
SECTION 4
ADDRESSING MODES AND INSTRUCTION SET SUMMARY

This section describes instructions and address modes supported by the RCPU.
These instructions are divided into the following categories:

• Integer instructions — These include computational and logical instructions.
• Floating-point instructions — These include floating-point computational in-

structions, as well as instructions that affect the floating-point status and con-
trol register.

• Load/store instructions — These include integer and floating-point load and
store instructions.

• Flow control instruction — These include branching instructions, condition
register logical instructions, trap instructions, and other instructions that affect
the instruction flow.

• Processor control instruction — These instructions are used to read from and
write to the condition register (CR), machine state register (MSR), and spe-
cial-purpose registers (SPRs), and to read from the time base register (TBU
or TBL).

• Memory synchronization instructions — These instructions are used for syn-
chronizing memory.

• Memory control instructions — These instructions provide control of the I-
cache.

Notice that this grouping of instructions does not necessarily indicate the execution
unit that processes a particular instruction or group of instructions. This information
is provided in SECTION 9 INSTRUCTION SET.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision and double-precision floating-point oper-
ands. The PowerPC architecture uses instructions that are four bytes long and
word-aligned. It provides for byte, half-word, and word operand fetches and stores
between memory and a set of 32 general-purpose registers (GPRs). It also pro-
vides for word and double-word operand fetches and stores between memory and
a set of 32 floating-point registers (FPRs).

Arithmetic and logical instructions do not modify memory. To use a memory oper-
and in a computation and then modify the same or another memory location, the
memory contents must be loaded into a register, modified, and then written back
to the target location.

4.1 Memory Addressing

A program references memory using the effective (logical) address computed by
the processor when it executes a load, store, branch, or cache instruction, and
when it fetches the next sequential instruction.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-1

4.1.1 Memory Operands

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision and double-precision floating-point oper-
ands. The address of a memory operand is the address of its lowest-numbered
byte. Operand length is implicit for each instruction. The PowerPC architecture
supports both big-endian and little-endian byte ordering. The default byte and bit
ordering is big-endian; see 3.2 Byte Ordering for more information.

The operand of a single-register memory access instruction has a natural align-
ment boundary equal to the operand length. In other words, the “natural” address
of an operand is an integral multiple of the operand length. A memory operand is
said to be aligned if it is aligned at its natural boundary; otherwise it is misaligned.
For a detailed discussion of memory operands, see SECTION 3 OPERAND CON-
VENTIONS.

4.1.2 Addressing Modes and Effective Address Calculation

A program references memory using the effective address (EA) computed by the
processor when it executes a memory access or branch instruction, or when it
fetches the next sequential instruction.

The effective address is the 32-bit address computed by the processor when exe-
cuting a memory access or branch instruction or when fetching the next sequential
instruction. For a memory access instruction, if the sum of the effective address
and the operand length exceeds the maximum effective address, the storage op-
erand is considered to wrap around from the maximum effective address to effec-
tive address 0, as described in the following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit
unsigned binary arithmetic. A carry from bit 0 is ignored.

Load and store operations have three categories of effective address generation:

• Register indirect with immediate index mode. The d operand is added to the
contents of the GPR specified by the rA operand to generate the effective ad-
dress.

• Register indirect with index mode. The contents of the GPR specified by rB
operand are added to the contents of the GPR specified by the rA operand to
generate the effective address.

• Register indirect mode. The contents of the GPR specified by the rA operand
are used as the effective address.

Branch instructions have three categories of effective address generation:

• Immediate addressing. The BD or LI operands are sign extended with the two
low-order bits cleared to zero to generate the branch effective address.

• Link register indirect. The contents of the link register with the two low-order
bits cleared to zero are used as the branch effective address.

• Counter register indirect. The contents of the counter register with the two low-
order bits cleared to zero are used as the branch effective address.

Branch instructions can optionally load the link register with the next sequential in-
struction address (current instruction address + 4).
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-2 Revised 1 February 1999 REFERENCE MANUAL

4.2 Classes of Instructions

PowerPC instructions belong to one of three classes:

• Defined
• Illegal
• Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, an instruc-
tion that is specific to 64-bit implementations is considered defined for 64-bit imple-
mentations but illegal for 32-bit implementations such as the RCPU.

The class is determined by examining the primary opcode and the extended op-
code, if any. If the opcode, or combination of opcode and extended opcode, is not
that of a defined instruction or a reserved instruction, the instruction is illegal.

In future versions of the PowerPC architecture, instruction codings that are now il-
legal may become defined (by being added to the architecture) or reserved (by be-
ing assigned to one of the special purposes). Likewise, reserved instructions may
become defined.

4.2.1 Definition of Boundedly Undefined

The results of executing a given instruction are said to be boundedly undefined if
they could have been achieved by executing an arbitrary sequence of instructions,
starting in the state the machine was in before executing the given instruction.
Boundedly undefined results for a given instruction may vary between implemen-
tations and between execution attempts on the same implementation.

4.2.2 Defined Instruction Class

Defined instructions include all the instructions defined in the PowerPC UISA, VEA,
and OEA. Defined instructions can be required or optional. The RCPU supports the
following defined instructions:

• All 32-bit PowerPC UISA required instructions
• The following PowerPC VEA instructions: eieio, icbi, isync, and mftb
• The following PowerPC OEA instructions: mfmsr, mfspr, mtmsr, mtspr, rfi,

and sc.
• The following optional instruction: stfiwx

A defined instruction may have an instruction form that is invalid if one or more op-
erands, excluding opcodes, are coded incorrectly in a manner that can be deduced
by examining only the instruction encoding (primary and extended opcodes). For
example, an invalid form results when a reserved bit (shown as “0” in the instruction
descriptions in SECTION 9 INSTRUCTION SET) is set to one.

Attempting to execute an invalid form of a defined instruction either invokes the
software emulation instruction error handler or yields boundedly undefined results.
Where not otherwise noted in the individual instruction descriptions in SECTION 9
INSTRUCTION SET for individual instruction descriptions, attempting to execute
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-3

an instruction in which a reserved bit is set to one yields the same result as execut-
ing the instruction with the reserved bit cleared to zero.

Attempting to execute a defined PowerPC instruction, including an optional instruc-
tion, that is not implemented in hardware causes the RCPU to take the implemen-
tation dependent software emulation exception.

NOTE

Other PowerPC implementations invoke the program exception han-
dler in this case. Refer to 6.11.11 Software Emulation Exception
(0x01000) for additional information.

4.2.3 Illegal Instruction Class

Illegal instructions can be grouped into the following categories:

• Instructions that are not implemented in the PowerPC architecture. These op-
codes are available for future extensions of the PowerPC architecture; that is,
future versions of the PowerPC architecture may define any of these instruc-
tions to perform new functions.

• Instructions that are implemented in the PowerPC architecture but are not im-
plemented in a specific PowerPC implementation. For example, instructions
that can be executed on 64-bit PowerPC processors are considered illegal for
32-bit processors.

• All unused extended opcodes are illegal.
• An instruction consisting entirely of zeros is guaranteed to be an illegal instruc-

tion.

An attempt to execute an illegal instruction invokes the software emulation error
handler. Notice that in other PowerPC implementations, the program exception
handler may be invoked in this case.

4.2.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purpos-
es not defined by the PowerPC architecture. Attempting to execute an unimple-
mented reserved instruction causes the RCPU to take the implementation
dependent software emulation exception.

NOTE

Other PowerPC implementations invoke the program exception han-
dler in this case. Refer to 6.11.11 Software Emulation Exception
(0x01000) for additional information.

4.3 Integer Instructions

This section describes the integer instructions. These consist of the following:

• Integer arithmetic instructions
• Integer compare instructions
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-4 Revised 1 February 1999 REFERENCE MANUAL

• Integer rotate and shift instructions
• Integer logical instructions

Integer instructions use the content of the GPRs as source operands and place re-
sults into GPRs, into the integer exception register (XER), and into condition reg-
ister fields.

These instructions treat the source operands as signed integers unless the instruc-
tion is explicitly identified as an unsigned operation or an address conversion.

The integer instructions that update the condition register (i.e., those with a mne-
monic ending in a period) set condition register field CR0 (bits [0:3]) to characterize
the result of the operation. These instructions include those with the Rc bit equal to
one and the addic., andi., and andis. integer logical and arithmetic instructions.
The condition register field CR0 is set as if the result were compared algebraically
to zero.

