
APPENDIX E
SIMPLIFIED MNEMONICS

This appendix is provided in order to simplify writing and comprehending assembly
language programs. Included are a set of simplified mnemonics and symbols that
define the simple shorthand used for the most frequently used forms of branch con-
ditional, compare, trap, rotate and shift, and certain other instructions.

E.1 Symbols

The symbols in Table E-1 are defined for use in instructions (basic or simplified
mnemonics) that specify a condition register (CR) field or a bit in the CR.

The simplified mnemonics in E.5 Simplified Mnemonics for Branch Instructions
and E.6 Simplified Mnemonics for Condition Register Logical Instructions re-
quire identification of a CR bit. If one of the CR field symbols is used, it must be
multiplied by four and added to a symbol or value (zero to three) representing the
bit number within the CR field.

The simplified mnemonics in E.5.3 Branch Mnemonics Incorporating Condi-

Table E-1 Condition Register CR Field Bit Symbols

Symbol Value Bit Field
Range

Description

lt 0 — Less than. Identifies a bit number within a CR field.

gt 1 — Greater than. Identifies a bit number within a CR field.

eq 2 — Equal. Identifies a bit number within a CR field.

so 3 — Summary overflow. Identifies a bit number within a CR field.

un 3 — Unordered (after floating-point comparison). Identifies a bit number
within a CR field.

cr0 0 0:3 CR0 field.

cr1 1 4:7 CR1 field.

cr2 2 8:11 CR2 field.

cr3 3 12:15 CR3 field.

cr4 4 16:19 CR4 field.

cr5 5 20:23 CR5 field.

cr6 6 24:27 CR6 field.

cr7 7 28:31 CR7 field.
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-1

tions and E.3 Simplified Mnemonics for Compare Instructions require identifi-
cation of a CR field. If one of the CR field symbols is used, it must not be multiplied
by four. Refer to each of these sections for examples that use the symbols in Table
E-1.

E.2 Simplified Mnemonics for Subtract Instructions

This section discusses simplified mnemonics for the subtract instructions.

E.2.1 Subtract Immediate

Although there is not a “subtract immediate” instruction, its effect can be achieved
by using an addi instruction with the immediate operand negated. Simplified mne-
monics are provided that include this negation, making the intent of the computa-
tion clearer. In these examples, the immediate operand “value” is subtracted from
the value in rA and the result placed in rD.

subi rD,rA,value (equivalent to addi rD,rA,-value)

subis rD,rA,value (equivalent to addis rD,rA,-value)

subic rD,rA,value (equivalent to addic rD,rA,-value)

subic. rD,rA,value (equivalent to addic. rD,rA,-value)

E.2.2 Subtract

The “subtract-from” instructions subtract the second operand (rA) from the third
(rB). Simplified mnemonics are provided in which the third operand is subtracted
from the second. Both these mnemonics can be coded with a final ‘o’ or ‘.’ (or both)
to cause the OE or Rc bit, respectively, to be set in the underlying instruction. In
these examples, the value in rB is subtracted from the value in rA and the result
placed in rD.

sub rD,rA,rB (equivalent to subf rD,rB,rA)

subc rD,rA,rB (equivalent to subfc rD,rB,rA)

E.3 Simplified Mnemonics for Compare Instructions

The instructions listed in Table 4-3 are simplified mnemonics that provide compare
word capability for 32-bit operands. These instructions correctly clear the L value
in the instruction (specifying a 32-bit operand; refer to 4.3.2 Integer Compare In-
structions) rather than requiring it to be coded as a numeric operand.

The crfD field can be omitted if the result of the comparison is to be placed into the
CR0 field. Otherwise, the target CR field must be specified as the first operand. The
CR field symbols defined in E.1 Symbols can be used to identify the condition reg-
ister field.
 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-2 Revised 1 February 1999 REFERENCE MANUAL

CAUTION

If the crfD field is omitted from a compare mnemonic, the L field must
also be omitted. That is, when the assembler encounters a compare
instruction with three operands, it interprets the first operand to be
the crfD field.

