — S12XGATEV1/D 01.04
Operation

RD.H & IMM8 ⇒ RD.H

Performs a bit wise logical AND between the high byte of register RD and an immediate 8-Bit
constant and stores the result in the destination register RD.H. The low byte of RD is not affected.

CCR Effects

Code and CPU Cycles

ANDH Logical AND Immediate 8-Bit Constant
(High Byte) ANDH

N Z V C

∆ ∆ 0 −

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the 8-bit result is $00; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

ANDH RD, #IMM8 IMM8 1 0 0 0 1 RD IMM8 P
46

Block Guide — S12XGATEV1/D 01.04
Operation

RD.L & IMM8 ⇒ RD.L

Performs a bit wise logical AND between the low byte of register RD and an immediate 8-Bit
constant and stores the result in the destination register RD.L. The high byte of RD is not
affected.

CCR Effects

Code and CPU Cycles

ANDL Logical AND Immediate 8-Bit Constant
(Low Byte) ANDL

N Z V C

∆ ∆ 0 −

N: Set if bit 7 of the result is set; cleared otherwise.
Z: Set if the 8-Bit result is $00; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

ANDL RD, #IMM8 IMM8 1 0 0 0 0 RD IMM8 P
47

Block Guide — S12XGATEV1/D 01.04
Operation

n = RS or IMM4

Shifts the bits in register RD n positions to the right. The higher n bits of the register RD become
filled with the sign bit (RD[15]). The carry flag will be updated to the bit contained in RD[n-1]
before the shift for n > 0.
n can range from 0 to 16.
In immediate address mode, n is determined by the operand IMM4. n is considered to be 16 in
IMM4 is equal to 0.
In dyadic address mode, n is determined by the content of RS. n is considered to be 16 if the
content of RS is greater than 15.

CCR Effects

Code and CPU Cycles

ASR Arithmetic Shift Right ASR

N Z V C

∆ ∆ 0 ∆

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: Set if a two´s complement overflow resulted from the operation; cleared otherwise.

RD[15]old ^ RD[15]new

C: Set if n > 0 and RD[n-1] = 1; if n = 0 unaffected.

Source Form Address
Mode Machine Code Cycles

ASR RD, #IMM4 IMM4 0 0 0 0 1 RD IMM4 1 0 0 1 P

ASR RD, RS DYA 0 0 0 0 1 RD RS 1 0 0 0 1 P

b15 RD C

n

48

Block Guide — S12XGATEV1/D 01.04
Operation

If C = 0, then PC + $0002 + (REL9 << 1) ⇒ PC

Tests the Carry flag and branches if C = 0.

CCR Effects

Code and CPU Cycles

BCC Branch if Carry Cleared
(Same as BHS) BCC

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BCC REL9 REL9 0 0 1 0 0 0 0 REL9 PP/P
49

Block Guide — S12XGATEV1/D 01.04
Operation

If C = 1, then PC + $0002 + (REL9 << 1) ⇒ PC

Tests the Carry flag and branches if C = 1.

CCR Effects

Code and CPU Cycles

BCS Branch if Carry Set
(Same as BLO) BCS

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BCS REL9 REL9 0 0 1 0 0 0 1 REL9 PP/P
50

Block Guide — S12XGATEV1/D 01.04
Operation

If Z = 1, then PC + $0002 + (REL9 << 1) ⇒ PC

Tests the Zero flag and branches if Z = 1.

CCR Effects

Code and CPU Cycles

BEQ Branch if Equal BEQ

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BEQ REL9 REL9 0 0 1 0 0 1 1 REL9 PP/P
51

Block Guide — S12XGATEV1/D 01.04
Operation

RS1[(o+w):o] ⇒ RD[w:0]; 0 ⇒ RD[15:(w+1)]

w=(RS2[7:4])
o=(RS2[3:0])

Extracts w+1 bits from register RS1 starting at position o and writes them right aligned into
register RD. The remaining bits in RD will be cleared. If (o+w) > 15 only bits [15:o] get extracted.

CCR Effects

Code and CPU Cycles

BFEXT Bit Field Extract BFEXT

N Z V C

∆ ∆ 0 −

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BFEXT RD, RS1, RS2 TRI 0 1 1 0 0 RD RS1 RS2 1 1 P
52

Block Guide — S12XGATEV1/D 01.04
Operation

FirstOne (RS) ⇒ RD;

Searches the first “1” beginning from the MSB=15 down to LSB=0 in register RS and places the
result into the destination register RD. The upper bits of RD are cleared. In case the content of
RS is equal to $0000, RD will be cleared and the carry flag will be set. This is used to distinguish
a “1” in position 0 versus no “1” in the whole RS register at all.

CCR Effects

Code and CPU Cycles

BFFO Bit Field Find First One BFFO

N Z V C

0 ∆ 0 ∆

N: 0; cleared.
Z: Set if the result is $0000; cleared otherwise.
V: 0; cleared.
C: Set if RS = $00001; cleared otherwise.

NOTES:
1. before executing the instruction

Source Form Address
Mode Machine Code Cycles

BFFO RD, RS DYA 0 0 0 0 1 RD RS 1 0 0 0 0 P
53

Block Guide — S12XGATEV1/D 01.04
Operation

RS1[w:0] ⇒ RD[(w+o):o];

w=(RS2[7:4])
o=(RS2[3:0])

Extracts w+1 bits from register RS1 starting at position 0 and writes them into register RD at
position o. The remaining bits in RD are not affected. If (o+w) > 15 the upper bits are ignored.
Using R0 as a RS1, this command can be used to clear bits.

CCR Effects

Code and CPU Cycles

BFINS Bit Field Insert BFINS

N Z V C

∆ ∆ 0 −

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BFINS RD, RS1, RS2 TRI 0 1 1 0 1 RD RS1 RS2 1 1 P
54

Block Guide — S12XGATEV1/D 01.04
Operation

!RS1[w:0] ⇒ RD[w+o:o];

w=(RS2[7:4])
o=(RS2[3:0])

Extracts w+1 bits from register RS1 starting at position 0, inverts them and writes into register
RD at position o. The remaining bits in RD are not affected. If (o+w) > 15 the upper bits are
ignored. Using R0 as a RS1, this command can be used to set bits.

CCR Effects

Code and CPU Cycles

BFINSI Bit Field Insert and Invert BFINSI

N Z V C

∆ ∆ 0 −

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BFINSI RD, RS1, RS2 TRI 0 1 1 1 0 RD RS1 RS2 1 1 P
55

Block Guide — S12XGATEV1/D 01.04
Operation

!(RS1[w:0] ^ RD[w+o:o]) ⇒ RD[w+o:o];

w=(RS2[7:4])
o=(RS2[3:0])

Extracts w+1 bits from register RS1 starting at position 0, performs an XNOR with RD[w+o:o] and
writes the bits back. The remaining bits in RD are not affected. If (o+w) > 15 the upper bits are
ignored. Using R0 as a RS1, this command can be used to toggle bits.

CCR Effects

Code and CPU Cycles

BFINSX Bit Field Insert and XNOR BFINSX

N Z V C

∆ ∆ 0 −

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BFINSX RD, RS1, RS2 TRI 0 1 1 1 1 RD RS1 RS2 1 1 P
56

Block Guide — S12XGATEV1/D 01.04
Operation

If N ^ V = 0, then PC + $0002 + (REL9 << 1) ⇒ PC

Branch instruction to compare signed numbers.
Branch if RS1 ≥ RS2:

SUB R0,RS1,RS2
BGE REL9

CCR Effects

Code and CPU Cycles

BGE Branch if Greater than or Equal to Zero BGE

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BGE REL9 REL9 0 0 1 1 0 1 0 REL9 PP/P
57

Block Guide — S12XGATEV1/D 01.04
Operation

If Z | (N ^ V) = 0, then PC + $0002 + (REL9 << 1) ⇒ PC

Branch instruction to compare signed numbers.
Branch if RS1 > RS2:

SUB R0,RS1,RS2
BGE REL9

CCR Effects

Code and CPU Cycles

BGT Branch if Greater than Zero BGT

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BGT REL9 REL9 0 0 1 1 1 0 0 REL9 PP/P
58

Block Guide — S12XGATEV1/D 01.04
Operation

If C | Z = 0, then PC + $0002 + (REL9 << 1) ⇒ PC

Branch instruction to compare unsigned numbers.
Branch if RS1 > RS2:

SUB R0,RS1,RS2
BHI REL9

CCR Effects

Code and CPU Cycles

BHI Branch if Higher BHI

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BHI REL9 REL9 0 0 1 1 0 0 0 REL9 PP/P
59

Block Guide — S12XGATEV1/D 01.04
Operation

If C = 0, then PC + $0002 + (REL9 << 1) ⇒ PC

Branch instruction to compare unsigned numbers.
Branch if RS1 ≥ RS2:

SUB R0,RS1,RS2
BHS REL9

CCR Effects

Code and CPU Cycles

BHS Branch if Higher or Same
(Same as BCC) BHS

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BHS REL9 REL9 0 0 1 0 0 0 0 REL9 PP/P
60

Block Guide — S12XGATEV1/D 01.04
Operation

RD.H & IMM8 ⇒ NONE

Performs a bit wise logical AND between the high byte of register RD and an immediate 8-Bit
constant. Only the condition code flags get updated, but no result is written back

CCR Effects

Code and CPU Cycles

BITH Bit Test Immediate 8-Bit Constant
(High Byte) BITH

N Z V C

∆ ∆ 0 −

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the 8-bit result is $00; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BITH RD, #IMM8 IMM8 1 0 0 1 1 RD IMM8 P
61

Block Guide — S12XGATEV1/D 01.04
Operation

RD.L & IMM8 ⇒ NONE

Performs a bit wise logical AND between the low byte of register RD and an immediate 8-Bit
constant. Only the condition code flags get updated, but no result is written back.

CCR Effects

Code and CPU Cycles

BITL Bit Test Immediate 8-Bit Constant
(Low Byte) BITL

N Z V C

∆ ∆ 0 −

N: Set if bit 7 of the result is set; cleared otherwise.
Z: Set if the 8-bit result is $00; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BITL RD, #IMM8 IMM8 1 0 0 1 0 RD IMM8 P
62

Block Guide — S12XGATEV1/D 01.04
Operation

If Z | (N ^ V) = 1, then PC + $0002 + (REL9 << 1) ⇒ PC

Branch instruction to compare signed numbers.
Branch if RS1 ≤ RS2:

SUB R0,RS1,RS2
BLE REL9

CCR Effects

Code and CPU Cycles

BLE Branch if Less or Equal to Zero BLE

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BLE REL9 REL9 0 0 1 1 1 0 1 REL9 PP/P
63

Block Guide — S12XGATEV1/D 01.04
Operation

If C = 1, then PC + $0002 + (REL9 << 1) ⇒ PC

Branch instruction to compare unsigned numbers.
Branch if RS1 < RS2:

SUB R0,RS1,RS2
BLO REL9

CCR Effects

Code and CPU Cycles

BLO Branch if Carry Set
(Same as BCS) BLO

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BCS REL9 REL9 0 0 1 0 0 0 1 REL9 PP/P
64

Block Guide — S12XGATEV1/D 01.04
Operation

If C | Z = 1, then PC + $0002 + (REL9 << 1) ⇒ PC

Branch instruction to compare unsigned numbers.
Branch if RS1 ≤ RS2:

SUB R0,RS1,RS2
BLS REL9

CCR Effects

Code and CPU Cycles

BLS Branch if Lower or Same BLS

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BLS REL9 REL9 0 0 1 1 0 0 1 REL9 PP/P
65

Block Guide — S12XGATEV1/D 01.04
Operation

If N ^ V = 1, then PC + $0002 + (REL9 << 1) ⇒ PC

Branch instruction to compare signed numbers.
Branch if RS1 < RS2:

SUB R0,RS1,RS2
BLT REL9

CCR Effects

Code and CPU Cycles

BLT Branch if Lower than Zero BLT

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BLT REL9 REL9 0 0 1 1 0 1 1 REL9 PP/P
66

Block Guide — S12XGATEV1/D 01.04
Operation

If N = 1, then PC + $0002 + (REL9 << 1) ⇒ PC

Tests the Sign flag and branches if N = 1.

CCR Effects

Code and CPU Cycles

BMI Branch if Minus BMI

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BMI REL9 REL9 0 0 1 0 1 0 1 REL9 PP/P
67

Block Guide — S12XGATEV1/D 01.04
Operation

If Z = 0, then PC + $0002 + (REL9 << 1) ⇒ PC

Tests the Zero flag and branches if Z = 0.

CCR Effects

Code and CPU Cycles

BNE Branch if Not Equal BNE

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BNE REL9 REL9 0 0 1 0 0 1 0 REL9 PP/P
68

Block Guide — S12XGATEV1/D 01.04
Operation

If N = 0, then PC + $0002 + (REL9 << 1) ⇒ PC

Tests the Sign flag and branches if N = 0.

CCR Effects

Code and CPU Cycles

BPL Branch if Plus BPL

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BPL REL9 REL9 0 0 1 0 1 0 0 REL9 PP/P
69

Block Guide — S12XGATEV1/D 01.04
Operation

PC + $0002 + (REL10 << 1) ⇒ PC

Branches always

CCR Effects

Code and CPU Cycles

BRA Branch Always BRA

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BRA REL10 REL10 0 0 1 1 1 1 REL10 PP
70

Block Guide — S12XGATEV1/D 01.04
Operation

Put XGATE into Debug Mode (see 4.5.2)and signals a Software breakpoint to the S12X_DBG
module (see section 4.9 of theS12X_DBG Block User Guide).

CCR Effects

Code and CPU Cycles

BRK Break BRK

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BRK INH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PAff
71

Block Guide — S12XGATEV1/D 01.04
Operation

If V = 0, then PC + $0002 + (REL9 << 1) ⇒ PC

Tests the Overflow flag and branches if V = 0.

CCR Effects

Code and CPU Cycles

BVC Branch if Overflow Cleared BVC

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BVC REL9 REL9 0 0 1 0 1 1 0 REL9 PP/P
72

Block Guide — S12XGATEV1/D 01.04
Operation

If V = 1, then PC + $0002 + (REL9 << 1) ⇒ PC

Tests the Overflow flag and branches if V = 1.

CCR Effects

Code and CPU Cycles

BVS Branch if Overflow Set BVS

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

BVS REL9 REL9 0 0 1 0 1 1 1 REL9 PP/P
73

Block Guide — S12XGATEV1/D 01.04
Operation

RS2 - RS1 ⇒ NONE (translates to SUB R0, RS1, RS2)

Subtracts the content of register RS2 from the content of register RS1 using binary subtraction
and discards the result.

CCR Effects

Code and CPU Cycles

CMP Compare CMP

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: Set if a two´s complement overflow resulted from the operation; cleared otherwise.

RS1[15] & RS2[15] & result[15] | RS1[15] & RS2[15] & result[15]

C: Set if there is a carry from the bit 15 of the result; cleared otherwise.
RS1[15] & RS2[15] | RS1[15] & result[15] | RS2[15] & result[15]

Source Form Address
Mode Machine Code Cycles

CMP RS1, RS2 TRI 0 0 0 1 1 0 0 0 RS1 RS2 0 0 P
74

Block Guide — S12XGATEV1/D 01.04
Operation

RS.L - IMM8 ⇒ NONE, only condition code flags get updated

Subtracts the 8-Bit constant IMM8 contained in the instruction code from the low byte of the
source register RS.L using binary subtraction and updates the condition code register
accordingly.

Remark: There is no equivalent operation using triadic addressing. Comparing the values of two
registers can be performed by using the subtract instruction with R0 as destination register.

CCR Effects

Code and CPU Cycles

CMPL Compare Immediate 8-Bit Constant
(Low Byte) CMPL

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 7 of the result is set; cleared otherwise.
Z: Set if the 8-bit result is $00; cleared otherwise.
V: Set if a two´s complement overflow resulted from the 8-bit operation; cleared otherwise.

RS[7] & IMM8[7] & result[7] | RS[7] & IMM8[7] & result[7]

C: Set if there is a carry from the Bit 7 to Bit 8 of the result; cleared otherwise.
RS[7] & IMM8[7] | RS[7] & result[7] | IMM8[7] & result[7]

Source Form Address
Mode Machine Code Cycles

CMPL RS, #IMM8 IMM8 1 1 0 1 0 RS IMM8 P
75

Block Guide — S12XGATEV1/D 01.04
Operation

~RS ⇒ RD (translates to XNOR RD, R0, RS)
~RD ⇒ RD (translates to XNOR RD, R0, RD)

Performs a one’s complement on a general purpose register.

.