The following integer arithmetic instructions always set XER[CA] to reflect the carry
out of bit 0: addic, addic., subfic, addc, subfc, adde, subfe, addme, subfme,
addze, and subfze. Integer arithmetic instructions with the overflow enable (OE)
bit set cause XER[SO] and XER[OV] to be set to reflect overflow of the 32-bit result.

Unless otherwise noted, when condition register field CR0 and the XER are affect-
ed, they reflect the value placed in the target register.

The RCPU performs best for aligned load and store operations. See 6.11.4 Align-
ment Exception (0x00600) for scenarios that cause an alignment exception.

4.3.1 Integer Arithmetic Instructions

Table 4-1 lists the integer arithmetic instructions.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-5

Table 4-1 Integer Arithmetic Instructions

Name Mnemonic Operand
Syntax

Operation

Add
Immediate

addi rD,rA,SIMM The sum (rA|0) + SIMM is placed into register rD.

Add
Immediate
Shifted

addis rD,rA,SIMM The sum (rA|0) + (SIMM || 0x0000) is placed into register rD.

Add add
add.
addo
addo.

rD,rA,rB The sum (rA) + (rB) is placed into register rD.

add Add
add. Add with CR Update. The dot suffix enables the update

of the condition register.
addo Add with Overflow Enabled. The o suffix enables the

overflow bit (OV) in the XER.
addo. Add with Overflow and CR Update. The o. suffix enables

the update of the condition register and enables the
overflow bit (OV) in the XER.

Subtract
from

subf
subf.
subfo
subfo.

rD,rA,rB The sum ¬ (rA) + (rB) +1 is placed into rD.

subf Subtract from
subf. Subtract from with CR Update. The dot suffix enables the

update of the condition register.
subfo Subtract from with Overflow Enabled. The o suffix

enables the overflow. The o suffix enables the overflow
bit (OV) in the XER.

subfo. Subtract from with Overflow and CR Update. The o. suffix
enables the update of the condition register and enables
the overflow bit (OV) in the XER.

Add
Immediate
Carrying

addic rD,rA,SIMM The sum (rA) + SIMM is placed into register rD.

Add
Immediate
Carrying
and Record

addic. rD,rA,SIMM The sum (rA) + SIMM is placed into rD. The condition register is
updated.

Subtract
from
Immediate
Carrying

subfic rD,rA,SIMM The sum ¬ (rA) + SIMM + 1 is placed into register rD.

Add
Carrying

addc
addc.
addco
addco.

rD,rA,rB The sum (rA) + (rB) is placed into register rD.

addc Add Carrying
addc. Add Carrying with CR Update. The dot suffix enables the

update of the condition register.
addco Add Carrying with Overflow Enabled. The o suffix

enables the overflow bit (OV) in the XER.
addco. Add Carrying with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables
the overflow bit (OV) in the XER.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-6 Revised 1 February 1999 REFERENCE MANUAL

Subtract
from
Carrying

subfc
subfc.
subfco
subfco.

rD,rA,rB The sum ¬ (rA) + (rB) + 1 is placed into register rD.

subfc Subtract from Carrying
subfc. Subtract from Carrying with CR Update. The dot suffix

enables the update of the condition register.
subfco Subtract from Carrying with Overflow. The o suffix

enables the overflow bit (OV) in the XER.
subfco. Subtract from Carrying with Overflow and CR Updat e.

The o. suffix enables the update of the condition register
and enables the overflow bit (OV) in the XER.

Add
Extended

adde
adde.
addeo
addeo.

rD,rA,rB The sum (rA) + (rB) + XER(CA) is placed into register rD.

adde Add Extended
adde. Add Extended with CR Update. The dot suffix enables the

update of the condition register.
addeo Add Extended with Overflow. The o suffix enables the

overflow bit (OV) in the XER.
addeo. Add Extended with Overflow and CR Update . The o.

suffix enables the update of the condition register and
enables the overflow bit (OV) in the XER.

Subtract
from
Extended

subfe
subfe.
subfeo
subfeo.

rD,rA,rB The sum ¬ (rA) + (rB) + XER(CA) is placed into register rD.

subfe Subtract from Extended
subfe. Subtract from Extended with CR Update. The dot suffix

enables the update of the condition register.
subfeo Subtract from Extended with Overflow. The o suffix

enables the overflow bit (OV) in the XER.
subfeo. Subtract from Extended with Overflow and CR Update.

The o. suffix enables the update of the condition register
and enables the overflow (OV) bit in the XER.

Add to
Minus One
Extended

addme
addme.
addmeo
addmeo.

rD,rA The sum (rA) + XER(CA) + 0xFFFF FFFF is placed into register rD.

addme Add to Minus One Extended
addme. Add to Minus One Extended with CR Update . The dot

suffix enables the update of the condition register.
addmeo Add to Minus One Extended with Overflow. The o suffix

enables the overflow bit (OV) in the XER.
addmeo. Add to Minus One Extended with Overflow and CR

Update. The o. suffix enables the update of the condition
register and enables the overflow (OV) bit in the XER.

Subtract
from Minus
One
Extended

subfme
subfme.
subfmeo
subfmeo.

rD,rA The sum ¬ (rA) + XER(CA) + 0xFFFF FFFF is placed into register rD.

subfme Subtract from Minus One Extended
subfme. Subtract from Minus One Extended with CR Update. The

dot suffix enables the update of the condition register.
subfmeo Subtract from Minus One Extended with Overflow. The

o suffix enables the overflow bit (OV) in the XER.
subfmeo. Subtract from Minus One Extended with Overflow and

CR Update. The o. suffix enables the update of the
condition register and enables the overflow bit (OV) in the
XER.

Table 4-1 Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-7

Add to Zero
Extended

addze
addze.
addzeo
addzeo.

rD,rA The sum (rA) + XER(CA) is placed into register rD.

addze Add to Zero Extended
addze. Add to Zero Extended with CR Update. The dot suffix

enables the update of the condition register.
addzeo Add to Zero Extended with Overflow. The o suffix enables

the overflow bit (OV) in the XER.
addzeo. Add to Zero Extended with Overflow and CR Update .

The o. suffix enables the update of the condition register
and enables the overflow bit (OV) in the XER.

Subtract
from Zero
Extended

subfze
subfze.
subfzeo
subfzeo.

rD,rA The sum ¬ (rA) + XER(CA) is placed into register rD.

subfze Subtract from Zero Extended
subfze. Subtract from Zero Extended with CR Updat e. The dot

suffix enables the update of the condition register.
subfzeo Subtract from Zero Extended with Overflow. The o suffix

enables the overflow bit (OV) in the XER.
subfzeo. Subtract from Zero Extended with Overflow and CR

Update. The o. suffix enables the update of the condition
register and enables the overflow bit (OV) in the XER.

Negate neg
neg.
nego
nego.

rD,rA The sum ¬ (rA) + 1 is placed into register rD.

neg Negate
neg. Negate with CR Update. The dot suffix enables the

update of the condition register.
nego Negate with Overflow. The o suffix enables the overflow

bit (OV) in the XER.
nego. Negate with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables
the overflow bit (OV) in the XER.

Multiply Low
Immediate

mulli rD,rA,SIMM The low-order 32 bits of the 48-bit product (rA) ∗ SIMM are placed into
register rD. The low-order 32 bits of the product are the correct 32-bit
product. The low-order bits are independent of whether the operands
are treated as signed or unsigned integers. However, XER[OV] is set
based on the result interpreted as a signed integer.

The high-order bits are lost. This instruction can be used with mulhwx
to calculate a full 64-bit product.

Table 4-1 Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-8 Revised 1 February 1999 REFERENCE MANUAL

Multiply Low mullw
mullw.
mullwo
mullwo.

rD,rA,rB The low-order 32 bits of the 64-bit product (rA) ∗ (rB) are placed into
register rD. The low-order 32 bits of the product are the correct 32-bit
product. The low-order bits are independent of whether the operands
are treated as signed or unsigned integers. However, XER[OV] is set
based on the result interpreted as a signed integer.

The high-order bits are lost. This instruction can be used with mulhwx
to calculate a full 64-bit product. Some implementations may execute
faster if rB contains the operand having the smaller absolute value.

mullw Multiply Low
mullw. Multiply Low with CR Update. The dot suffix enables the

update of the condition register.
mullwo Multiply Low with Overflow. The o suffix enables the

overflow bit (OV) in the XER.
mullwo. Multiply Low with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables
the overflow bit (OV) in the XER.

Multiply
High Word

mulhw
mulhw.

rD,rA,rB The contents of rA and rB are interpreted as 32-bit signed integers.
The 64-bit product is formed. The high-order 32 bits of the 64-bit
product are placed into rD.