The following examples demonstrate the use of the word compare mnemonics:

11.Compare 32 bits in register rA with immediate value 100 and place result in
condition register field CR0.

cmpwi rA,100 (equivalent to cmpi 0,0,rA,100)

12.Same as (1), but place results in condition register field CR4.

cmpwi cr4,rA,100 (equivalent to cmpi 4,0,rA,100)

13.Compare registers rA and rB as logical 32-bit quantities and place result in
condition register field CR0.

cmplw rA,rB (equivalent to cmpl 0,0,rA,rB)

14.Same as (3), but place result in condition register field CR4.

cmplw cr4,rA,rB (equivalent to cmpl 4,0,rA,rB)

E.4 Simplified Mnemonics for Rotate and Shift Instructions

The rotate and shift instructions provide powerful and general ways to manipulate
register contents but can be difficult to understand. Simplified mnemonics, which
allow some of the simpler operations to be coded easily, are provided for the fol-
lowing types of operations:

• Extract — Select a field of n bits starting at bit position b in the source register;
left or right justify this field in the target register; clear all other bits of the target
register.

• Insert — Select a left-justified or right-justified field of n bits in the source reg-

Table E-2 Word Compare Simplified Mnemonics

Operation Simplified Mnemonic Equivalent to:

Compare Word Immediate cmpwi crfD,rA,SIMM
cmpi crfD,rA,SIMM

cmpi crfD,0,rA,SIMM

Compare Word cmpw crfD,rA,rB
cmp crfD,rA,rB

cmp crfD,0,rA,rB

Compare Logical Word
Immediate

cmplwi crfD,rA,UIMM
cmpli crfD,rA,UIMM

cmpli crfD,0,rA,UIMM

Compare Logical Word cmplw crfD,rA,rB
cmpl crfD,rA,rB

cmpl crfD,0,rA,rB
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-3

ister; insert this field starting at bit position b of the target register; leave other
bits of the target register unchanged. (No simplified mnemonic is provided for
insertion of a left-justified field when operating on double words, because
such an insertion requires more than one instruction.)

• Rotate — Rotate the contents of a register right or left n bits without masking.
• Shift — Shift the contents of a register right or left n bits, clearing vacated bits

(logical shift).
• Clear — Clear the leftmost or rightmost n bits of a register.
• Clear left and shift left — Clear the leftmost b bits of a register, then shift the

register left by n bits. This operation can be used to scale a (known non-neg-
ative) array index by the width of an element.

The word rotate and shift operations shown in Table E-3 are available in all imple-
mentations. All these mnemonics can be coded with a final ‘.’ to cause the Rc bit
to be set in the underlying instruction.

The following examples illustrate the use of these mnemonics.

1. Extract the sign bit (bit 32) of rS and place the result right-justified into rA.

extrwi rA,rS,1,0 (equivalent to: rlwinm rA,rS,1,31,31)

2. Insert the bit extracted in (1) into the sign bit (bit 32) of rB.

insrwi rB,rA,1,0 (equivalent to: rlwimi rB,rA,31,0,0

3. Shift the contents of rA left 8 bits, clearing the high-order 32 bits.

slwi rA,rA,8 (equivalent to: rlwinm rA,rA,8,0,23

E.5 Simplified Mnemonics for Branch Instructions

Mnemonics are provided so that branch conditional instructions can be coded with
the condition as part of the instruction mnemonic rather than as a numeric operand.
The mnemonics discussed in this section are variations of the branch conditional
instructions.

Table E-3 Word Rotate and Shift Instructions

Operation Simplified Mnemonic Equivalent to

Extract and left justify immediate extlwi rA,rS,n,b (n > 0) rlwinm rA,rS,b,0,n-1

Extract and right justify immediate extrwi rA,rS,n,b (n > 0) rlwinm rA,rS,b + n, 32 – n, 31

