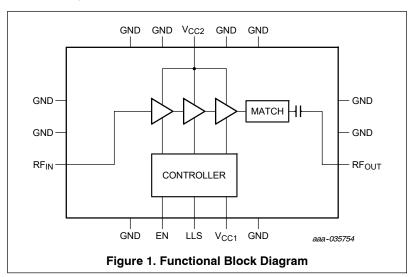

Document Number: AFLP5G25641 Rev. 0, 10/2019

AFLP5G25641

2300–2700 MHz, 32 dB, 29 dBm AIRFAST PRE-DRIVER MODULE

2.5 GHz Low Power Amplifier Module

High Efficiency Pre-Driver


The AFLP5G25641 is an integrated multi-chip module. It consists of three stages of amplification and support circuitry to work at 3.3 V or 5 V with very low power consumption. The amplifier includes a 1.8 V logic control pin for bias enable/disable TDD operation.

Typical Performance: V_{CC1} = 3.3 Vdc, V_{CC2} = 5 Vdc

Frequency	G _{ps} (dB)	I _{CC} (mA)
2300 MHz	32.0	32
2400 MHz	32.4	32
2500 MHz	32.7	32
2600 MHz	32.8	32
2700 MHz	32.5	32

Features

- Frequency: 2300-2700 MHz
- 3.3 V or 5 V supply for RF amplifier
- P1dB: 25 dBm @ 2500 MHz, V_{CC2} = 3.3 Vdc
- P1dB: 29 dBm @ 2500 MHz, V_{CC2} = 5 Vdc
- · Power consumption:
 - 114 mW @ $V_{CC2} = 3.3 \text{ Vdc}$
 - 168 mW @ $V_{CC2} = 5 \text{ Vdc}$
- Fully matched (50 ohm input/output, DC blocked)
- Compact 4 mm × 3 mm LGA package

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Supply Voltage	V _{CC1}	3.6	V
Supply Voltage	V _{CC2}	5.25	V
Supply Current	Icc	330	mA
RF Input Power	P _{in}	25	dBm
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	125	°C

Table 2. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JS-001-2017)	2
Charge Device Model (per JS-002-2014)	C3

Table 3. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

$\textbf{Table 4. Electrical Characteristics} \ (V_{CC1} = 3.3 \ \text{Vdc}, \ V_{CC2} = 5 \ \text{Vdc}, \ 2500 \ \text{MHz}, \ T_A = 25^{\circ}\text{C}, \ 50 \ \text{ohm system, in NXP Application Circuit})$

Characteristic	Symbol	Min	Тур	Max	Unit
Small-Signal Gain (S21)	Gp	29.2	32.0	_	dB
Input Return Loss (S11)	IRL	_	15	_	dB
Output Return Loss (S22)	ORL	_	7	_	dB
Power Output @ 1dB Compression (V _{CC2} = 5 Vdc)	P1dB	_	29	_	dBm
Quiescent Supply Current (V _{CC2})	I _{CQ2}	_	32	_	mA
Supply Current (V _{CC1})	I _{CC1}	_	2.2	_	mA

Table 5. Ordering Information

Device	Tape and Reel Information	Package
AFLP5G25641T6	T6 Suffix = 5,000 Units, 12 mm Tape Width, 13-inch Reel	4 mm × 3 mm Module

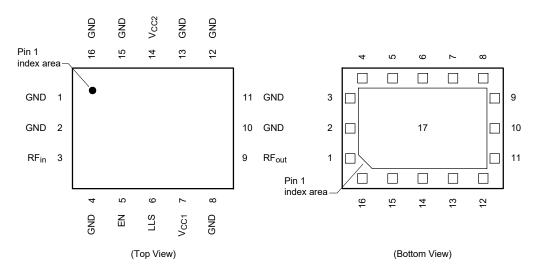


Figure 2. Pin Connections

Table 6. Functional Pin Description

Pin Number	Pin Function	Pin Description
1, 2, 4, 8, 10, 11, 12, 13, 15, 16, 17	GND	Ground
3	RF _{in}	RF Input
5	EN	Bias Enable/Disable
6	LLS	Logic Level Select
7	V _{CC1}	Power Supply for Controller
9	RF _{out}	RF Output
14	V _{CC2}	Power Supply for the RF Pre-driver

Note: LLS = 0 V, EN logic: VIL = -0.3 V to +0.4 V, VIH = +1.3 V to +2.5 V. LLS = 1.8 V, EN logic: VIL and VIH per JEDEC Standard No. 8-7A, Normal Range, EN Logic: VIL = -0.3 V to +0.683 V, VIH = +1.073 V to +2.25 V.