Both operands and the product are interpreted as signed integers.

This instruction may execute faster if rB contains the operand having
the smaller absolute value.

mulhw Multiply High Word
mulhw. Multiply High Word with CR Update. The dot suffix

enables the update of the condition register.

Multiply
High Word
Unsigned

mulhwu
mulhwu.

rD,rA,rB The contents of rA and of rB are extracted and interpreted as 32-bit
unsigned integers. The 64-bit product is formed. The high-order 32 bits
of the 64-bit product are placed into rD.

Both operands and the product are interpreted as unsigned integers.

This instruction may execute faster if rB contains the operand having
the smaller absolute value.

mulhwu Multiply High Word Unsigned
mulhwu. Multiply High Word Unsigned with CR Update. The dot

suffix enables the update of the condition register.

Table 4-1 Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-9

Divide Word divw
divw.
divwo
divwo.

rD,rA,rB The dividend is the signed value of (rA). The divisor is the signed value
of (rB). The 64-bit quotient is formed. The low-order 32 bits of the 64-
bit quotient are placed into rD. The remainder is not supplied as a
result.

Both operands are interpreted as signed integers. The quotient is the
unique signed integer that satisfies the following:

dividend = (quotient times divisor) + r
where 0 ð r < |divisor| if the dividend is non-negative, and
–|divisor| < r ð 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

0x8000 0000 / –1

or

<anything> / 0

the contents of register rD are undefined, as are the contents of the
LT, GT, and EQ bits of the condition register field CR0 if the instruction
has condition register updating enabled. In these cases, if instruction
overflow is enabled, then XER[OV] is set.

The 32-bit signed remainder of dividing (rA) by (rB) can be computed
as follows, except in the case that (rA) = –231 and (rB) = –1:

divw rD,rA,rB rD = quotient
mull rD,rD,rB rD = quotient∗divisor
subf rD,rD,rA rD = remainder

divw Divide Word
divw. Divide Word with CR Update. The dot suffix enables the

update of the condition register.
divwo Divide Word with Overflow. The o suffix enables the

overflow bit (OV) in the XER.
divwo. Divide Word with Overflow and CR Update. The o. suffix

enables the update of the condition register and enables
the overflow bit (OV) in the XER.

Table 4-1 Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-10 Revised 1 February 1999 REFERENCE MANUAL

See E.2 Simplified Mnemonics for Subtract Instructions for information on sim-
plified mnemonics.

4.3.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of
register rA with either the UIMM operand, the SIMM operand or the contents of reg-
ister rB. Algebraic comparison compares two signed integers. Logical comparison
compares two unsigned numbers. Table 4-2 summarizes the RCPU integer com-
pare instructions.

Divide Word
Unsigned

divwu
divwu.
divwuo
divwuo.

rD,rA,rB The dividend is the value of (rA). The divisor is the value of (rB). The
32-bit quotient is placed into rD. The remainder is not supplied as a
result.

Both operands are interpreted as unsigned integers. The quotient is
the unique unsigned integer that satisfies the following:

dividend = (quotient times divisor) + r

where 0 ð r < divisor.

If an attempt is made to perform the division

<anything> / 0

the contents of register rD are undefined, as are the contents of the
LT, GT, and EQ bits of the condition register field CR0 if the instruction
has the condition register updating enabled. In these cases, if
instruction overflow is enabled, then XER[OV] is set.

The 32-bit unsigned remainder of dividing (rA) by (rB) can be
computed as follows:

divwu rD,rA,rB rD = quotient
mull rD,rD,rB rD = quotient*divisor
subf rD,rD,rA rD = remainder

divwu Divide Word Unsigned
divwu. Divide Word Unsigned with CR Update. The dot suffix

enables the update of the condition register.
divwuo Divide Word Unsigned with Overflow. The o suffix

enables the overflow bit (OV) in the XER.
divwuo. Divide Word Unsigned with Overflow and CR Update.

The o. suffix enables the update of the condition register
and enables the overflow bit (OV) in the XER.

Table 4-1 Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-11

While the PowerPC architecture specifies that the value in the L field specifies
whether the operands are treated as 32- or 64-bit values, the RCPU ignores the
value in the L field and treats the operands as 32-bit values.

The crfD field can be omitted if the result of the comparison is to be placed in CR0.
Otherwise the target CR field must be specified in the instruction crfD field, using
one of the CR field symbols (CR0 to CR7) or an explicit field number. Refer to Ta-
ble E-2 for the list of CR field symbols and to E.3 Simplified Mnemonics for Com-
pare Instructions for simplified mnemonics.

4.3.3 Integer Logical Instructions

The logical instructions shown in Table 4-4 perform bit-parallel operations. Logical
instructions with Rc = 1 and instructions andi. and andis. set condition register
field CR0 to characterize the result of the logical operation. These fields are set as
if the sign-extended low-order 32 bits of the result were algebraically compared to
zero. The remaining logical instructions do not modify the condition register. Logi-
cal instructions do not change the SO, OV, or CA bits in the XER.

Table 4-2 Integer Compare Instructions

Name Mnemonic Operand
Syntax

Operation

Compare
Immediate

cmpi crfD,L,rA,SIMM The contents of register rA is compared with the sign-extended
value of the SIMM operand, treating the operands as signed
integers. The result of the comparison is placed into the CR field
specified by operand crfD.

Compare cmp crfD,L,rA,rB The contents of register rA is compared with register rB, treating the
operands as signed integers. The result of the comparison is placed
into the CR field specified by operand crfD.

Compare
Logical
Immediate

cmpli crfD,L,rA,UIMM The contents of register rA is compared with 0x0000 || UIMM,
treating the operands as unsigned integers. The result of the
comparison is placed into the CR field specified by operand crfD.

Compare
Logical

cmpl crfD,L,rA,rB The contents of register rA is compared with register rB, treating the
operands as unsigned integers. The result of the comparison is
placed into the CR field specified by operand crfD.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-12 Revised 1 February 1999 REFERENCE MANUAL

Table 4-3 Integer Logical Instructions

Name Mnemonic Operand
Syntax

Operation

AND
Immediate

andi. rA,rS,UIMM The contents of rS is ANDed with 0x0000 || UIMM and the result is
placed into rA.

AND
Immediate
Shifted

andis. rA,rS,UIMM The contents of rS is ANDed with UIMM || 0x0000 and the result is
placed into rA.

OR
Immediate

ori rA,rS,UIMM The contents of rS is ORed with 0x0000 || UIMM and the result is
placed into rA.

The preferred no-op is ori 0,0,0

OR
Immediate
Shifted

oris rA,rS,UIMM The contents of rS is ORed with UIMM || 0x0000 and the result is
placed into rA.

XOR
Immediate

xori rA,rS,UIMM The contents of rS is XORed with 0x0000 || UIMM and the result is
placed into rA.

XOR
Immediate
Shifted

xoris rA,rS,UIMM The contents of rS is XORed with UIMM || 0x0000 and the result is
placed into rA.

AND and
and.

rA,rS,rB The contents of rS is ANDed with the contents of register rB and the
result is placed into rA.

and AND
and. AND with CR Update. The dot suffix enables the update

of the condition register.

OR or
or.

rA,rS,rB The contents of rS is ORed with the contents of rB and the result is
placed into rA.

or OR
or. OR with CR Update. The dot suffix enables the update of

the condition register.

XOR xor
xor.

rA,rS,rB The contents of rS is XORed with the contents of rB and the result is
placed into register rA.

xor XOR
xor. XOR with CR Update. The dot suffix enables the update

of the condition register.

NAND nand
nand.

rA,rS,rB The contents of rS is ANDed with the contents of rB and the one’s
complement of the result is placed into register rA.

nand NAND
nand. NAND with CR Update. The dot suffix enables the update

of the condition register.

NAND with rS = rB can be used to obtain the one's complement.

NOR nor
nor.

rA,rS,rB The contents of rS is ORed with the contents of rB and the one’s
complement of the result is placed into register rA.

nor NOR
nor. NOR with CR Update. The dot suffix enables the update

of the condition register.

NOR with rS = rB can be used to obtain the one's complement.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-13

4.3.4 Integer Rotate and Shift Instructions

Rotate and shift instructions provide powerful and general ways to manipulate reg-
ister contents. Table 4-4 shows the types of rotate and shift operations provided by
the RCPU.

Equivalent eqv
eqv.

rA,rS,rB The contents of rS is XORed with the contents of rB and the
complemented result is placed into register rA.

eqv Equivalent
eqv. Equivalent with CR Update. The dot suffix enables the

update of the condition register.