CCR Effects

Code and CPU Cycles

COM One’s Complement COM

N Z V C

∆ ∆ 0 −

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

COM RD, RS TRI 0 0 0 1 0 RD 0 0 0 RS 1 1 P

COM RD TRI 0 0 0 1 0 RD 0 0 0 RD 1 1 P
76

Block Guide — S12XGATEV1/D 01.04
Operation

RS2 - RS1 − Χ ⇒ NONE (translates to SBC R0, RS1, RS2)

Subtracts the carry bit and the content of register RS2 from the content of register RS1 using
binary subtraction and discards the result.

CCR Effects

Code and CPU Cycles

CPC Compare with Carry CPC

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: Set if a two´s complement overflow resulted from the operation; cleared otherwise.

RS1[15] & RS2[15] & result[15] | RS1[15] & RS2[15] & result[15]

C: Set if there is a carry from the bit 15 of the result; cleared otherwise.
RS1[15] & RS2[15] | RS1[15] & result[15] | RS2[15] & result[15]

Source Form Address
Mode Machine Code Cycles

CMP RS1, RS2 TRI 0 0 0 1 1 0 0 0 RS1 RS2 0 1 P
77

Block Guide — S12XGATEV1/D 01.04
Operation

RS.H - IMM8 - C ⇒ NONE, only condition code flags get updated

Subtracts the carry bit and the 8-Bit constant IMM8 contained in the instruction code from the
high byte of the source register RD using binary subtraction and updates the condition code
register accordingly. The carry bit and Zero bits are taken into account to allow a 16-Bit compare
in the form of

CMPL R2,#LOWBYTE
CPCH R2,#HIGHBYTE
BCC ; branch condition

Remark: There is no equivalent operation using triadic addressing. Comparing the values of two
registers can be performed by using the subtract instruction with R0 as destination register.

CCR Effects

Code and CPU Cycles

CPCH Compare Immediate 8-Bit Constant with
Carry (High Byte) CPCH

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $00 and Z was set before this operation; cleared otherwise.
V: Set if a two´s complement overflow resulted from the operation; cleared otherwise.

RS[15] & IMM8[7] & result[15] | RS[15] & IMM8[7] & result[15]

C: Set if there is a carry from the bit 15 of the result; cleared otherwise.
RS[15] & IMM8[7] | RS[15] & result[15] | IMM8[7] & result[15]

Source Form Address
Mode Machine Code Cycles

CPCH RD, #IMM8 IMM8 1 1 0 1 1 RS IMM8 P
78

Block Guide — S12XGATEV1/D 01.04
Operation

Unlocks a semaphore that was locked by the RISC core.

In monadic address mode, bits RS[2:0] select the semaphore to be cleared.

CCR Effects

Code and CPU Cycles

CSEM Clear Semaphore CSEM

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

CSEM #IMM3 IMM3 0 0 0 0 0 IMM3 1 1 1 1 0 0 0 0 PA

CSEM RS MON 0 0 0 0 0 RS 1 1 1 1 0 0 0 1 PA
79

Block Guide — S12XGATEV1/D 01.04
Operation

n = RS or IMM4

Shifts the bits in register RD n positions to the left. The lower n bits of the register RD become
filled with the carry flag. The carry flag will be updated to the bit contained in RD[16-n] before the
shift for n > 0.
n can range from 0 to 16.
In immediate address mode, n is determined by the operand IMM4. n is considered to be 16 in
IMM4 is equal to 0.
In dyadic address mode, n is determined by the content of RS. n is considered to be 16 if the
content of RS is greater than 15.

CCR Effects

Code and CPU Cycles

CSL Logical Shift Left with Carry CSL

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: Set if a two´s complement overflow resulted from the operation; cleared otherwise.

RD[15]old ^ RD[15]new

C: Set if n > 0 and RD[16-n] = 1; if n = 0 unaffected.

Source Form Address
Mode Machine Code Cycles

CSL RD, #IMM4 IMM4 0 0 0 0 1 RD IMM4 1 0 1 0 P

CSL RD, RS DYA 0 0 0 0 1 RD RS 1 0 0 1 0 P

CRD C C C

n bits

C

n

80

Block Guide — S12XGATEV1/D 01.04
Operation

n = RS or IMM4

Shifts the bits in register RD n positions to the right. The higher n bits of the register RD become
filled with the carry flag. The carry flag will be updated to the bit contained in RD[n-1] before the
shift for n > 0.
n can range from 0 to 16.
In immediate address mode, n is determined by the operand IMM4. n is considered to be 16 in
IMM4 is equal to 0.
In dyadic address mode, n is determined by the content of RS. n is considered to be 16 if the
content of RS is greater than 15.

CCR Effects

Code and CPU Cycles

CSR Logical Shift Right with Carry CSR

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: Set if a two´s complement overflow resulted from the operation; cleared otherwise.

RD[15]old ^ RD[15]new

C: Set if n > 0 and RD[n-1] = 1; if n = 0 unaffected.

Source Form Address
Mode Machine Code Cycles

CSR RD, #IMM4 IMM4 0 0 0 0 1 RD IMM4 1 0 1 1 P

CSR RD, RS DYA 0 0 0 0 1 RD RS 1 0 0 1 1 P

C RDCCC

n bits

C

n

81

Block Guide — S12XGATEV1/D 01.04
Operation

PC + $0002 ⇒ RD; RD ⇒ PC

Jumps to the address stored in RD and saves the return address in RD.

CCR Effects

Code and CPU Cycles

JAL Jump and Link JAL

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

JAL RD MON 0 0 0 0 0 RD 1 1 1 1 0 1 1 0 PP
82

Block Guide — S12XGATEV1/D 01.04
Operation

M[RB, #OFFS5] ⇒ RD.L; $00 ⇒ RD.H
M[RB, RI] ⇒ RD.L; $00 ⇒ RD.H
M[RB, RI] ⇒ RD.L; $00 ⇒ RD.H; RI+1 ⇒ RI;1

RI-1 ⇒ RI; M[RS, RI] ⇒ RD.L; $00 ⇒ RD.H

Loads a byte from memory into the low byte of register RD. The high byte is cleared.
I

CCR Effects

Code and CPU Cycles

LDB Load Byte from Memory
(Low Byte) LDB

NOTES:
1. If the same general purpose register is used as index (RI) and destination register (RD), the content of the register will not

be incremented after the data move: M[RB, RI] ⇒ RD.L; $00 ⇒ RD.H

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

LDB RD, (RB, #OFFS5) IDO5 0 1 0 0 0 RD RB OFFS5 Pr

LDB RD, (RS, RI) IDR 0 1 1 0 0 RD RB RI 0 0 Pr

LDB RD, (RS, RI+) IDR+ 0 1 1 0 0 RD RB RI 0 1 Pr

LDB RD, (RS, -RI) -IDR 0 1 1 0 0 RD RB RI 1 0 Pr
83

Block Guide — S12XGATEV1/D 01.04
Operation

IMM8 ⇒ RD.H;

Loads an eight bit immediate constant into the high byte of register RD. The low byte is not
affected.

CCR Effects

Code and CPU Cycles

LDH Load Immediate 8-Bit Constant
(High Byte) LDH

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

LDH RD, #IMM8 IMM8 1 1 1 1 1 RD IMM8 P
84

Block Guide — S12XGATEV1/D 01.04
Operation

IMM8 ⇒ RD.L; $00 ⇒ RD.H

Loads an eight bit immediate constant into the low byte of register RD. The high byte is cleared.

CCR Effects

Code and CPU Cycles

LDL Load Immediate 8-Bit Constant
(Low Byte) LDL

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

LDL RD, #IMM8 IMM8 1 1 1 1 0 RD IMM8 P
85

Block Guide — S12XGATEV1/D 01.04
Operation

M[RB, #OFFS5] ⇒ RD;
M[RB, RI] ⇒ RD;
M[RB, RI] ⇒ RD; RI+2 ⇒ RI;1

RI-2 ⇒ RI; M[RS, RI] ⇒ RD;

Loads a word from memory into the register RD.