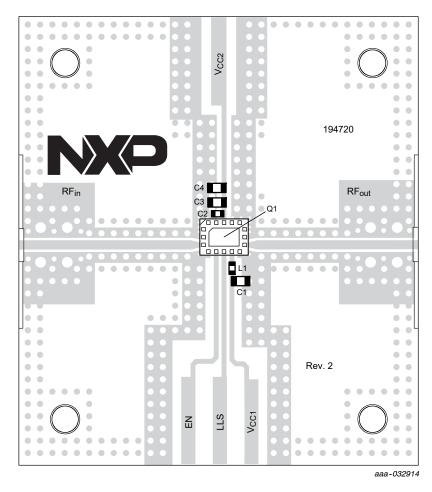
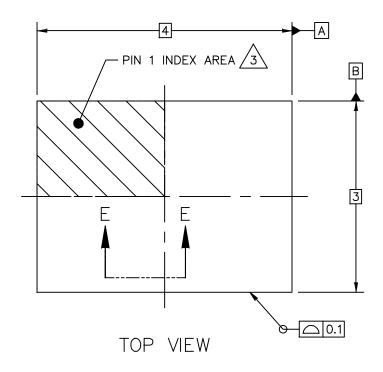
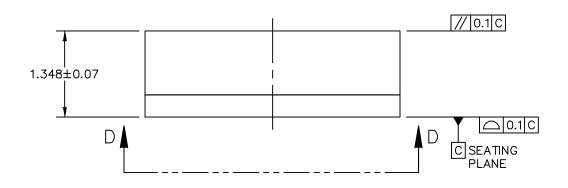


Figure 3. AFLP5G25641 Application Circuit Component Layout

Table 7. AFLP5G25641 Application Circuit Designations and Values

Part	Description	Part Number	Manufacturer
C1, C3	1 μF Chip Capacitor	GRM188R61A105KE15	Murata
C2	2.2 μF Chip Capacitor	GRM155R60J225KE95	Murata
C4	2.2 μF Chip Capacitor	GRM188R61A225KE34	Murata
L1	16 nH Chip Inductor	0402CS-16NXGLU	Coilcraft
Q1	Pre-driver Module	AFLP5G25641	NXP
РСВ	Rogers RO4350B, 0.020", ϵ_{r} = 3.66	194720	MTL

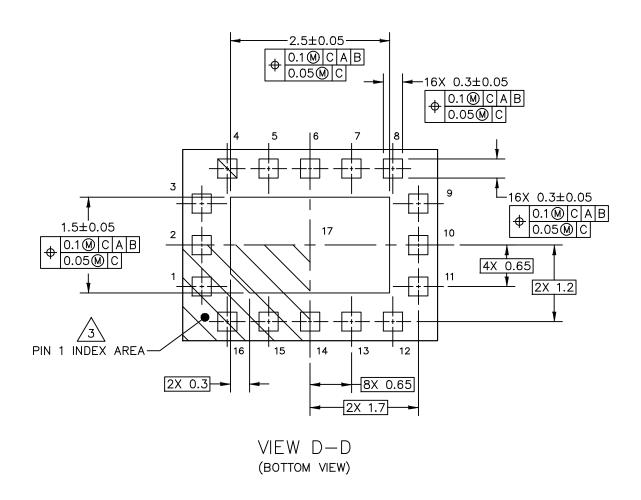

NOTE: Correct Biasing Sequence

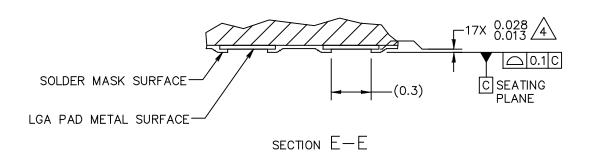

Turning the device ON

- 1. Set V_{CC1} to 3.3 V, V_{CC2} to 5 V
- 2. Turn on EN to 1.8 V
- 3. Apply RF input power to desired level

Turning the device OFF

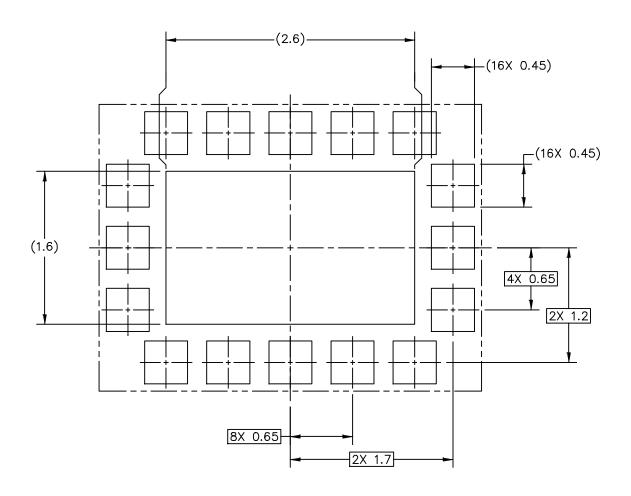
- 1. Turn RF power off
- 2. Turn off EN to 0 V
- 3. Turn off V_{CC1} and V_{CC2}