AND with
Complement

andc
andc.

rA,rS,rB The contents of rS is ANDed with the complement of the contents of
rB and the result is placed into rA.

andc AND with Complement
andc. AND with Complement with CR Update. The dot suffix

enables the update of the condition register.

OR with
Complement

orc
orc.

rA,rS,rB The contents of rS is ORed with the complement of the contents of rB
and the result is placed into rA.

orc OR with Complement
orc. OR with Complement with CR Update. The dot suffix

enables the update of the condition register.

Extend Sign
Byte

extsb
extsb.

rA,rS The contents of rS[24:31] are placed into rA[24:31]. Bit 24 of rS is
placed into rA[0:23].

extsb Extend Sign Byte
extsb. Extend Sign Byte with CR Update. The dot suffix enables

the update of the condition register.

Extend Sign
Half Word

extsh
extsh.

rA,rS The contents of rS[16:31] are placed into rA[16:31]. Bit 16 of rS is
placed into rA[0:15].

extsh Extend Sign Half Word
extsh. Extend Sign Half Word with CR Update. The dot suffix

enables the update of the condition register.

Count
Leading
Zeros Word

cntlzw
cntlzw.

rA,rS A count of the number of consecutive zero bits of rS is placed into rA.
This number ranges from 0 to 32, inclusive.

cntlzw Count Leading Zeros Word
cntlzw. Count Leading Zeros Word with CR Update. The dot

suffix enables the update of the condition register.

When the Count Leading Zeros Word instruction has condition register
updating enabled, the LT field is cleared to zero in CR0.

Table 4-3 Integer Logical Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-14 Revised 1 February 1999 REFERENCE MANUAL

The IU performs rotation operations on data from a GPR and returns the result, or
a portion of the result, to a GPR. Rotation operations rotate a 32-bit quantity left by
a specified number of bit positions. Bits that exit from position 0 enter at position
31. A rotate right operation can be accomplished by specifying a rotation of 32-n
bits, where n is the right rotation amount.

Rotate and shift instructions use a mask generator. The mask is 32 bits long and
consists of 1-bits from a start bit, MB, through and including a stop bit, ME, and 0-
bits elsewhere. The values of MB and ME range from zero to 31. If MB > ME, the
1-bits wrap around from position 31 to position 0. Thus the mask is formed as fol-
lows:

if MB ð ME then

mask[mstart:mstop] = ones
mask[all other bits] = zeros

else
mask[mstart:31] = ones
mask[0:mstop] = ones
mask[all other bits] = zeros

It is not possible to specify an all-zero mask. The use of the mask is described in
the following sections.

If condition register updating is enabled, rotate and shift instructions set condition
register field CR0 according to the contents of rA at the completion of the instruc-
tion. Rotate and shift instructions do not change the values of XER[OV] or XER[SO]
bits. Rotate and shift instructions, except algebraic right shifts, do not change the
XER[CA] bit.

Simplified mnemonics allow simpler coding of often-used functions such as clear-

Table 4-4 Rotate and Shift Operations

Operation Description

Extract Select a field of n bits starting at bit position b in the source register, right or left justify this field in the
target register, and clear all other bits of the target register to zero.

Insert Select a left- or right-justified field of n bits in the source register, insert this field starting at bit position
b of the target register, and leave other bits of the target register unchanged. (No simplified mnemonic
is provided for insertion of a left-justified field when operating on double-words; such an insertion
requires more than one instruction.)

Rotate Rotate the contents of a register right or left n bits without masking.

Shift Shift the contents of a register right or left n bits, clearing vacated bits to zero (logical shift).

Clear Clear the leftmost or rightmost n bits of a register to zero.

Clear left
and shift
left

Clear the leftmost b bits of a register, then shift the register left by n bits. This operation can be used to
scale a known non-negative array index by the width of an element.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-15

ing the leftmost or rightmost bits of a register, left justifying or right justifying an ar-
bitrary field, and simple rotates and shifts. Some of these are shown as examples
with the rotate instructions. In addition, E.4 Simplified Mnemonics for Rotate and
Shift Instructions provides a list of these mnemonics.

4.3.4.1 Integer Rotate Instructions

Integer rotate instructions rotate the contents of a register. The result of the rotation
is inserted into the target register under control of a mask (if a mask bit is one the
associated bit of the rotated data is placed into the target register, and if the mask
bit is zero the associated bit in the target register is unchanged), or ANDed with a
mask before being placed into the target register.

Rotate left instructions allow right-rotation of the contents of a register to be per-
formed by a left-rotation of 32 - n, where n is the number of bits by which to rotate
right.

The integer rotate instructions are summarized in Table 4-5.

Table 4-5 Integer Rotate Instructions

Name Mnemonic Operand Syntax Operation

Rotate Left
Word
Immediate
then AND
with Mask

rlwinm
rlwinm.

rA,rS,SH,MB,ME The contents of register rS are rotated left by the number of bits
specified by operand SH. A mask is generated having 1-bits from
the bit specified by operand MB through the bit specified by
operand ME and 0-bits elsewhere. The rotated data is ANDed with
the generated mask and the result is placed into register rA.

rlwinm Rotate Left Word Immediate then AND with Mask
rlwinm. Rotate Left Word Immediate then AND with Mask with

CR Update. The dot suffix enables the update of the
condition register.

Simplified mnemonics:

extlwi rA,rS,n,brlwinm rA,rS,b,0,n-1
srwi rA,rS,nrlwinm rA,rS,32-n,n,31
clrrwi rA,rS,n rlwinm rA,rS,0,0,31-n
Note: The rlwinm instruction can be used for extracting, clearing
and shifting bit fields using the methods shown below:

To extract an n-bit field that starts at bit position b in register rS,
right-justified into rA (clearing the remaining 32 - n bits of rA), set
SH = b + n, MB = 32 - n, and ME = 31.

To extract an n-bit field that starts at bit position b in rS, left-justified
into rA, set SH = b, MB = 0, and ME = n - 1.

To rotate the contents of a register left (right) by n bits, set SH = n
(32 - n), MB = 0, and ME = 31.

To shift the contents of a register right by n bits, set SH = 32 - n, MB
= n, and ME = 31.

To clear the high-order b bits of a register and then shift the result
left by n bits, set SH = n, MB = b - n and ME = 31 - n.

To clear the low-order n bits of a register, set SH = 0, MB = 0, and
ME = 31 - n.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-16 Revised 1 February 1999 REFERENCE MANUAL

4.3.4.2 Integer Shift Instructions

The instructions in this section perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for
certain rotate instructions. Simplified mnemonics are provided to make coding of

Rotate Left
Word then
AND with
Mask

rlwnm
rlwnm.

rA,rS,rB,MB,ME The contents of rS are rotated left by the number of bits specified
by rB[27:31]. A mask is generated having 1-bits from the bit
specified by operand MB through the bit specified by operand ME
and 0-bits elsewhere. The rotated data is ANDed with the
generated mask and the result is placed into rA.

rlwinm Rotate Left Word then AND with Mask
rlwinm. Rotate Left Word then AND with Mask with CR

Update. The dot suffix enables the update of the
condition register.

Simplified mnemonics:

rotlw rA,rS,rBrlwnm rA,rS,rB,0,31

Note: The rlwinm instruction can be used to extract and rotate bit
fields using the methods shown below:

To extract an n-bit field that starts at the variable bit position b in the
register specified by operand rS, right-justified into rA (clearing the
remaining 32-n bits of rA), set rB[27:31] = b + n, MB = 32 - n, and
ME = 31.

To extract an n-bit field that starts at variable bit position b in the
register specified by operand rS, left-justified into rA (clearing the
remaining 32 - n bits of rA), set rB[27:31] = b, MB = 0, and ME = n
- 1.

To rotate the contents of the low-order 32 bits of a register left
(right) by variable n bits, set rB[27:31] = n (32 - n), MB = 0, and ME
= 31.

Rotate Left
Word
Immediate
then Mask
Insert

rlwimi
rlwimi.

rA,rS,SH,MB,ME The contents of rS are rotated left by the number of bits specified
by operand SH. A mask is generated having 1-bits from the bit
specified by MB through the bit specified by ME and 0-bits
elsewhere. The rotated data is inserted into rA under control of the
generated mask.

rlwimi Rotate Left Word Immediate then Mask
rlwimi. Rotate Left Word Immediate then Mask Insert with CR

Update. The dot suffix enables the update of the
condition register.