Insert from left immediate inslwi rA,rS,n,b rlwimi rA,rS,32-b,b,b+n-1

Insert from right immediate insrwi rA,rS,n,b rlwimi rA,rS,32- (b + n),b,b+n-1

Rotate left immediate rotlwi rA,rS,n rlwinm rA,rS,n,0,31

Rotate right immediate rotrwi rA,rS,n rlwinm rA,rS,32 – n,0,31

Rotate left rotlw rA,rS,rB rlwnm rA,rS,rB,0,31

Shift left immediate srwi rA,rS,n (n < 32) rlwinm rA,rS,n,0,31–n

Shift right immediate srwi rA,rS,n (n < 32) rlwinm rA,rS,32-n,n,31

Clear left immediate clrlwi rA,rS,n (n<32) rlwinm rA,rS,0,n,31

Clear right immediate clrrwi rA,rS,n (n<32) rlwinm rA,rS,0,0,31-n

Clear left and shift left immediate clrlslwi rA,rS,b,n (n ð b ð 31) rlwinm rA,rS,n,b-n,31-n
 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-4 Revised 1 February 1999 REFERENCE MANUAL

E.5.1 BO and BI Fields

The 5-bit BO field in branch conditional instructions encodes the following opera-
tions:

• Decrement count register (CTR)
• Test CTR equal to zero
• Test CTR not equal to zero
• Test condition true
• Test condition false
• Branch prediction (taken, fall through)

The 5-bit BI field in branch conditional instructions specifies which of the 32 bits in
the CR represents the condition to test.

To provide a simplified mnemonic for every possible combination of BO and BI
fields would require 210 = 1024 mnemonics, most of which would be only margin-
ally useful. The abbreviated set found in E.5.2 Basic Branch Mnemonics is in-
tended to cover the most useful cases. Unusual cases can be coded using a basic
branch conditional mnemonic (bc, bclr, bcctr) with the condition to be tested spec-
ified as a numeric operand.

E.5.2 Basic Branch Mnemonics

Table E-5 provides the simplified mnemonics for the most commonly performed
conditional branches. These mnemonics allow all the BO operand encodings
shown in Table E-4 to be specified as part of the mnemonic, along with the abso-
lute address (AA) and set link register (LK) bits. (The y bit in the BO operand is al-
ways cleared in these simplified mnemonics.)

Table E-4 BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR ¦ 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is
FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR ¦ 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR ¦ 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

The z indicates a bit that must be zero; otherwise, the instruction form is invalid.

The y bit provides a hint about whether a conditional branch is likely to be taken.
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-5

Notice that there are no simplified mnemonics for relative and absolute uncondi-
tional branches. For these, the basic mnemonics b, ba, bl, and bla are used.

Table E-6 provides the operands for the simplified mnemonics in Table E-5, as
well as the operands of the corresponding basic branch instruction.

Table E-5 Simplified Branch Mnemonics

LK Bit Not Set (LR Update Not
Enabled)

LK Bit Set (LR Update Enabled)

Branch Semantics bc
Relative

bca
Absolute

bclr to
LR

bcctr
to
CTR

bcl
Relative

bcla
Absolute

bclrl to
LR

bcctrl
to CTR

Branch unconditionally b1

NOTES:
1. These are basic mnemonics, not simplified mnemonics.

ba1 blr bctr bl1 bla1 blrl bctrl

Branch if condition
true2

2. Refer to Table E-7 for an expanded set of simplified mnemonics for “branch if condition true” and “branch if con-
dition false.” This expanded set of simplified mnemonics incorporates the condition being tested as part of the
mnemonic.

bt bta btlr btctr btl btla btlrl btctrl

Branch if condition
false2

bf bfa bflr bfctr bfl bfla bflrl bfctrl

Decrement CTR,
branch if CTR non-zero

bdnz bdnza bdnzlr — bdnzl bdnzla bdnzlrl —

Decrement CTR,
branch if CTR non-zero
AND condition true

bdnzt bdnzta bdnztlr — bdnztl bdnztla bdnztlrl —

Decrement CTR,
branch if CTR non-zero
AND condition false

bdnzf bdnzfa bdnzflr — bdnzfl bdnzfla bdnzflrl —

Decrement CTR,
branch if CTR zero

bdz bdza bdzlr — bdzl bdzla bdzlrl —

Decrement CTR,
branch if CTR zero
AND condition true

bdzt bdzta bdztlr — bdztl bdztla bdztlrl —

Decrement CTR,
branch if CTR zero
AND condition false

bdzf bdzfa bdzflr — bdzfl bdzfla bdzflrl —
 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-6 Revised 1 February 1999 REFERENCE MANUAL