CCR Effects

Code and CPU Cycles

LDW Load Word from Memory LDW

NOTES:
1. If the same general purpose register is used as index (RI) and destination register (RD), the content of the register will not

be incremented after the data move: M[RB, RI] ⇒ RD

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

LDW RD, (RB, #OFFS5) IDO5 0 1 0 0 1 RD RB OFFS5 PR

LDW RD, (RB, RI) IDR 0 1 1 0 1 RD RB RI 0 0 PR

LDW RD, (RB, RI+) IDR+ 0 1 1 0 1 RD RB RI 0 1 PR

LDW RD, (RB, -RI) -IDR 0 1 1 0 1 RD RB RI 1 0 PR
86

Block Guide — S12XGATEV1/D 01.04
Operation

n = RS or IMM4

Shifts the bits in register RD n positions to the left. The lower n bits of the register RD become
filled with zeros. The carry flag will be updated to the bit contained in RD[16-n] before the shift
for n > 0.
n can range from 0 to 16.
In immediate address mode, n is determined by the operand IMM4. n is considered to be 16 in
IMM4 is equal to 0.
In dyadic address mode, n is determined by the content of RS. n is considered to be 16 if the
content of RS is greater than 15.

CCR Effects

Code and CPU Cycles

LSL Logical Shift Left LSL

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: Set if a two´s complement overflow resulted from the operation; cleared otherwise.

RD[15]old ^ RD[15]new

C: Set if n > 0 and RD[16-n] = 1; if n = 0 unaffected.

Source Form Address
Mode Machine Code Cycles

LSL RD, #IMM4 IMM4 0 0 0 0 1 RD IMM4 1 1 0 0 P

LSL RD, RS DYA 0 0 0 0 1 RD RS 1 0 1 0 0 P

0RD 0 0 0

n bits

C

n

87

Block Guide — S12XGATEV1/D 01.04
Operation

n = RS or IMM4

Shifts the bits in register RD n positions to the right. The higher n bits of the register RD become
filled with zeros. The carry flag will be updated to the bit contained in RD[n-1] before the shift for
n > 0.
n can range from 0 to 16.
In immediate address mode, n is determined by the operand IMM4. n is considered to be 16 in
IMM4 is equal to 0.
In dyadic address mode, n is determined by the content of RS. n is considered to be 16 if the
content of RS is greater than 15.

CCR Effects

Code and CPU Cycles

LSR Logical Shift Right LSR

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: Set if a two´s complement overflow resulted from the operation; cleared otherwise.

RD[15]old ^ RD[15]new

C: Set if n > 0 and RD[n-1] = 1; if n = 0 unaffected.

Source Form Address
Mode Machine Code Cycles

LSR RD, #IMM4 IMM4 0 0 0 0 1 RD IMM4 1 1 0 1 P

LSR RD, RS DYA 0 0 0 0 1 RD RS 1 0 1 0 1 P

0 RD000

n bits

C

n

88

Block Guide — S12XGATEV1/D 01.04
Operation

RS ⇒ RD (translates to OR RD, R0, RS)

Copies the content of RS to RD.

.

CCR Effects

Code and CPU Cycles

MOV Move Register Content MOV

N Z V C

∆ ∆ 0 −

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

MOV RD, RS TRI 0 0 0 1 0 RD 0 0 0 RS 1 0 P
89

Block Guide — S12XGATEV1/D 01.04
Operation

-RS ⇒ RD (translates to SUB RD, R0, RS)
-RD ⇒ RD (translates to SUB RD, R0, RD)

Performs a two’s complement on a general purpose register.

CCR Effects

Code and CPU Cycles

NEG Two’s Complement NEG

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 15 of the result is set; cleared otherwise.

Z: Set if the result is $0000; cleared otherwise.

V: Set if a two´s complement overflow resulted from the operation; cleared otherwise.
 RS[15] & RD[15]new

C: Set if there is a carry from the bit 15 of the result; cleared otherwise
RS[15] | RD[15]new

Source Form Address
Mode Machine Code Cycles

NEG RD, RS TRI 0 0 0 1 1 RD 0 0 0 RS 0 0 P

NEG RD TRI 0 0 0 1 1 RD 0 0 0 RD 0 0 P
90

Block Guide — S12XGATEV1/D 01.04
Operation

No Operation for one cycle.

CCR Effects

Code and CPU Cycles

NOP No Operation NOP

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

NOP INH 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 P
91

Block Guide — S12XGATEV1/D 01.04
Operation

RS1 | RS2 ⇒ RD

Performs a bit wise logical OR between the content of register RS1 and the content of register
RS2 and stores the result in the destination register RD.

CCR Effects

Code and CPU Cycles

OR Logical OR OR

N Z V C

∆ ∆ 0 −

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

OR RD, RS1, RS2 TRI 0 0 0 1 0 RD RS1 RS2 1 0 P
92

Block Guide — S12XGATEV1/D 01.04
Operation

RD.H | IMM8 ⇒ RD.H

Performs a bit wise logical OR between the high byte of register RD and an immediate 8-Bit
constant and stores the result in the destination register RD.H. The low byte of RD is not affected.

CCR Effects

Code and CPU Cycles

ORH Logical OR Immediate 8-Bit Constant
(High Byte) ORH

N Z V C

∆ ∆ 0 −

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the 8-Bit result is $00; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

ORH RD, #IMM8 IMM8 1 0 1 0 1 RD IMM8 P
93

Block Guide — S12XGATEV1/D 01.04
Operation

RD.L | IMM8 ⇒ RD.L

Performs a bit wise logical OR between the low byte of register RD and an immediate 8-Bit
constant and stores the result in the destination register RD.L. The high byte of RD is not
affected.

CCR Effects

Code and CPU Cycles

ORL Logical OR Immediate 8-Bit Constant
(Low Byte) ORL

N Z V C

∆ ∆ 0 −

N: Set if bit 7 of the result is set; cleared otherwise.
Z: Set if the 8-Bit result is $00; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

ORL RD, #IMM8 IMM8 1 0 1 0 0 RD IMM8 P
94

Block Guide — S12XGATEV1/D 01.04
Operation

Calculates the number of ones in the register RD. The Carry flag will be set if the number is odd,
otherwise it will be cleared.

CCR Effects

Code and CPU Cycles

PAR Calculate Parity PAR

N Z V C

0 ∆ 0 ∆

N: 0; cleared.
Z: Set if RD is $0000; cleared otherwise.
V: 0; cleared.
C: Set if there the number of ones in the register RD is odd; cleared otherwise.

Source Form Address
Mode Machine Code Cycles

PAR, RD MON 0 0 0 0 0 RD 1 1 1 1 0 1 0 1 P
95

Block Guide — S12XGATEV1/D 01.04
Operation

n = RS or IMM4

Rotates the bits in register RD n positions to the left. The lower n bits of the register RD are filled
with the upper n bits. Two source forms are available. In the first form, the parameter n is
contained in the instruction code as an immediate operand. In the second form, the parameter
is contained in the lower bits of the source register RS[3:0]. All other bits in RS are ignored. If n
is zero, no shift will take place and the register RD will be unaffected; however, the condition
code flags will be updated.

CCR Effects

Code and CPU Cycles

ROL Rotate Left ROL

N Z V C

∆ ∆ 0 −

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

ROL RD, #IMM4 IMM4 0 0 0 0 1 RD IMM4 1 1 1 0 P

ROL RD, RS DYA 0 0 0 0 1 RD RS 1 0 1 1 0 P

RD

n bits
96

Block Guide — S12XGATEV1/D 01.04
Operation

n = RS or IMM4

Rotates the bits in register RD n positions to the right. The upper n bits of the register RD are
filled with the lower n bits. Two source forms are available. In the first form, the parameter n is
contained in the instruction code as an immediate operand. In the second form, the parameter
is contained in the lower bits of the source register RS[3:0]. All other bits in RS are ignored. If n
is zero no shift will take place and the register RD will be unaffected; however, the condition code
flags will be updated.

CCR Effects

Code and CPU Cycles

ROR Rotate Right ROR

N Z V C

∆ ∆ 0 −

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

ROR RD, #IMM4 IMM4 0 0 0 0 1 RD IMM4 1 1 1 1 P

ROR RD, RS DYA 0 0 0 0 1 RD RS 1 0 1 1 1 P

RD

n bits
97

Block Guide — S12XGATEV1/D 01.04
Operation

Terminates the current thread of program execution and remains idle until a new thread is started
by the hardware scheduler.

CCR Effects

Code and CPU Cycles

RTS Return to Scheduler RTS

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

RTS INH 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 PA
98

Block Guide — S12XGATEV1/D 01.04
Operation

RS1 - RS2 - C ⇒ RD

Subtracts the content of register RS2 and the value of the Carry bit from the content of register
RS1 using binary subtraction and stores the result in the destination register RD. Also the zero
flag is carried forward from the previous operation allowing 32 and more bit subtractions.