Simplified mnemonic:

inslw rA,rS,n,brlwim rA,rS,32-b,b,b+n-1

Note: The opcode rlwimi can be used to insert a bit field into the
contents of register specified by operand rA using the methods
shown below:

To insert an n-bit field that is left-justified in rS into rA starting at bit
position b, set SH = 32 - b, MB = b, and ME = (b + n) - 1.

To insert an n-bit field that is right-justified in rS into rA starting at
bit position b, set SH =3 2 - (b + n), MB = b, and ME = (b + n) - 1.

Simplified mnemonics are provided for both of these methods.

Table 4-5 Integer Rotate Instructions (Continued)

Name Mnemonic Operand Syntax Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-17

such shifts simpler and easier to understand.

Any shift right algebraic instruction, followed by addze, can be used to divide quick-
ly by 2n.

Multiple-precision shifts can be programmed as shown in APPENDIX B MULTI-
PLE-PRECISION SHIFTS.

The integer shift instructions are summarized in Table 4-6.

Table 4-6 Integer Shift Instructions

Name Mnemonic
Operand
Syntax

Operation

Shift Left
Word

slw
slw.

rA,rS,rB The contents of rS are shifted left the number of bits specified by
rB[26:31]. Bits shifted out of position 0 are lost. Zeros are supplied to
the vacated positions on the right. The 32-bit result is placed into rA.

If rB[26] = 1, then rA is filled with zeros.

slw Shift Left Word
slw. Shift Left Word with CR Update. The dot suffix enables

the update of the condition register.

Shift Right
Word

srw
srw.

rA,rS,rB The contents of rS are shifted right the number of bits specified by
rB[26:31]. Zeros are supplied to the vacated positions on the left. The
32-bit result is placed into rA.

If rB[26]=1, then rA is filled with zeros.

srw Shift Right Word
srw. Shift Right Word with CR Update. The dot suffix enables

the update of the condition register.

Shift Right
Algebraic
Word
Immediate

srawi
srawi.

rA,rS,SH The contents of rS are shifted right the number of bits specified by
operand SH. Bits shifted out of position 31 are lost. The 32-bit result is
sign extended and placed into rA. XER[CA] is set if rS contains a
negative number and any 1-bits are shifted out of position 31;
otherwise XER(CA) is cleared. An operand SH of zero causes rA to be
loaded with the contents of rS and XER[CA] to be cleared to zero.

srawi Shift Right Algebraic Word Immediate
srawi. Shift Right Algebraic Word Immediate with CR Update.

The dot suffix enables the update of the condition
register.

Shift Right
Algebraic
Word

sraw
sraw.

rA,rS,rB The contents of rS are shifted right the number of bits specified by
rB[26:31]. The 32-bit result is placed into rA. XER[CA] is set to one if
rS contains a negative number and any 1-bits are shifted out of
position 31; otherwise XER[CA] is cleared to zero. An operand (rB) of
zero causes rA to be loaded with the contents of rS, and XER[CA] to
be cleared to zero. If rB[26] = 1, then rA is filled with 32 sign bits (bit
0) from rS. If rB[26] = 0, then rA is filled from the left with sign bits.
Condition register field CR0 is set based on the value written into rA.

sraw Shift Right Algebraic Word
sraw. Shift Right Algebraic Word with CR Update. The dot suffix

enables the update of the condition register.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-18 Revised 1 February 1999 REFERENCE MANUAL

4.4 Floating-Point Instructions

This section describes the floating-point instructions, which include the following:

• Floating-point arithmetic instructions
• Floating-point multiply-add instructions
• Floating-point rounding and conversion instructions
• Floating-point compare instructions
• Floating-point status and control register instructions

Floating-point loads and stores are discussed in 4.5 Load and Store Instructions.

4.4.1 Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are summarized in Table 4-7.

Table 4-7 Floating-Point Arithmetic Instructions

Name Mnemonic Operand
Syntax

Operation

Floating-
Point Add

fadd
fadd.

frD,frA,frB The floating-point operand in register frA is added to the floating-point
operand in register frB. If the most significant bit of the resultant
significand is not a one the result is normalized. The result is rounded
to the target precision under control of the floating-point rounding
control field RN of the FPSCR and placed into register frD.

Floating-point addition is based on exponent comparison and addition
of the two significands. The exponents of the two operands are
compared, and the significand accompanying the smaller exponent is
shifted right, with its exponent increased by one for each bit shifted,
until the two exponents are equal. The two significands are then
added algebraically to form an intermediate sum. All 53 bits in the
significand as well as all three guard bits (G, R, and X) enter into the
computation.

If a carry occurs, the sum's significand is shifted right one bit position
and the exponent is increased by one.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fadd Floating-Point Add
fadd. Floating-Point Add with CR Update. The dot suffix

enables the update of the condition register.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-19

Floating-
Point Add
Single-
Precision

fadds
fadds.

frD,frA,frB The floating-point operand in register frA is added to the floating-point
operand in register frB. If the most significant bit of the resultant
significand is not a one, the result is normalized. The result is rounded
to the target precision under control of the floating-point rounding
control field RN of the FPSCR and placed into register frD.

Floating-point addition is based on exponent comparison and addition
of the two significands. The exponents of the two operands are
compared, and the significand accompanying the smaller exponent is
shifted right, with its exponent increased by one for each bit shifted,
until the two exponents are equal. The two significands are then
added algebraically to form an intermediate sum. All 53 bits in the
significand as well as all three guard bits (G, R, and X) enter into the
computation.

If a carry occurs, the sum's significand is shifted right one bit position
and the exponent is increased by one.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fadds Floating-Point Single-Precision
fadds. Floating-Point Single-Precision with CR Update. The dot

suffix enables the update of the condition register.

Floating-
Point
Subtract

fsub
fsub.

frD,frA,frB The floating-point operand in register frB is subtracted from the
floating-point operand in register frA. If the most significant bit of the
resultant significand is not a one the result is normalized. The result is
rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into register frD.

The execution of the Floating-Point Subtract instruction is identical to
that of Floating-Point Add, except that the contents of register frB
participates in the operation with its sign bit (bit 0) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fsub Floating-Point Subtract
fsub. Floating-Point Subtract with CR Update. The dot suffix

enables the update of the condition register.

Floating-
Point
Subtract
Single-
Precision

fsubs
fsubs.

frD,frA,frB The floating-point operand in register frB is subtracted from the
floating-point operand in register frA. If the most significant bit of the
resultant significand is not a one the result is normalized. The result is
rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into register frD.

The execution of the Floating-Point Subtract instruction is identical to
that of Floating-Point Add, except that the contents of register frB
participates in the operation with its sign bit (bit 0) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fsubs Floating-Point Subtract Single-Precision
fsubs. Floating-Point Subtract Single-Precision with CR Update.

The dot suffix enables the update of the condition
register.

Table 4-7 Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-20 Revised 1 February 1999 REFERENCE MANUAL

Floating-
Point
Multiply

fmul
fmul.

frD,frA,frC The floating-point operand in register frA is multiplied by the floating-
point operand in register frC.

If the most significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to the target precision under
control of the floating-point rounding control field RN of the FPSCR
and placed into register frD.

Floating-point multiplication is based on exponent addition and
multiplication of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fmul Floating-Point Multiply
fmul. Floating-Point Multiply with CR Update. The dot suffix

enables the update of the condition register.

Floating-
Point
Multiply
Single-
Precision

fmuls
fmuls.

frD,frA,frC The floating-point operand in register frA is multiplied by the floating-
point operand in register frC.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

Floating-point multiplication is based on exponent addition and
multiplication of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fmuls Floating-Point Multiply Single-Precision
fmuls. Floating-Point Multiply Single-Precision with CR Update.

The dot suffix enables the update of the condition
register.

Floating-
Point Divide

fdiv
fdiv.

frD,frA,frB The floating-point operand in register frA is divided by the floating-
point operand in register frB. No remainder is preserved.

If the most significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to the target precision under
control of the floating-point rounding control field RN of the FPSCR
and placed into register frD.

Floating-point division is based on exponent subtraction and division
of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1 and zero divide
exceptions when FPSCR[ZE]=1.

fdiv Floating-Point Divide
fdiv. Floating-Point Divide with CR Update. The dot suffix

enables the update of the condition register.

Table 4-7 Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-21

4.4.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate
rounding operation. The fractional part of the intermediate product is 106 bits wide,
and all 106 bits take part in the add/subtract portion of the instruction.

The floating-point multiply-add instructions are summarized in Table 4-8.

Floating-
Point Divide
Single-
Precision

fdivs
fdivs.

frD,frA,frB The floating-point operand in register frA is divided by the floating-
point operand in register frB. No remainder is preserved.