Table E-6 Operands for Simplified Branch Mnemonics

Branch Type Simplified Mnemonic Equivalent to:

Mnemonic Operands Mnemonic Operands

Branch unconditionally blr None bclr 20,0

bctr None bcctr 20,0

blrl None bclrl 20,0

bctrl None bcctrl 20,0

Branch if true bt BI,target bc 12,BI,target

bta BI,target bca 12,BI,target

btlr BI bclr 12,BI

btctr BI bcctr 12,BI

btl BI,target bcl 12,BI,target

btla BI,target bcla 12,BI,target

btlrl BI bclrl 12,BI

btctrl BI bcctrl 12,BI

Branch if false bf BI,target bc 4,BI,target

bfa BI,target bca 4,BI,target

bflr BI bclr 4,BI

bfctr BI bcctr 4,BI

bfl BI,target bcl 4,BI,target

bfla BI,target bcla 4,BI,target

bflrl BI bclrl 4,BI

bfctrl BI bcctrl 4,BI

Decrement CTR, branch if
CTR non-zero

bdnz target bc 16,0,target

bdnza target bca 16,0,target

bdnzlr None bclr 16,0

bdnzl target bcl 16,0,target

bdnzla target bcla 16,0,target

bdnzlrl None bclrl 16,0

Decrement CTR, branch if
CTR non-zero AND
condition true

bdnzt BI,target bc 8,BI,target

bdnzta BI,target bca 8,BI,target

bdnztlr BI bclr 8,BI

bdnztl BI,target bcl 8,BI,target

bdnztla BI,target bcla 8,BI,target

bdnztlrl BI bclrl 8,BI

Decrement CTR, branch if
CTR non-zero AND
condition false

bdnzf BI,target bc 0,BI,target

bdnzfa BI,target bca 0,BI,target

bdnzflr BI bclr 0,BI

bdnzfl BI,target bcl 0,BI,target

bdnzfla BI,target bcla 0,BI,target

bdnzflrl BI bclrl 0,BI
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-7

Instructions using a mnemonic from Table E-5 that test a condition specify the con-
dition (bit in the condition register) as the first (BI) operand of the instruction. The
symbols defined in E.1 Symbols can be used in this operand. If one of the CR field
symbols is used, it must be multiplied by four and added to a symbol or value (zero
to three) representing the bit number within the CR field.

The simplified mnemonics found in Table E-5 are illustrated in the following exam-
ples:

1. Decrement CTR and branch if it is still non-zero (closure of a loop controlled
by a count loaded into CTR).

bdnz target (equivalent to bc 16,0, target)

2. Same as (1) but branch only if CTR is non-zero and condition in CR0 is
“equal.”

bdnzt eq, target (equivalent to bc 8,2,target)

3. Same as (2), but “equal” condition is in CR5.

bdnzt 4 * cr5+eq,target (equivalent to bc 8,22,target)

4. Branch if bit 27 of CR is false.

bf 27,target (equivalent to bc 4,27,target)

5. Same as (4), but set the link register. This is a form of conditional “call.”

bfl 27,target (equivalent to bcl 4,27,target)

Decrement CTR, branch if
CTR zero

bdz target bc 18,0,target

bdza target bca 18,0,target

bdzlr None bclr 18,0

bdzl target bcl 18,0,target

bdzla target bcla 18,0,target

bdzlrl None bclrl 18,0

Decrement CTR, branch if
CTR zero AND condition
true

bdzt BI,target bc 10,BI,target

bdzta BI,target bca 10,BI,target

bdztlr BI bclr 10,BI

bdztl BI,target bcl 10,BI,target

bdztla BI,target bcla 10,BI,target

bdztlrl BI bclrl 10,BI

Decrement CTR, branch if
CTR zero AND condition
false

bdzf BI,target bc 2,BI,target

bdzfa BI,target bca 2,BI,target

bdzflr BI bclr 2,BI

bdzfl BI,target bcl 2,BI,target

bdzfla BI,target bcla 2,BI,target

bdzflrl BI bclrl 2,BI

Table E-6 Operands for Simplified Branch Mnemonics (Continued)

Branch Type Simplified Mnemonic Equivalent to:

Mnemonic Operands Mnemonic Operands
 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-8 Revised 1 February 1999 REFERENCE MANUAL

E.5.3 Branch Mnemonics Incorporating Conditions

The mnemonics defined in Table E-7 are variations of the “branch if condition true”
and “branch if condition false” BO encodings, with the most common values of the
BI operand represented in the mnemonic rather than specified as a numeric oper-
and.