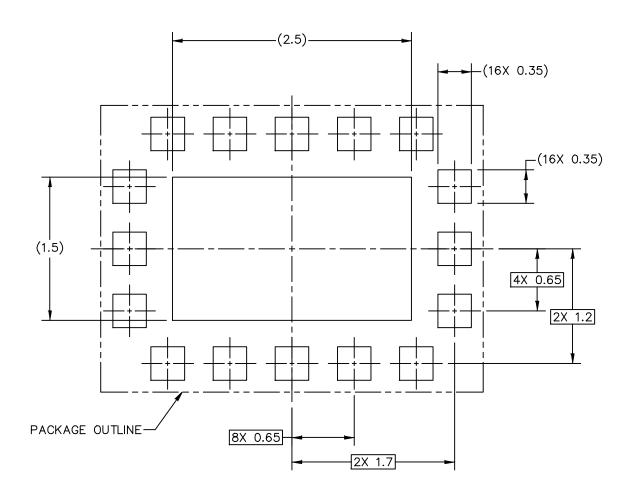
RELEASED FOR EXTERNAL ASSEMBLY ONLY. THIS DESIGN ONLY MEETS EXTERNAL DESIGN AND ASSEMBLY RULES. MUST BE REVIEWED AND UPDATED BEFORE BEING ASSEMBLED INTERNALLY.

© NXP B.V.	ALL RIGHTS RESERVED		DATE: 1	18 FEB 2019
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01096D	0	1 OF 6


AFLP5G25641

RELEASED FOR EXTERNAL ASSEMBLY ONLY. THIS DESIGN ONLY MEETS EXTERNAL DESIGN AND ASSEMBLY RULES. MUST BE REVIEWED AND UPDATED BEFORE BEING ASSEMBLED INTERNALLY.

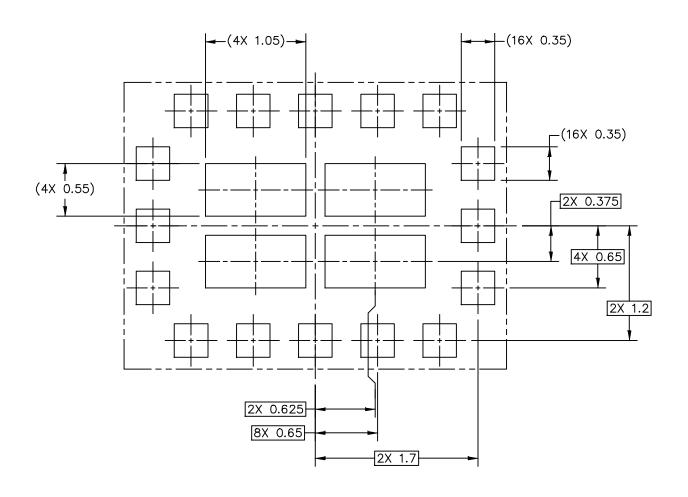
NXP B.V.	ALL RIGHTS RESERVED		DATE: 1	8 FEB 2019
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01096D	0	2



PCB DESIGN GUIDELINES - SOLDER MASK OPENING PATTERN

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

C NXP B.V.	ALL RIGHTS RESERVED		DATE: 1	8 FEB 2019
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01096D	0	3


AFLP5G25641

PCB DESIGN GUIDELINES - I/O PADS AND SOLDERABLE AREAS

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

C NXP B.V.	ALL RIGHTS RESERVED		DATE: 1	18 FEB 2019
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01096D	0	4

RECOMMENDED STENCIL THICKNESS 0.125

PCB DESIGN GUIDELINES - SOLDER PASTE STENCIL

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

NXP B.V.	ALL RIGHTS RESERVED		DATE: 1	18 FEB 2019
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01096D	0	5

AFLP5G25641

SOT1934-1

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

3. PIN

PIN 1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.

DIMENSION APPLIES TO ALL LEADS AND FLAG.

© NXP B.V. ALL RIGHTS RESERVED

DATE: 18 FEB 2019

MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01096D	0	6

PRODUCT TOOLS

Refer to the following resource to aid your design process.

Development Tools

• Printed Circuit Boards

FAILURE ANALYSIS

At this time, because of the physical characteristics of the part, failure analysis is limited to electrical signature analysis. In cases where NXP is contractually obligated to perform failure analysis (FA) services, full FA may be performed by third party vendors with moderate success. For updates contact your local NXP Sales Office.

REVISION HISTORY

The following table summarizes revisions to this document.

ı	Revision	Date	Description
	0	Oct. 2019	Initial release of data sheet

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

© 2019 NXP B.V.

Document Number: AFLP5G25641 Rev. 0, 10/2019