If the most significant bit of the resultant significand is not a one, the
result is normalized. The result is rounded to the target precision under
control of the floating-point rounding control field RN of the FPSCR
and placed into register frD.

Floating-point division is based on exponent subtraction and division
of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1 and zero divide
exceptions when FPSCR[ZE] = 1.

fdivs Floating-Point Divide Single-Precision
fdivs. Floating-Point Divide Single-Precision with CR Update.

The dot suffix enables the update of the condition
register.

Table 4-8 Floating-Point Multiply-Add Instructions

Name Mnemonic Operand
Syntax

Operation

Floating-
Point
Multiply-
Add

fmadd
fmadd.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is added to this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fmadd Floating-Point Multiply-Add
fmadd. Floating-Point Multiply-Add with CR Update. The dot

suffix enables the update of the condition register.

Table 4-7 Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-22 Revised 1 February 1999 REFERENCE MANUAL

Floating-
Point
Multiply-
Add
Single-
Precision

fmadds
fmadds.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is added to this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fmadds Floating-Point Multiply-Add Single-Precision
fmadds. Floating-Point Multiply-Add Single-Precision with CR

Update. The dot suffix enables the update of the
condition register.

Floating-
Point
Multiply-
Subtract

fmsub
fmsub.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is subtracted from this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fmsub Floating-Point Multiply-Subtract
fmsub. Floating-Point Multiply-Subtract with CR Update. The

dot suffix enables the update of the condition register.

Floating-
Point
Multiply-
Subtract
Single-
Precision

fmsubs
fmsubs.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is subtracted from this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fmsubs Floating-Point Multiply-Subtract Single-Precision
fmsubs. Floating-Point Multiply-Subtract Single-Precision with CR

Update. The dot suffix enables the update of the
condition register.

Table 4-8 Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-23

Floating-
Point
Negative
Multiply-
Add

fnmadd
fnmadd.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is added to this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR, then negated and placed into register frD.

This instruction produces the same result as would be obtained by
using the floating-point multiply-add instruction and then negating the
result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.
• QNaNs that are generated as the result of a disabled invalid

operation exception have a sign bit of zero.
• SNaNs that are converted to QNaNs as the result of a disabled

invalid operation exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fnmadd Floating-Point Negative Multiply-Add
fnmadd. Floating-Point Negative Multiply-Add with CR Update.

The dot suffix enables the update of the condition
register.

Floating-
Point
Negative
Multiply-
Add
Single-
Precision

fnmadds
fnmadds.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is added to this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR, then negated and placed into register frD.

This instruction produces the same result as would be obtained by
using the floating-point multiply-add instruction and then negating the
result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.
• QNaNs that are generated as the result of a disabled invalid

operation exception have a sign bit of zero.
• SNaNs that are converted to QNaNs as the result of a disabled

invalid operation exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fnmadds Floating-Point Negative Multiply-Add Single-Precision
fnmadds. Floating-Point Negative Multiply-Add Single-Precision

with CR Update. The dot suffix enables the update of the
condition register.

Table 4-8 Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-24 Revised 1 February 1999 REFERENCE MANUAL

4.4.3 Floating-Point Rounding and Conversion Instructions

The floating-point rounding instruction is used to produce a 32-bit single-precision
number from a 64-bit double-precision floating-point number. The floating-point
convert instructions convert 64-bit double-precision floating point numbers to 32-
bit signed integer numbers.

Floating-
Point
Negative
Multiply-
Subtract

fnmsub
fnmsub.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is subtracted from this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR, then negated and placed into register frD.

This instruction produces the same result as would be obtained by
using the floating-point multiply-subtract instruction and then negating
the result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.
• QNaNs that are generated as the result of a disabled invalid

operation exception have a sign bit of zero.
• SNaNs that are converted to QNaNs as the result of a disabled

invalid operation exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fnmsub Floating-Point Negative Multiply-Subtract
fnmsub. Floating-Point Negative Multiply-Subtract with CR

Update. The dot suffix enables the update of the
condition register.

Floating-
Point
Negative
Multiply-
Subtract
Single-
Precision

fnmsubs
fnmsubs.

frD,frA,frC,frB The floating-point operand in register frA is multiplied by the floating-
point operand in register frC. The floating-point operand in register frB
is subtracted from this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR, then negated and placed into register frD.

This instruction produces the same result as would be obtained by
using the floating-point multiply-subtract instruction and then negating
the result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.
• QNaNs that are generated as the result of a disabled invalid

operation exception have a sign bit of zero.
• SNaNs that are converted to QNaNs as the result of a disabled

invalid operation exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fnmsubs Floating-Point Negative Multiply-Subtract Single-
Precision

fnmsubs. Floating-Point Negative Multiply-Subtract Single-
Precision with CR Update. The dot suffix enables the
update of the condition register.

Table 4-8 Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-25

Examples of uses of these instructions to perform various conversions can be
found in APPENDIX C FLOATING-POINT MODELS AND CONVERSIONS.

Table 4-9 Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand
Syntax

Operation

Floating-
Point Round
to Single-
Precision

frsp
frsp.

frD,frB If it is already in single-precision range, the floating-point operand in
register frB is placed into register frD. Otherwise the floating-point
operand in register frB is rounded to single-precision using the
rounding mode specified by FPSCR[RN] and placed into register frD.

The rounding is described fully in APPENDIX C FLOATING-POINT
MODELS AND CONVERSIONS.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

frsp Floating-Point Round to Single-Precision
frsp. Floating-Point Round to Single-Precision with CR

Update. The dot suffix enables the update of the
condition register.

Floating-
Point
Convert to
Integer
Word

fctiw
fctiw.

frD,frB The floating-point operand in register frB is converted to a 32-bit
signed integer, using the rounding mode specified by FPSCR[RN],
and placed in frD[32:63]. frD[0:31] are undefined.

If the operand in register frB is greater than 231– 1, frD[32:63] are set
to 0x7FFF FFFF.

If the operand in register frB is less than –231, frD[32:63] are set to
0x8000 0000.

The conversion is described fully in APPENDIX C FLOATING-POINT
MODELS AND CONVERSIONS.

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF]
is undefined. FPSCR[FR] is set if the result is incremented when
rounded. FPSCR[FI] is set if the result is inexact.

fctiw Floating-Point Convert to Integer Word
fctiw. Floating-Point Convert to Integer Word with CR Update.

The dot suffix enables the update of the condition
register.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-26 Revised 1 February 1999 REFERENCE MANUAL

4.4.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point reg-
isters and the comparison ignores the sign of zero (that is +0 = –0). The compari-
son can be ordered or unordered. The comparison sets one bit in the designated
CR field and clears the other three bits. The FPCC bits (FPSCR[16:19]) are set in
the same way.

The CR field and the FPCC are interpreted as shown in Table 4-10.

On floating-point compare unordered (fcmpu) and floating-point compare ordered
(fcmpo) instructions with condition register updating enabled, the PowerPC archi-
tecture defines CR1 and the CR field specified by operand crfD as undefined.

The floating-point compare instructions are summarized in Table 4-11.

Floating-
Point
Convert to
Integer
Word with
Round

fctiwz
fctiwz.

frD,frB The floating-point operand in register frB is converted to a 32-bit
signed integer, using the rounding mode Round toward Zero, and
placed in frD[32:63]. frD[0:31] are undefined.

If the operand in frB is greater than 231 –1, frD[32:63] are set to
0x7FFF FFFF.

If the operand in register frB is less than –231, frD[32:63] are set to
0x8000 0000.

The conversion is described fully in APPENDIX C FLOATING-POINT
MODELS AND CONVERSIONS.

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF]
is undefined. FPSCR[FR] is set if the result is incremented when
rounded. FPSCR[FI] is set if the result is inexact.

fctiwz Floating-Point Convert to Integer Word with Round
Toward Zero

fctiwz. Floating-Point Convert to Integer Word with Round
Toward Zero with CR Update. The dot suffix enables the
update of the condition register.

Table 4-10 CR Bit Settings

Bit Name Description

0 FL (frA) < (frB)

1 FG (frA) > (frB)

2 FE (frA) = (frB)

3 FU (frA) ? (frB) (unordered)

Table 4-9 Floating-Point Rounding and Conversion Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-27

4.4.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point in-
structions executed by a given processor. Executing an FPSCR instruction en-
sures that all floating-point instructions previously initiated by the given processor
appear to have completed before the FPSCR instruction is initiated and that no
subsequent floating-point instructions appear to be initiated by the given processor
until the FPSCR instruction has completed. In particular:

• All exceptions caused by the previously initiated instructions are recorded in
the FPSCR before the FPSCR instruction is initiated.