Example:
SBC R6,R4,R2
SBC R7,R5,R3 ; R7:R6 = R5:R4 - R3:R2
BCC ; conditional branch on 32 bit addition

CCR Effects

Code and CPU Cycles

SBC Subtract with Carry SBC

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000 and Z was set before this operation; cleared otherwise.
V: Set if a two´s complement overflow resulted from the operation; cleared otherwise.

RS1[15] & RS2[15] & RD[15]new | RS1[15] & RS2[15] & RD[15]new

C: Set if there is a carry from bit 15 of the result; cleared otherwise.
RS1[15] & RS2[15] | RS1[15] & RD[15]new | RS2[15] & RD[15]new

Source Form Address
Mode Machine Code Cycles

SBC RD, RS1, RS2 TRI 0 0 0 1 1 RD RS1 RS2 0 1 P
99

Block Guide — S12XGATEV1/D 01.04
Operation

Attempts to set a semaphore. The state of the semaphore will be stored in the Carry-Flag:

1 = Semaphore is locked by the RISC core
0 = Semaphore is locked by the S12X_CPU

In monadic address mode, bits RS[2:0] select the semaphore to be set.

CCR Effects

Code and CPU Cycles

SSEM Set Semaphore SSEM

N Z V C

− − − ∆

N: Not affected.
Z: Not affected.
V: Not affected.
C: Set if semaphore is locked by the RISC core; cleared otherwise.

Source Form Address
Mode Machine Code Cycles

SSEM #IMM3 IMM3 0 0 0 0 0 IMM3 1 1 1 1 0 0 1 0 PA

SSEM RS MON 0 0 0 0 0 RS 1 1 1 1 0 0 1 1 PA
100

Block Guide — S12XGATEV1/D 01.04
Operation

The result in RD is the 16-bit sign extended representation of the original two’s complement
number in the low byte of RD.L.

CCR Effects

Code and CPU Cycles

SEX Sign Extend Byte to Word SEX

N Z V C

∆ ∆ 0 −

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

SEX RD MON 0 0 0 0 0 RD 1 1 1 1 0 1 0 0 P
101

Block Guide — S12XGATEV1/D 01.04
Operation

Sets the Interrupt Flag of an XGATE Channel. This instruction supports two source forms. If
inherent address mode is used, then the interrupt flag of the current channel (XGCHID) will be
set. If the monadic address form is used, the interrupt flag associated with the channel id number
contained in RS[6:0] is set. The content of RS[15:7] is ignored.

CCR Effects

Code and CPU Cycles

SIF Set Interrupt Flag SIF

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

SIF INH 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 PA

SIF RS MON 0 0 0 0 0 RS 1 1 1 1 0 1 1 1 PA
102

Block Guide — S12XGATEV1/D 01.04
Operation

RS.L ⇒ M[RB, #OFFS5]
RS.L ⇒ M[RB, RI]
RS.L ⇒ M[RB, RI]; RI+1 ⇒ RI;
RI-1 ⇒ RI; RS.L ⇒ M[RB, RI]1

Stores the low byte of register RD to memory.

CCR Effects

Code and CPU Cycles

STB Store Byte to Memory
(Low Byte) STB

NOTES:
1. If the same general purpose register is used as index (RI) and source register (RS), the unmodified content of the source

register is written to the memory: RS.L ⇒ M[RB, RS-1]; RS-1 ⇒ RS

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

STB RS, (RB, #OFFS5), IDO5 0 1 0 1 0 RS RB OFFS5 Pw

STB RS, (RB, RI) IDR 0 1 1 1 0 RS RB RI 0 0 Pw

STB RS, (RB, RI+) IDR+ 0 1 1 1 0 RS RB RI 0 1 Pw

STB RS, (RB, -RI) -IDR 0 1 1 1 0 RS RB RI 1 0 Pw
103

Block Guide — S12XGATEV1/D 01.04
Operation

RS ⇒ M[RB, #OFFS5]
RS ⇒ M[RB, RI]
RS ⇒ M[RB, RI]; RI+2 ⇒ RI;
RI-2 ⇒ RI; RS ⇒ M[RB, RI]1

Stores the content of register RD to memory.

CCR Effects

Code and CPU Cycles

STW Store Word to Memory STW

NOTES:
1. If the same general purpose register is used as index (RI) and source register (RS), the unmodified content of the source

register is written to the memory: RS ⇒ M[RB, RS-2]; RS-2 ⇒ RS

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

STW RS, (RB, #OFFS5) IDO5 0 1 0 1 1 RS RB OFFS5 PW

STW RS, (RB, RI) IDR 0 1 1 1 1 RS RB RI 0 0 PW

STW RS, (RB, RI+) IDR+ 0 1 1 1 1 RS RB RI 0 1 PW

STW RS, (RB, -RI) -IDR 0 1 1 1 1 RS RB RI 1 0 PW
104

Block Guide — S12XGATEV1/D 01.04
Operation

RS1 - RS2 ⇒ RD

Subtracts the content of register RS2 from the content of register RS1 using binary subtraction
and stores the result in the destination register RD.

CCR Effects

Code and CPU Cycles

SUB Subtract without Carry SUB

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: Set if a two´s complement overflow resulted from the operation; cleared otherwise.

RS1[15] & RS2[15] & RD[15]new | RS1[15] & RS2[15] & RD[15]new

C: Set if there is a carry from the bit 15 of the result; cleared otherwise.
RS1[15] & RS2[15] | RS1[15] & RD[15]new | RS2[15] & RD[15]new

Source Form Address
Mode Machine Code Cycles

SUB RD, RS1, RS2 TRI 0 0 0 1 1 RD RS1 RS2 0 0 P
105

Block Guide — S12XGATEV1/D 01.04
Operation

RD - IMM8:$00 ⇒ RD

Subtracts a signed immediate 8-Bit constant from the content of high byte of register RD and
using binary subtraction and stores the result in the high byte of destination register RD. This
instruction can be used after an SUBL for a 16-bit immediate subtraction.

EXAMPLE:
SUBL R2,#LOWBYTE
SUBH R2,#HIGHBYTE; R2 = R2 - 16 Bit immediate

CCR Effects

Code and CPU Cycles

SUBH Subtract Immediate 8-Bit Constant
(High Byte) SUBH

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: Set if a two´s complement overflow resulted from the operation; cleared otherwise.

RD[15]old & IMM8[7] & RD[15]new | RD[15]old & IMM8[7] & RD[15]new

C: Set if there is a carry from the bit 15 of the result; cleared otherwise.
RD[15]old & IMM8[7] | RD[15]old & RD[15]new | IMM8[7] & RD[15]new

Source Form Address
Mode Machine Code Cycles

SUBH RD, #IMM8 IMM8 1 1 0 0 1 RD IMM8 P
106

Block Guide — S12XGATEV1/D 01.04
Operation

RD - $00:IMM8 ⇒ RD

Subtracts an immediate 8 Bit constant from the content of register RD using binary subtraction
and stores the result in the destination register RD.

CCR Effects

Code and CPU Cycles

SUBL Subtract Immediate 8-Bit Constant
(Low Byte) SUBL

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: Set if a two´s complement overflow resulted from the 8-bit operation; cleared otherwise.

RD[15]old & RD[15]new

C: Set if there is a carry from the bit 7 to bit 8 of the result; cleared otherwise.
RD[15]old & RD[15]new

Source Form Address
Mode Machine Code Cycles

SUBL RD, #IMM8 IMM8 1 1 0 0 0 RD IMM8 P
107

Block Guide — S12XGATEV1/D 01.04
Operation

Transfers the content of one RISC core register to another.
If the content of the Condition Code Register is transferred to a General Purpose Register (RD),
bits RD[15:4] become cleared.
If the content of the General Purpose Register (RS) is transferred to the Condition Code Register,
only bits RS[3:0] are copied.

CCR Effects

TFR RD,CCR:

TFR CCR,RS:

Code and CPU Cycles

TFR Transfer from and to Special Registers TFR

N Z V C

− − − −

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

N Z V C

∆ ∆ ∆ ∆

N: RS[3].
Z: RS[2].
V: RS[1].
C: RS[0.

Source Form Address
Mode Machine Code Cycles

TFR RD,CCR CCR ⇒ RD MON 0 0 0 0 0 RD 1 1 1 1 1 0 0 0 P

TFR CCR,RS RS ⇒ CCR MON 0 0 0 0 0 RS 1 1 1 1 1 0 0 1 P
108

Block Guide — S12XGATEV1/D 01.04
Operation

RS - 0 ⇒ NONE (translates to SUB R0, RS, R0)

Subtracts zero from the content of register RS using binary subtraction and discards the result.