Table E-8 shows the operands used with the simplified branch mnemonics in Ta-
ble E-7. The examples provided are for the first column of Table E-7 (simplified
forms of the bc instruction), but all entries within a row in Table E-7 use the same
operands (except that branches to the LR or CTR do not require a “target” oper-
and). Table E-8 also indicates the operands used with the corresponding basic
branch mnemonic.

Table E-7 Simplified Branch Mnemonics with Comparison Conditions

LK Bit Not Set (LR Update Not Enabled) LK Bit Set (LR Update Enabled)

Branch Semantics bc
Relative

bca
Absolute

bclr to
LR

bcctr
to CTR

bcl
Relative

bcla
Absolute

bclrl to
LR

bcctrl
to CTR

Branch if less than blt blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or equal ble blea blelr blectr blel blela blelrl blectrl

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than bge bgea bgelr bgectr bgel bgela bgelrl bgectrl

Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl

Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if not greater than bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if summary
overflow

bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

Branch if not summary
overflow

bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

Branch if unordered bun buna bunlr bunctr bunl bunla bunlrl bunctrl

Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl

Table E-8 Operands for Simplified Branch
Mnemonics with Comparison Conditions

Branch Simplified Mnemonics
Example

Equivalent to

Branch if less than blt crfD,target bc 12,4*crfD,target

Branch if less than or equal ble crfD,target bc 4,4*crfD+1,target

Branch if equal beq crfD,target bc 12, 4*crfD+2,target

Branch if greater than bgt crfD,target bc 12,4*crfD+1,target
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-9

Instructions using the mnemonics in Table E-7 specify the condition register field
in an optional first operand. If the CR field being tested is CR0, this operand need
not be specified. Otherwise, one of the CR field symbols defined in E.1 Symbols
can be used for this operand.

If one of the CR field symbols is used, it must not be multiplied by four. The bit num-
ber within the CR field is part of the simplified mnemonic. The CR field is identified,
and the assembler does the multiplication and addition required to produce a CR
bit number for the BI field of the underlying basic mnemonic.)

The simplified mnemonics found in Table E-7 are used in the following examples:

1. Branch if CR0 reflects condition “not equal.”

bne target equivalent to bc 4,2,target)

2. Same as (1), but condition is in CR3.

bne cr3,target equivalent to bc 4,14,target)

3. Branch to an absolute target if CR4 specifies “greater than,” setting the link
register. This is a form of conditional “call”, as the return address is saved in
the link register.

bgtla cr4,target (equivalent to bcla 12,17,target)

4. Same as (3), but target address is in the count register.

bgtctrl cr4 (equivalent to bcctrl 12,17)

E.5.4 Branch Prediction

In branch conditional instructions that are not always taken, the low-order bit (y bit)

Branch if greater than or
equal

bge crfD,target bc 4,4*crfD,target

Branch if not less than bnl crfD,target bc 4,4*crfD,target1

Branch if not equal bne crfD,target bc 4,4*crfD+2,target

Branch if not greater than bng crfD,target bc 4,4*crfD+1,target2

Branch if summary
overflow

bso crfD,target bc 12,4*crfD+3,target

Branch if not summary
overflow

bns crfD,target bc 4,4*crfD+3,target

Branch if unordered bun crfD,target bc 12,4*crfD+3,target

Branch if not unordered bnu crfD,target bc 4,4*crfD+3,target

NOTES:
1. Same as “branch if greater than or equal.”
2. Same as “branch if less than or equal.”