• All invocations of the floating-point exception handler caused by the previously
initiated instructions have occurred before the FPSCR instruction is initiated.

• No subsequent floating-point instruction that depends on or alters the settings
of any FPSCR bits appears to be initiated until the FPSCR instruction has
completed.

Floating-point memory access instructions are not affected.

The floating-point status and control register instructions are summarized in Table
4-12.

Table 4-11 Floating-Point Compare Instructions

Name Mnemonic Operand
Syntax

Operation

Floating-
Point
Compare
Unordered

fcmpu crfD,frA,frB The floating-point operand in register frA is compared to the floating-
point operand in register frB. The result of the compare is placed into
CR field crfD and the FPCC.

If an operand is a NaN, either quiet or signaling, CR field crfD and the
FPCC are set to reflect unordered. If an operand is a Signaling NaN,
VXSNAN is set.

Floating-
Point
Compare
Ordered

fcmpo crfD,frA,frB The floating-point operand in register frA is compared to the floating-
point operand in register frB. The result of the compare is placed into
CR field crfD and the FPCC.

If an operand is a NaN, either quiet or signaling, CR field crfD and the
FPCC are set to reflect unordered. If an operand is a Signaling NaN,
VXSNAN is set, and if invalid operation is disabled (VE = 0) then VXVC
is set. Otherwise, if an operand is a Quiet NaN, VXVC is set.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-28 Revised 1 February 1999 REFERENCE MANUAL

Table 4-12 Floating-Point Status and Control Register Instructions

Name Mnemonic Operand
Syntax

Operation

Move from
FPSCR

mffs
mffs.

frD The contents of the FPSCR are placed into frD[32:63].

mffs Move from FPSCR
mffs. Move from FPSCR with CR Update. The dot suffix

enables the update of the condition register.

Move to
Condition
Register
from FPSCR

mcrfs crfD,crfS The contents of FPSCR field specified by operand crfS are copied to
the CR field specified by operand crfD. All exception bits copied are
cleared to zero in the FPSCR.

Move to
FPSCR Field
Immediate

mtfsfi
mtfsfi.

crfD,IMM The value of the IMM field is placed into FPSCR field crfD. All other
FPSCR fields are unchanged.

mtfsfi Move to FPSCR Field Immediate
mtfsfi. Move to FPSCR Field Immediate with CR Update. The

dot suffix enables the update of the condition register.

When FPSCR[0:3] is specified, bits 0 (FX) and 3 (OX) are set to the
values of IMM[0] and IMM[3] (i.e., even if this instruction causes OX to
change from zero to one, FX is set from IMM[0] and not by the usual
rule that FX is set to one when an exception bit changes from zero to
one). Bits 1 and 2 (FEX and VX) are set according to the usual rule
described in 2.2.3 Floating-Point Status and Control Register
(FPSCR), and not from IMM[1:2].

Move to
FPSCR
Fields

mtfsf
mtfsf.

FM,frB frB[32:63] are placed into the FPSCR under control of the field mask
specified by FM. The field mask identifies the 4-bit fields affected. Let
i be an integer in the range 0-7. If FM = 1 then FPSCR field i (FPSCR
bits 4∗i through 4∗i+ 3) is set to the contents of the corresponding field
of the low-order 32 bits of register frB.

mtfsf Move to FPSCR Fields
mtfsf. Move to FPSCR Fields with CR Update. The dot suffix

enables the update of the condition register.

When FPSCR[0:3] is specified, bits 0 (FX) and 3 (OX) are set to the
values of frB[32] and frB[35] (i.e., even if this instruction causes OX to
change from zero to one, FX is set from frB[32] and not by the usual
rule that FX is set to one when an exception bit changes from zero to
one). Bits 1 and 2 (FEX and VX) are set according to the usual rule
described in 2.2.3 Floating-Point Status and Control Register
(FPSCR), and not from frB[33:34].

Move to
FPSCR Bit 0

mtfsb0
mtfsb0.

crbD The bit of the FPSCR specified by operand crbD is cleared to zero.

Bits 1 and 2 (FEX and VX) cannot be explicitly reset.

mtfsb0 Move to FPSCR Bit 0
mtfsb0. Move to FPSCR Bit 0 with CR Update. The dot suffix

enables the update of the condition register.

Move to
FPSCR Bit 1

mtfsb1
mtfsb1.

crbD The bit of the FPSCR specified by operand crbD is set to one.

Bits 1 and 2 (FEX and VX) cannot be reset explicitly.

mtfsb1 Move to FPSCR Bit 1
mtfsb1. Move to FPSCR Bit 1 with CR Update. The dot suffix

enables the update of the condition register.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-29

4.5 Load and Store Instructions

The RCPU supports the following types of load and store instructions:

• Integer load instructions
• Integer store instructions
• Integer load and store with byte reversal instructions
• Integer load and store multiple instructions
• Floating-point load instructions
• Floating-point store instructions
• Floating-point move instructions
• Memory synchronization instructions (described in 4.8 Memory Synchroni-

zation Instructions)

4.5.1 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indi-
rect with immediate index mode, register indirect with index mode or register indi-
rect mode.

4.5.1.1 Register Indirect with Immediate Index Addressing

Instructions using this addressing mode contain a signed 16-bit immediate index
(d operand) which is sign extended to 32 bits, and added to the contents of a gen-
eral purpose register specified in the instruction (rA operand) to generate the effec-
tive address. A zero in place of the rA operand causes a zero to be added to the
immediate index (d operand). The option to specify rA or zero is shown in the in-
struction descriptions as (rA|0).

Figure 4-1 shows how an effective address is generated when using register indi-
rect with immediate index addressing.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-30 Revised 1 February 1999 REFERENCE MANUAL

Figure 4-1 Register Indirect with Immediate Index Addressing

4.5.1.2 Register Indirect with Index Addressing

Instructions using this addressing mode cause the contents of two general purpose
registers (specified as operands rA and rB) to be added in the generation of the
effective address. A zero in place of the rA operand causes a zero to be added to
the contents of the general-purpose register specified in operand rB. The option to
specify rA or zero is shown in the instruction descriptions as (rA|0).

Figure 4-2 shows how an effective address is generated when using register indi-
rect with index addressing.

No

0 16 17 31

Sign Extension d

0 31

GPR (rA)

0

0 31

GPR (rD/rS)
Store
Load

Yes

Instruction Encoding:
0 576 1011 15 16 31

Opcode rD/rS rA d

+
0 31

Effective Address

rA = 0?

Memory
Access

REGIND/IMM
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-31

Figure 4-2 Register Indirect with Index Addressing

4.5.1.3 Register Indirect Addressing

Instructions using this addressing mode use the contents of the general purpose
register specified by the rA operand as the effective address. A zero in the rA op-
erand causes an effective address of zero to be generated. The option to specify
rA or zero is shown in the instruction descriptions as (rA|0).

Figure 4-3 shows how an effective address is generated when using register indi-
rect addressing.

No

0 31

GPR (rA)

0

+

0 31

GPR (rD/rS)
Memory
Access

Store
Load

Yes

0 31

GPR (rB)

Instruction Encoding:

rA = 0?

0 31

Effective Address

0 5 6 1011 15 16 20 21 30 31

Opcode rD/rS rA rB Subopcode 0

REGIND/IA
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-32 Revised 1 February 1999 REFERENCE MANUAL

Figure 4-3 Register Indirect Addressing

4.5.2 Integer Load Instructions

For load instructions, the byte, half-word, word, or double-word addressed by EA
is loaded into rD. Many integer load instructions have an update form, in which rA
is updated with the generated effective address. For these forms, if rA ¦ 0 and rA ¦
rD, the effective address is placed into rA and the memory element (byte, half-
word, or word) addressed by EA is loaded into rD.

The PowerPC architecture defines load with update instructions with rA = 0 or rA
= rD as an invalid form. In the RCPU, however, if rA = 0 then the EA is written into
R0. If rA = rD then rA is loaded from memory location MEM(rA, N) where N is de-
termined by the instruction operand size.

Table 4-13 summarizes the RCPU load instructions.

No

Store
Load

Yes
0 31

0 0 0 0 0•• 0 0 0 0 0

Instruction Encoding:
0 5 6 10 11 15 16 20 21 30 31

rA = 0?