CCR Effects

Code and CPU Cycles

TST Test Register TST

N Z V C

∆ ∆ ∆ ∆

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: Set if a two´s complement overflow resulted from the operation; cleared otherwise.

RS[15] & result[15]

C: Set if there is a carry from the bit 15 of the result; cleared otherwise.
RS1[15] & result[15]

Source Form Address
Mode Machine Code Cycles

TST RS TRI 0 0 0 1 1 0 0 0 RS1 0 0 0 0 0 P
109

Block Guide — S12XGATEV1/D 01.04
Operation

~(RS1 ^ RS2) ⇒ RD

Performs a bit wise logical exclusive NOR between the content of register RS1 and the content
of register RS2 and stores the result in the destination register RD.

Remark: Using R0 as a source registers will calculate the one’s complement of the other source
register. Using R0 as both source operands will fill RD with $FFFF.

CCR Effects

Code and CPU Cycles

XNOR Logical Exclusive NOR XNOR

N Z V C

∆ ∆ 0 −

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the result is $0000; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

XNOR RD, RS1, RS2 TRI 0 0 0 1 0 RD RS1 RS2 1 1 P
110

Block Guide — S12XGATEV1/D 01.04
Operation

~(RD.H ^ IMM8) ⇒ RD.H

Performs a bit wise logical exclusive NOR between the high byte of register RD and an immediate
8-Bit constant and stores the result in the destination register RD.H. The low byte of RD is not
affected.

CCR Effects

Code and CPU Cycles

XNORH Logical Exclusive NOR Immediate 8-Bit
Constant (High Byte) XNORH

N Z V C

∆ ∆ 0 −

N: Set if bit 15 of the result is set; cleared otherwise.
Z: Set if the 8-bit result is $00; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

XNORH RD, #IMM8 IMM8 1 0 1 1 1 RD IMM8 P
111

Block Guide — S12XGATEV1/D 01.04
Operation

~(RD.L ^ IMM8) ⇒ RD.L

Performs a bit wise logical exclusive NOR between the low byte of register RD and an immediate
8-Bit constant and stores the result in the destination register RD.L. The high byte of RD is not
affected.

CCR Effects

Code and CPU Cycles

XNORL Logical Exclusive NOR Immediate 8-Bit
Constant (Low Byte) XNORL

N Z V C

∆ ∆ 0 −

N: Set if bit 7 of the result is set; cleared otherwise.
Z: Set if the 8-bit result is $00; cleared otherwise.
V: 0; cleared.
C: Not affected.

Source Form Address
Mode Machine Code Cycles

XNORL RD, #IMM8 IMM8 1 0 1 1 0 RD IMM8 P
112

Block Guide — S12XGATEV1/D 01.04
4.7.6 Instruction Coding

The following table summarizes all XGATE instructions in the order of their machine coding.

Table 4-2 Instruction Set Summary
Functionality 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Return to Scheduler and others
BRK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NOP 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
RTS 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
SIF 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Semaphore Instructions
CSEM IMM3 0 0 0 0 0 IMM3 1 1 1 1 0 0 0 0
CSEM RS 0 0 0 0 0 RS 1 1 1 1 0 0 0 1

SSEM IMM3 0 0 0 0 0 IMM3 1 1 1 1 0 0 1 0
SSEM RS 0 0 0 0 0 RS 1 1 1 1 0 0 1 1

Single Register Instructions
SEX RD 0 0 0 0 0 RD 1 1 1 1 0 1 0 0
PAR RD 0 0 0 0 0 RD 1 1 1 1 0 1 0 1
JAL RD 0 0 0 0 0 RD 1 1 1 1 0 1 1 0
SIF RS 0 0 0 0 0 RS 1 1 1 1 0 1 1 1

Special Move instructions
TFR RD,CCR 0 0 0 0 0 RD 1 1 1 1 1 0 0 0
TFR CCR,RS 0 0 0 0 0 RS 1 1 1 1 1 0 0 1

Shift instructions dyadic
BFFO RD, RS 0 0 0 0 1 RD RS 1 0 0 0 0
ASR RD, RS 0 0 0 0 1 RD RS 1 0 0 0 1
CSL RD, RS 0 0 0 0 1 RD RS 1 0 0 1 0
CSR RD, RS 0 0 0 0 1 RD RS 1 0 0 1 1
LSL RD, RS 0 0 0 0 1 RD RS 1 0 1 0 0
LSR RD, RS 0 0 0 0 1 RD RS 1 0 1 0 1
ROL RD, RS 0 0 0 0 1 RD RS 1 0 1 1 0
ROR RD, RS 0 0 0 0 1 RD RS 1 0 1 1 1

Shift instructions immediate
ASR RD, #IMM4 0 0 0 0 1 RD IMM4 1 0 0 1
CSL RD, #IMM4 0 0 0 0 1 RD IMM4 1 0 1 0
CSR RD, #IMM4 0 0 0 0 1 RD IMM4 1 0 1 1
LSL RD, #IMM4 0 0 0 0 1 RD IMM4 1 1 0 0
LSR RD, #IMM4 0 0 0 0 1 RD IMM4 1 1 0 1
ROL RD, #IMM4 0 0 0 0 1 RD IMM4 1 1 1 0
ROR RD, #IMM4 0 0 0 0 1 RD IMM4 1 1 1 1
Logical triadic

AND RD, RS1, RS2 0 0 0 1 0 RD RS1 RS2 0 0
OR RD, RS1, RS2 0 0 0 1 0 RD RS1 RS2 1 0

XNOR RD, RS1, RS2 0 0 0 1 0 RD RS1 RS2 1 1
Arithmetic triadic For compare use SUB R0,Rs1,Rs2
SUB RD, RS1, RS2 0 0 0 1 1 RD RS1 RS2 0 0
SBC RD, RS1, RS2 0 0 0 1 1 RD RS1 RS2 0 1
ADD RD, RS1, RS2 0 0 0 1 1 RD RS1 RS2 1 0
ADC RD, RS1, RS2 0 0 0 1 1 RD RS1 RS2 1 1

Branches
BCC REL9 0 0 1 0 0 0 0 REL9
BCS REL9 0 0 1 0 0 0 1 REL9
113

Block Guide — S12XGATEV1/D 01.04
BNE REL9 0 0 1 0 0 1 0 REL9
BEQ REL9 0 0 1 0 0 1 1 REL9
BPL REL9 0 0 1 0 1 0 0 REL9
BMI REL9 0 0 1 0 1 0 1 REL9
BVC REL9 0 0 1 0 1 1 0 REL9
BVS REL9 0 0 1 0 1 1 1 REL9
BHI REL9 0 0 1 1 0 0 0 REL9
BLS REL9 0 0 1 1 0 0 1 REL9
BGE REL9 0 0 1 1 0 1 0 REL9
BLT REL9 0 0 1 1 0 1 1 REL9
BGT REL9 0 0 1 1 1 0 0 REL9
BLE REL9 0 0 1 1 1 0 1 REL9

BRA REL10 0 0 1 1 1 1 REL10
Load & Store Instructions

LDB RD, (RB, #OFFS5) 0 1 0 0 0 RD RB OFFS5
LDW RD, (RB, #OFFS5) 0 1 0 0 1 RD RB OFFS5
STB RS, (RB, #OFFS5) 0 1 0 1 0 RS RB OFFS5
STW RS, (RB, #OFFS5) 0 1 0 1 1 RS RB OFFS5

LDB RD, (RB, RI) 0 1 1 0 0 RD RB RI 0 0
LDW RD, (RB, RI) 0 1 1 0 1 RD RB RI 0 0
STB RS, (RB, RI) 0 1 1 1 0 RS RB RI 0 0
STW RS, (RB, RI) 0 1 1 1 1 RS RB RI 0 0
LDB RD, (RB, RI+) 0 1 1 0 0 RD RB RI 0 1
LDW RD, (RB, RI+) 0 1 1 0 1 RD RB RI 0 1
STB RS, (RB, RI+) 0 1 1 1 0 RS RB RI 0 1
STW RS, (RB, RI+) 0 1 1 1 1 RS RB RI 0 1
LDB RD, (RB, -RI) 0 1 1 0 0 RD RB RI 1 0
LDW RD, (RB, -RI) 0 1 1 0 1 RD RB RI 1 0
STB RS, (RB, -RI) 0 1 1 1 0 RS RB RI 1 0
STW RS, (RB, -RI) 0 1 1 1 1 RS RB RI 1 0