Table E-8 Operands for Simplified Branch
Mnemonics with Comparison Conditions (Continued)

Branch Simplified Mnemonics
Example

Equivalent to
 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-10 Revised 1 February 1999 REFERENCE MANUAL

of the BO field provides a hint about whether the branch is likely to be taken. See
4.6.2 Conditional Branch Control for more information on the y bit.

Assemblers should clear this bit unless otherwise directed. This default action in-
dicates the following:

• A branch conditional with a negative displacement field is predicted to be tak-
en.

• A branch conditional with a non-negative displacement field is predicted not
to be taken (fall through).

• A branch conditional to an address in the LR or CTR is predicted not to be tak-
en (fall through).

If the likely outcome (branch or fall through) of a given branch conditional instruc-
tion is known, a suffix can be added to the mnemonic that tells the assembler how
to set the y bit. That is, ‘+’ indicates that the branch is to be taken and ‘–’ indicates
that the branch is not to be taken. Such a suffix can be added to any branch con-
ditional mnemonic, either basic or simplified.

For relative and absolute branches (bc[l][a]), the setting of the y bit depends on
whether the displacement field is negative or non-negative. For negative displace-
ment fields, coding the suffix ‘+’ causes the bit to be cleared, and coding the suffix
‘–’ causes it to be set. For non-negative displacement fields, coding the suffix ‘+’
causes the bit to be set, and coding the suffix ‘–’ causes the bit to be cleared.

For branches to an address in the LR or CTR (bcclr[l] or bcctr[l]), coding the suffix
‘+’ causes the y bit to be set, and coding the suffix ‘–’ causes the bit to be cleared.

Examples of branch prediction follow:

1. Branch if CR0 reflects condition “less than,” specifying that the branch
should be predicted to be taken.

blt+ target

2. Same as (1), but target address is in the LR and the branch should be pre-
dicted not to be taken.

bltlr–

E.6 Simplified Mnemonics for Condition Register Logical Instructions

The condition register logical instructions are used to set, clear, copy, or invert a
given condition register bit. The simplified mnemonics shown in Table E-9 allow
these operations to be coded easily.
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-11

The symbols defined in E.1 Symbols can be used to identify the condition register
bit. If one of the CR field symbols is used, it must be multiplied by four and added
to a symbol or value (zero to three) representing the bit number within the CR field.

The following examples illustrate the condition register logical mnemonics:

1. Set CR bit 25.
crset 25 (equivalent to creqv 25,25,25)

2. Clear the SO bit of CR0.
clclr so (equivalent to crxor 3,3,3)

3. Same as (2), but SO bit to be cleared is in CR3.
clclr 4 * cr3 + so (equivalent to crxor 15,15,15)

4. Invert the EQ bit.
crnot eq,eq (equivalent to crnor 2,2,2)

5. Same as (4), but EQ bit to be inverted is in CR4, and the result is to be
placed into the EQ bit of CR5.
crnot 4*cr5+eq,4*cr4+eq (equivalent to crnor 22,18,18)

E.7 Simplified Mnemonics for Trap Instructions

A standard set of codes, shown in Table E-10, has been adopted for the most com-
mon combinations of trap conditions.

Table E-9 Condition Register Logical Mnemonics

Operation Simplified Mnemonic Equivalent to:

Condition register set crset bx creqv bx,bx,bx

Condition register clear crclr bx crxor bx,bx,bx

Condition register move crmove bx,by cror bx,by,by

Condition register NOT crnot bx,by crnor bx,by,by
 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-12 Revised 1 February 1999 REFERENCE MANUAL

The mnemonics defined in Table E-11 are variations of the trap instructions, with
the most useful values of the trap instruction TO operand represented as a mne-
monic rather than specified as a numeric operand.

Table E-10 Trap Mnemonics Encoding

Code Meaning TO Operand
Encoding

< > = <U1

NOTES:
1. The symbol ‘<U’ indicates an unsigned “less than” evaluation will be performed.