Bit Field Instructions
BFEXT RD, RS1, RS2 0 1 1 0 0 RD RS1 RS2 1 1
BFINS RD, RS1, RS2 0 1 1 0 1 RD RS1 RS2 1 1
BFINSI RD, RS1, RS2 0 1 1 1 0 RD RS1 RS2 1 1
BFINSX RD, RS1, RS2 0 1 1 1 1 RD RS1 RS2 1 1

Logic Immediate Instructions
ANDL RD, #IMM8 1 0 0 0 0 RD IMM8
ANDH RD, #IMM8 1 0 0 0 1 RD IMM8
BITL RD, #IMM8 1 0 0 1 0 RD IMM8
BITH RD, #IMM8 1 0 0 1 1 RD IMM8
ORL RD, #IMM8 1 0 1 0 0 RD IMM8
ORH RD, #IMM8 1 0 1 0 1 RD IMM8

XNORL RD, #IMM8 1 0 1 1 0 RD IMM8
XNORH RD, #IMM8 1 0 1 1 1 RD IMM8

Arithmetic Immediate Instructions
SUBL RD, #IMM8 1 1 0 0 0 RD IMM8
SUBH RD, #IMM8 1 1 0 0 1 RD IMM8
CMPL RS, #IMM8 1 1 0 1 0 RS IMM8

Table 4-2 Instruction Set Summary
Functionality 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
114

Block Guide — S12XGATEV1/D 01.04

ure

BG
Section 5 Initialization/Application Information

5.1 Initialization

The recommended initialization of the XGATE is as follows:

1. Clear the XGE bit to suppress any incoming service requests.

2. Make sure that no thread is running on the XGATE.
This can be done in several ways:

a. Poll the XGCHID register until it reads $00. Also poll XGDBG and XGSWEIF to make s
that the XGATE has not been stopped.

b. Enter Debug Mode by setting the XGDBG bit. Clear the XGCHID register. Clear the XGD
bit.

The recommended method is a.

3. Set the XGVBR register to the lowest address of the XGATE vector space.

4. Clear all Channel ID flags.

5. Copy XGATE vectors and code into the RAM.

6. Initialize the S12X_INT module.

7. Enable the XGATE by setting the XGE bit.

The following code example implements the XGATE initialization sequence.

5.2 Code Example (transmit "Hello World!" on SCI)

 CPU S12
 ;###
 ;# SYMBOLS #
 ;###
SCI_REGS EQU $00C8 ;SCI register space
SCIBDH EQU SCI_REGS+$00 ;SCI Baud Rate Register
SCICR2 EQU SCI_REGS+$03 ;SCI Control Register 2
SCISR1 EQU SCI_REGS+$04 ;SCI Status Register 1
SCIDRL EQU SCI_REGS+$07 ;SCI Control Register 2
TIE EQU $80 ;TIE bit mask
TE EQU $08 ;TE bit mask
RE EQU $04 ;RE bit mask

CPCH RS, #IMM8 1 1 0 1 1 RS IMM8
ADDL RD, #IMM8 1 1 1 0 0 RD IMM8
ADDH RD, #IMM8 1 1 1 0 1 RD IMM8
LDL RD, #IMM8 1 1 1 1 0 RD IMM8
LDH RD, #IMM8 1 1 1 1 1 RD IMM8

Table 4-2 Instruction Set Summary
Functionality 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
115

Block Guide — S12XGATEV1/D 01.04
SCI_VEC EQU $D6 ;SCI vector number

INT_REGS EQU $0120 ;S12X_INT register space
INT_CFADDR EQU INT_REGS+$07 ;Interrupt Configurattion Adress Register
INT_CFDATA EQU INT_REGS+$08 ;Interrupt Configurattion Data Registers
RQST EQU $80 ;RQST bit mask

XGATE_REGS EQU $0380 ;XGATE register space
XGMCTL EQU XGATE_REGS+$00 ;XGATE Module Control Register
XGE EQU $80
XGDBGM EQU $20
XGDBG EQU $10
XGSWEIF EQU $04
XGCHID EQU XGATE_REGS+$02 ;XGATE Channel ID Register
XGVBR EQU XGATE_REGS+$04 ;XGATE Vector Base Register
XGIF EQU XGATE_REGS+$08 ;XGATE Interrupt Flag Vector
XGSWT EQU XGATE_REGS+$18 ;XGATE Software Trigger Register
XGSEM EQU XGATE_REGS+$1A ;XGATE Semaphore Register

RPAGE EQU $0016

RAM_SIZE EQU 20*$400 ;20k RAM
RAM_START_GLOBAL EQU $10_0000-RAM_SIZE
RAM_START_XGATE EQU $1_0000-RAM_SIZE
RAM_START_S12 EQU $1000
RPAGE_VALUE EQU RAM_START_GLOBAL>>12

XGATE_VECTORS EQU RAM_START_S12
XGATE_DATA EQU RAM_START_S12+(4*128)

XGATE_OFFSET EQU (RAM_START_XGATE+(4*128))-XGATE_DATA_BEGIN

BUS_FREQ_HZ EQU 40_000000

 ;###
 ;# RESET VECTOR #
 ;###
 ORG $FFFE
 DW START_OF_CODE

 ORG $3000,$9000
START_OF_CODE
 ;###
 ;# INITIALIZE SCI #
 ;###
INIT_SCI MOVW #(BUS_FREQ_HZ/(16*9600)), SCIBDH ;set baud rate
 MOVB #(TIE|TE|RE), SCICR2 ;enable tx buffer empty interrupt

 ;###
 ;# INITIALIZE S12X_INT #
 ;###
INIT_INT SEI ;disable interrupts

MOVB #(SCI_VEC&$F0), INT_CFADDR ;switch SCI interrupts to XGATE
 MOVB #RQST|$01, INT_CFDATA+((SCI_VEC&$0F)>>1)

 ;###
 ;# INITIALIZE XGATE #
 ;###
INIT_XGATE MOVB #(XGDBGM|XGSWEIF), XGMCTL ;clear all XGMCTL bits
116

Block Guide — S12XGATEV1/D 01.04
BRSET XGCHID, $FF, INIT_XGATE ;wait until current thread is done
 MOVW #$10000-RAM_SIZE, XGVBR+2 ;set vector base register

LDX #XGIF ;clear all channel interrupt flags
 LDD #$FFFF
 STD 2,X+
 STD 2,X+
 STD 2,X+
 STD 2,X+
 STD 2,X+
 STD 2,X+
 STD 2,X+
 STD 2,X+

 MOVW #$FF00, XGSWT ;clear all software triggers

 ;###
 ;# INITIALIZE XGATE VECTOR SPACE #
 ;###
INIT_XGATE_VECTOR_SPACE MOVB #(RAM_START_GLOBAL>>12), RPAGE ;set all vectors to dummy
service routine
 LDX #128
 LDY #RAM_START_S12
 LDD #XGATE_DUMMY+XGATE_OFFSET
INIT_XGATE_VECTOR_SPACE_LOOP
 STD 4,Y+
 DBNE X,INIT_XGATE_VECTOR_SPACE_LOOP

MOVW #XGATE_CODE_BEGIN+XGATE_OFFSET, RAM_START_S12+(2*SCI_VEC) ;set
SCI INTERRUPT VECTOR
 MOVW #XGATE_DATA_BEGIN+XGATE_OFFSET, RAM_START_S12+(2*SCI_VEC)+2

 ;###
 ;# COPY XGATE CODE #
 ;###
COPY_XGATE_CODE LDX #XGATE_DATA_BEGIN
COPY_XGATE_CODE_LOOP MOVW 2,X+, 2,Y+
 MOVW 2,X+, 2,Y+
 MOVW 2,X+, 2,Y+
 MOVW 2,X+, 2,Y+
 CPX #XGATE_CODE_END
 BLS COPY_XGATE_CODE_LOOP

 ;###
 ;# START XGATE #
 ;###
START_XGATE MOVB #(XGE|XGDBGM|XGSWEIF), XGMCTL ;enable XGATE
 BRA *

 CPU XGATE
 ;###
 ;# XGATE DATA #
 ;###
 ALIGN 1
XGATE_DATA_BEGIN
XGATE_DATA_SCI_PTR DW SCI_REGS ;pointer to SCI register space
XGATE_DATA_MSG_IDX DB XGATE_DATA_MSG-XGATE_DATA_BEGIN ;string pointer
XGATE_DATA_MSG FCC "Hello World!" ;ASCII string
XGATE_DATA_END DB $0D ;CR
117

Block Guide — S12XGATEV1/D 01.04
 ;###
 ;# XGATE CODE #
 ;###
 ALIGN 1
XGATE_CODE_BEGIN LDW R2,(R1,#(XGATE_DATA_SCI_PTR-XGATE_DATA_BEGIN));SCI -> R2
 LDB R3,(R1,#(XGATE_DATA_MSG_IDX-XGATE_DATA_BEGIN));msg -> R3
 LDB R4,(R1,R3+) ;curr. char -> R4
 STB R3,(R1,#(XGATE_DATA_MSG_IDX-XGATE_DATA_BEGIN));R3 -> idx
 LDB R0,(R2,#(SCISR1-SCI_REGS)) ;initiate SCI transmit
 STB R4,(R2,#(SCIDRL-SCI_REGS)) ;initiate SCI transmit
 CMPL R4,#$0D
 BEQ XGATE_CODE_DONE
 RTS
XGATE_CODE_DONE LDL R4,#$00 ;disable SCI interrupts
 STB R4,(R2,#(SCICR2-SCI_REGS))
 LDL R3,#(XGATE_DATA_MSG-XGATE_DATA_BEGIN);reset R3
 STB R3,(R1,#(XGATE_DATA_MSG_IDX-XGATE_DATA_BEGIN))
XGATE_CODE_END RTS
XGATE_DUMMY EQU XGATE_CODE_END
118

Block Guide — S12XGATEV1/D 01.04

5,
Index

–A–

ADC instruction 41
ADD instruction 42
ADDH instruction 43
Addition instructions 41, 42, 43, 44
ADDL instruction 44
Addressing mode

Dyadic (DYA) 35
Immediate 3 bit wide (IMM3) 34
Immediate 4 bit wide (IMM4) 34
Immediate 8 bit wide (IMM8) 35
Index register plus immediate offset (IDO5) 36
Index register plus register offset (IDR) 36
Index register plus register offset with post-increment

(IDR+)
Post-increment 36

Index register plus register offset with pre-decrement
(-IDR)

Pre-decrement 36
Inherrent (INH) 34
Monadic (MON) 35
Relative 11 Bit Wide (REL11) 36
Relative 9 bit wide (REL9) 36
Triadic (TRI) 35

Addressing modes 33
AND instruction 45
ANDH instruction 46
ANDL instruction 47
Arithmetic instructions 37

Addition 41, 42, 43, 44
Parity 95
Sign extension 101
Subtraction 99, 105, 106, 107

ASR instruction 48

–B–

BCC instruction 49, 50, 64
BEQ instruction 51
BFEXT instruction 52
BFFO instruction 53
BFINS instruction 54
BFINSI instruction 55
BFINSX instruction 56
BGE instruction 57
BGT instruction 58
BHI instruction 59
BHS instruction 60

Bit field instructions 52, 53, 54, 55, 56
Bit Field Operations 38
Bit test instructions 61, 62
BITH instruction 61
BITL instruction 62
BLE instruction 63
Block diagram 11
BLS instruction 65, 66
BMI instruction 67
BNE instruction 68
Boolean logic instructions 37

AND 45, 46, 47
OR 92, 93, 94
XNOR 110, 111, 112

BPL instruction 69
BRA instruction 70
Branch instructions 38, 49, 50, 51, 57, 58, 59, 60, 63, 64, 6
66, 67, 68, 69, 70, 72, 73
BRK instruction 71
BVC instruction 72
BVS instruction 73

–C–

CMP instruction 74, 77
CMPL instruction 75
COM instruction 76, 89
Compare instructions 74, 75, 77, 78
Complement instructions 76, 89, 90
CPCH instruction 78
CSEM instruction 79
CSL instruction 80
CSR instruction 81
Cycle notation 39

–D–

Debug Features 31
Dyadic addressing mode 35

–F–

Features 12

–I–

Immediate addressing mode 34, 35
Indexed addressing mode 36
Inherent addressing mode 34
Instruction coding 113

–J–

JAL instruction 82
119

Block Guide — S12XGATEV1/D 01.04
–L–

LDB instruction 83
LDH instruction 84
LDL instruction 85
LDW instruction 86
Load instructions 37, 83, 84, 85, 86
LSL instruction 87
LSR instruction 88

–M–

Memory map 27
Monadic addressing mode 35

–N–

Naming conventions 33
NEG instruction 90
NOP instruction 91

–O–

OR instruction 92
ORH instruction 93
ORL instruction 94

–P–

PAR instruction 95
Programming model 26

–R–

Register map 12
Registers 13

XGATE Channel ID Register (XGCHID) 16
XGATE Condition Code Register (XGCCR) 21
XGATE Module Control Register (XGMCTL) 14
XGATE Program Counter Register (XGPC) 22
XGATE Register 1 (XGR1) 22
XGATE Register 2 (XGR2) 22
XGATE Register 3 (XGR3) 23
XGATE Register 4 (XGR4) 23
XGATE Register 5 (XGR5) 24
XGATE Register 6 (XGR6) 24
XGATE Register 7 (XGR7) 25
XGATE Semaphore Register (XGSEM) 20
XGATE Software Trigger Register (XGSWT) 19

Relative Addressing Mode 36
Relative addressing mode 36
ROL instruction 96
ROR instruction 97
RTS instruction 98

–S–

SBC instruction 99
Semaphore instructions 79, 100
Semaphores 28
SEX instruction 101
Shift instructions 38, 48, 80, 81, 87, 88, 96, 97
SIF instruction 102
Sign extension instructions 101
SSEM instruction 100
STB instruction 103
Store instructions 37, 103, 104
STW instruction 104
SUB instruction 105
SUBH instruction 106
SUBL instruction 107
Subtraction instructions 99, 105, 106, 107

–T–

TFR instruction 108
Transfer instructions 37, 108
Triadic addressing mode 35
TST instruction 109

–X–

XGATE Module Control Register (XGMCTL) 14
XGCCR register 21
XGCHID Register 16
XGMCTL Register 14
XGMCTL register 14
XGPC register 22
XGR1 register 22
XGR2 register 22
XGR3 register 23
XGR4 register 23
XGR5 register 24
XGR6 register 24
XGR7 register 25
XGSEM register 20
XGSWT register 19
XNOR instruction 110
XNORH instruction 111
XNORL instruction 112
120

Block Guide — S12XGATEV1/D 01.04
Block Guide End Sheet
121

Block Guide — S12XGATEV1/D 01.04
FINAL PAGE OF
122

PAGES
122

	Section 1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation

	Section 2 External Signal Description
	Section 3 Memory Map/Register Definition
	3.1 Register Descriptions
	3.1.1 XGATE Module Control Register (XGMCTL)
	3.1.2 XGATE Channel ID Register (XGCHID)
	3.1.3 XGATE Vector Base Address Register (XGVBR)
	3.1.4 XGATE Channel Interrupt Flag Vector (XGIF)
	3.1.5 XGATE Software Trigger Register (XGSWT)
	3.1.6 XGATE Semaphore Register (XGSEM)
	3.1.7 XGATE Condition Code Register (XGCCR)
	3.1.8 XGATE Program Counter Register (XGPC)
	3.1.9 XGATE Register 1 (XGR1)
	3.1.10 XGATE Register 2 (XGR2)
	3.1.11 XGATE Register 3 (XGR3)
	3.1.12 XGATE Register 4 (XGR4)
	3.1.13 XGATE Register 5 (XGR5)
	3.1.14 XGATE Register 6 (XGR6)
	3.1.15 XGATE Register 7 (XGR7)

	Section 4 Functional Description
	4.1 XGATE RISC Core
	4.1.1 Programmer’s Model
	4.1.2 Memory Map

	4.2 Semaphores
	4.3 Software Error Detection
	4.4 Interrupts
	4.4.1 Incoming Interrupt Requests
	4.4.2 Outgoing Interrupt Requests

	4.5 Debug Mode
	4.5.1 Debug Features
	4.5.2 Entering Debug Mode
	4.5.3 Leaving Debug Mode

	4.6 Security
	4.7 Instruction Set
	4.7.1 Addressing Modes
	4.7.2 Instruction Summary and Usage
	4.7.3 Cycle Notation
	4.7.4 Thread Execution
	4.7.5 Instruction Glossary
	4.7.6 Instruction Coding

	Section 5 Initialization/Application Information
	5.1 Initialization
	5.2 Code Example (transmit "Hello World!" on SCI)