>U2

2. The symbol ‘>U’ indicates an unsigned “greater than” evaluation will be performed.

lt Less than 16 1 0 0 0 0

le Less than or equal 20 1 0 1 0 0

eq Equal 4 0 0 1 0 0

ge Greater than or equal 12 0 1 1 0 0

gt Greater than 8 0 1 0 0 0

nl Not less than 12 0 1 1 0 0

ne Not equal 24 1 1 0 0 0

ng Not greater than 20 1 0 1 0 0

llt Logically less than 2 0 0 0 1 0

lle Logically less than or equal 6 0 0 1 1 0

lge Logically greater than or equal 5 0 0 1 0 1

lgt Logically greater than 1 0 0 0 0 1

lnl Logically not less than 5 0 0 1 0 1

lng Logically not greater than 6 0 0 1 1 0

(none) Unconditional 31 1 1 1 1 1
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-13

The following examples illustrate the use of simplified mnemonics for trap instruc-
tions:

1. Trap if Rx, considered as a 32-bit quantity, is logically greater than 0x7FF.

twlg rA, 0x7FF (equivalent to twi 1,rA, 0x7FF)

2. Trap unconditionally.

trap (equivalent to tw 31,0,0)

Trap instructions evaluate a trap condition as follows: the contents of register rA
are compared with either the sign-extended SIMM field or the contents of register
rB, depending on the trap instruction.

The comparison results in five conditions which are ANDed with operand TO. If the
result is not zero, the trap exception handler is invoked. See Table E-12 for these
conditions.

Table E-11 Trap Mnemonics

32-Bit Comparison

Trap Semantics twi Immediate tw Register

Trap unconditionally — trap

Trap if less than twlti twlt

Trap if less than or equal twlei twle

Trap if equal tweqi tweq

Trap if greater than or equal twgei twge

Trap if greater than twgti twgt

Trap if not less than twnli twnl

Trap if not equal twnei twne

Trap if logically less than twllti twllt

Trap if logically less than or equal twllei twlle

Trap if logically greater than or equal twllgi twllg

Trap if logically greater than twllgi twllg

Trap if logically not less than twlnli twlnl
 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-14 Revised 1 February 1999 REFERENCE MANUAL

E.8 Simplified Mnemonics for Special-Purpose Registers

The mtspr and mfspr instructions specify an SPR as a numeric operand. Simpli-
fied mnemonics are provided that represent the SPR in the mnemonic rather than
requiring it to be coded as an operand. Table E-13 below specifies the simplified
mnemonics provided for SPR operations.

Table E-12 TO Operand Bit Encoding

TO Bit ANDed with Condition

0 Less than, using signed comparison

1 Greater than, using signed comparison

2 Equal

3 Less than, using unsigned comparison

4 Greater than, using unsigned comparison

Table E-13 SPR Simplified Mnemonics

Special Purpose
Register

Move to SPR
Simplified
Mnemonic

Move to SPR
Instruction

Move from SPR
Simplified
Mnemonic

Move from SPR
Instruction1

NOTES:
1. Except for mftb and mftbu

Integer unit exception
register

mtxer rS mtspr 1,rS mfxer rD mfspr rD,1

Link register mtlr rS mtspr 8,rS mflr rD mfspr rD,8

Count register mtctr rS mtspr 9,rS mfctr rD mfspr rD,9

DAE/source instruction
service register

mtdsisr rS mtspr 18,rS mfdsisr rD mfspr rD,18

Data address register mtdar rS mtspr 19,rS mfdar rD mfspr rD,19

Decrementer mtdec rS mtspr 22,rS mfdec rD mfspr rD,22

Status save/restore
register 0

mtsrr0 rS mtspr 26,rS mfsrr0 rD mfspr rD,26

Status save/restore
register 1

mtsrr1 rS mtspr 27,rS mfsrr1 rD mfspr rD,27

General special
purpose registers G0
through G3

mtsprg n,rS mtspr 272+n,rS mfsprg rD,n mfspr rD,272+n

Time base (lower) mttbl rS mtspr 284,rS mftb rD mftb rD,268

Time base (upper) mttbu rS mtspr 285,rS mftbu rD mftb rD,269

Processor version
register

— — mfpvr rD mfspr rD,287
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-15

The following examples illustrate the use of SPR simplified mnemonics.

1. Copy the contents of the low-order 32 bits of rS to the XER.

mtxer rS (equivalent to mtspr 1,rS)

2. Copy the contents of the LR to rS.

mflr rS (equivalent to mfspr rS,8)

3. Copy the contents of rS to the CTR.

mtctr rS (equivalent to mtspr 9,rS)

E.9 Recommended Simplified Mnemonics

This section describes some of the most commonly-used operations: no-op, load
immediate, load address, move register, complement register, and move to condi-
tion register.

E.9.1 No-Op

Many PowerPC instructions can be coded in a way such that, effectively, no oper-
ation is performed. An additional mnemonic is provided for the preferred form of no-
op.

nop (equivalent to ori 0,0,0)

E.9.2 Load Immediate

The addi and addis instructions can be used to load an immediate value into a reg-
ister. Additional mnemonics are provided to convey the idea that no addition is be-
ing performed but that data is being moved from the immediate operand of the
instruction to a register.

The following instruction loads a 16-bit signed immediate value into rA:

li rA,value (equivalent to addi rA,0,value)

The following instruction loads a 16-bit signed immediate value, shifted left by 16
bits, into rA:

lis rA,value (equivalent to addi rA,0,value)

E.9.3 Load Address

This mnemonic permits computing the value of a base-displacement operand, us-
ing the addi instruction which normally requires a separate register and immediate
operands.

la rD,SIMM(rA) (equivalent to addi rD,rA,SIMM)

The la mnemonic is useful for obtaining the address of a variable specified by
name, allowing the assembler to supply the base register number and compute the
 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-16 Revised 1 February 1999 REFERENCE MANUAL

displacement. If the variable v is located at offset SIMMv bytes from the address in
register rv, and the assembler has been told to use register rv as a base for refer-
ences to the data structure containing v, then the following line causes the address
of v to be loaded into register rD.

la rD,v (equivalent to addi rD,rA,SIMMv)

E.9.4 Move Register

Several PowerPC instructions can be coded to simply copy the contents of one
register to another. An extended mnemonic is provided to move data from one reg-
ister to another with no computational activity.

The following instruction copies the contents of register rS into register rA. This
mnemonic can be coded with a ‘.’ to cause the condition register update option to
be specified in the underlying instruction.

mr rA,rS (equivalent to or rA,rS,rB)

E.9.5 Complement Register

Several PowerPC instructions can be coded to complement the contents of one
register and place the result in another register. A simplified mnemonic is provided
that complements the contents of rS and places the results into register rA. This
mnemonic can be coded with a ‘.’ to cause the condition register update option to
be specified in the underlying instruction.

not rA,rS (equivalent to nor rA,rS,rB)

E.9.6 Move to Condition Register

This mnemonic permits copying the contents of a GPR to the condition register, us-
ing the same style as the mfcr instruction.

mtcr rS (equivalent to mtcrf 0xFF,rS)
RCPU SIMPLIFIED MNEMONICS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 E-17

 MOTOROLA SIMPLIFIED MNEMONICS RCPU

E-18 Revised 1 February 1999 REFERENCE MANUAL

	APPENDIX E SIMPLIFIED MNEMONICS
	E.1 Symbols
	E.2 Simplified Mnemonics for Subtract Instructions
	E.2.1 Subtract Immediate
	E.2.2 Subtract

	E.3 Simplified Mnemonics for Compare Instructions
	E.4 Simplified Mnemonics for Rotate and Shift Instructions
	E.5 Simplified Mnemonics for Branch Instructions
	E.5.1 BO and BI Fields
	E.5.2 Basic Branch Mnemonics
	E.5.3 Branch Mnemonics Incorporating Conditions
	E.5.4 Branch Prediction

	E.6 Simplified Mnemonics for Condition Register Logical Instructions
	E.7 Simplified Mnemonics for Trap Instructions
	E.8 Simplified Mnemonics for Special-Purpose Registers
	E.9 Recommended Simplified Mnemonics
	E.9.1 No-Op
	E.9.2 Load Immediate
	E.9.3 Load Address
	E.9.4 Move Register
	E.9.5 Complement Register
	E.9.6 Move to Condition Register