0 31

GPR (rA)

0 31

Effective Address

Opcode rD/rS rA NB Subopcode 0

0 31

GPR (rD/rS)
Memory
Access REGIND ADD
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-33

Table 4-13 Integer Load Instructions

Name Mnemonic
Operand
Syntax

Operation

Load Byte
and Zero

lbz rD,d(rA) The effective address is the sum (rA|0) + d. The byte in memory
addressed by the EA is loaded into register rD[24:31]. The remaining
bits in register rD are cleared to zero.

Load Byte
and Zero
Indexed

lbzx rD,rA,rB The effective address is the sum (rA|0) + (rB). The byte in memory
addressed by the EA is loaded into register rD[24:31]. The remaining
bits in register rD are cleared to zero.

Load Byte
and Zero
with Update

lbzu rD,d(rA) The effective address (EA) is the sum (rA|0) + d. The byte in memory
addressed by the EA is loaded into register rD[24:31]. The remaining
bits in register rD are cleared to zero. The EA is placed into register rA.

The PowerPC architecture defines load with update instructions with
rA = 0 or rA = rD as invalid forms. In the RCPU, however, if rA = 0 then
the EA is written into R0. If rA = rD then rA is loaded from memory
location MEM(rA, N) where N is determined by the instruction operand
size.

Load Byte
and Zero
with Update
Indexed

lbzux rD,rA,rB The effective address (EA) is the sum (rA|0) + (rB). The byte
addressed by the EA is loaded into register rD[24:31]. The remaining
bits in register rD are cleared to zero. The EA is placed into register rA.

The PowerPC architecture defines load with update instructions with
rA = 0 or rA = rD as invalid forms. In the RCPU, however, if rA = 0 then
the EA is written into R0. If rA = rD then rA is loaded from memory
location MEM(rA, N) where N is determined by the instruction operand
size.

Load
Half Word
and Zero

lhz rD,d(rA) The effective address is the sum (rA|0) + d. The half-word in memory
addressed by the EA is loaded into register rD[16:31]. The remaining
bits in rD are cleared to zero.

Load
Half Word
and Zero
Indexed

lhzx rD,rA,rB The effective address is the sum (rA|0) + (rB). The half-word in
memory addressed by the EA is loaded into register rD[16:31]. The
remaining bits in register rD are cleared.

Load
Half Word
and Zero
with Update

lhzu rD,d(rA) The effective address is the sum (rA|0) + d. The half-word in memory
addressed by the EA is loaded into register rD[16:31]. The remaining
bits in register rD are cleared.

The EA is placed into register rA.

The PowerPC architecture defines load with update instructions with
rA = 0 or rA =rD as invalid forms. In the RCPU, however, if rA=0 then
the EA is written into R0. If rA = rD then rA is loaded from memory
location MEM(rA, N) where N is determined by the instruction operand
size.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-34 Revised 1 February 1999 REFERENCE MANUAL

Load
Half Word
and Zero
with Update
Indexed

lhzux rD,rA,rB The effective address is the sum (rA|0) + (rB). The half-word in
memory addressed by the EA is loaded into register rD[16:31]. The
remaining bits in register rD are cleared. The EA is placed into register
rA.

The PowerPC architecture defines load with update instructions with
rA = 0 or rA = rD as invalid forms. In the RCPU, however, if rA = 0 then
the EA is written into R0. If rA = rD then rA is loaded from memory
location MEM(rA, N) where N is determined by the instruction operand
size.

Load
Half Word
Algebraic

lha rD,d(rA) The effective address is the sum (rA) + d. The half-word in memory
addressed by the EA is loaded into register rD[16:31]. The remaining
bits in register rD are filled with a copy of bit 0 of the loaded half-word.

Load
Half Word
Algebraic
Indexed

lhax rD,rA,rB The effective address is the sum (rA|0) + (rB). The half-word in
memory addressed by the EA is loaded into register rD[16:31]. The
remaining bits in register rD are filled with a copy of bit 0 of the loaded
half-word.

Load
Half Word
Algebraic
with Update

lhau rD,d(rA) The effective address is the sum (rA|0) + d. The half-word in memory
addressed by the EA is loaded into register rD[16:31]. The remaining
bits in register rD are filled with a copy of bit 0 of the loaded half-word.
The EA is placed into register rA.

The PowerPC architecture defines load with update instructions with
rA = 0 or rA = rD as invalid forms. In the RCPU, however, if rA = 0 then
the EA is written into R0. If rA = rD then rA is loaded from memory
location MEM(rA, N) where N is determined by the instruction operand
size.

Load
Half Word
Algebraic
with Update
Indexed

lhaux rD,rA,rB The effective address is the sum (rA|0) + (rB). The half-word in
memory addressed by the EA is loaded into register rD[16:31]. The
remaining bits in register rD are filled with a copy of bit 0 of the loaded
half-word. The EA is placed into register rA.

The PowerPC architecture defines load with update instructions with
rA = 0 or rA = rD as invalid forms. In the RCPU, however, if rA = 0 then
the EA is written into R0. If rA = rD then rA is loaded from memory
location MEM(rA, N) where N is determined by the instruction operand
size.

Load Word
and Zero

lwz rD,d(rA) The effective address is the sum (rA|0) + d. The word in memory
addressed by the EA is loaded into register rD[0:31].

Load Word
and Zero
Indexed

lwzx rD,rA,rB The effective address is the sum (rA|0) + (rB). The word in memory
addressed by the EA is loaded into register rD[0:31].

Load Word
and Zero
with Update

lwzu rD,d(rA) The effective address is the sum (rA|0) + d. The word in memory
addressed by the EA is loaded into register rD[0:31]. The EA is placed
into register rA.

The PowerPC architecture defines load with update instructions with
rA = 0 or rA = rD as invalid forms. In the RCPU, however, if rA = 0 then
the EA is written into R0. If rA = rD then rA is loaded from memory
location MEM(rA, N) where N is determined by the instruction operand
size.

Table 4-13 Integer Load Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-35

4.5.3 Integer Store Instructions

For integer store instructions, the contents of register rS are stored into the byte,
half-word, word or double-word in memory addressed by EA. Many store instruc-
tions have an update form, in which register rA is updated with the effective ad-
dress. For these forms, the following rules apply:

• If rA ¦ 0, the effective address is placed into register rA.
• If rA = 0, the effective address is written into R0. (Although the PowerPC ar-

chitecture defines store with update instructions with rA = 0 as invalid forms,
the RCPU does not.)

• If rS = rA, the contents of register rS are copied to the target memory element,
then the generated EA is placed into rA.

A summary of the RCPU integer store instructions is shown in Table 4-14.

Load Word
and Zero
with Update
Indexed

lwzux rD,rA,rB The effective address is the sum (rA|0) + (rB). The word in memory
addressed by the EA is loaded into register rD[0:31]. The EA is placed
into register rA.

The PowerPC architecture defines load with update instructions with
rA = 0 or rA = rD as invalid forms. In the RCPU, however, if rA = 0 then
the EA is written into R0. If rA = rD then rA is loaded from memory
location MEM(rA, N) where N is determined by the instruction operand
size.

Table 4-13 Integer Load Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-36 Revised 1 February 1999 REFERENCE MANUAL

4.5.4 Integer Load and Store with Byte Reversal Instructions

Table 4-15 describes the integer load and store with byte reversal instructions.

Table 4-14 Integer Store Instructions

Name Mnemonic Operand
Syntax

Operation

Store Byte stb rS,d(rA) The effective address is the sum (rA|0) + d. Register rS[24:31] is
stored into the byte in memory addressed by the EA.

Store Byte
Indexed

stbx rS,rA,rB The effective address is the sum (rA|0) + (rB). rS[24:31] is stored into
the byte in memory addressed by the EA.

Store Byte
with Update

stbu rS,d(rA) The effective address is the sum (rA|0) + d. rS[24:31] is stored into the
byte in memory addressed by the EA. The EA is placed into register
rA.

Store Byte
with Update
Indexed

stbux rS,rA,rB The effective address is the sum (rA|0) + (rB). rS[24:31] is stored into
the byte in memory addressed by the EA. The EA is placed into
register rA.

Store
Half Word

sth rS,d(rA) The effective address is the sum (rA|0) + d. rS[16:31] is stored into the
half-word in memory addressed by the EA.

Store
Half Word
Indexed

sthx rS,rA,rB The effective address (EA) is the sum (rA|0) + (rB). rS[16:31] is stored
into the half-word in memory addressed by the EA.

Store
Half Word
with Update

sthu rS,d(rA) The effective address is the sum (rA|0) + d. rS[16:31] is stored into the
half-word in memory addressed by the EA. The EA is placed into
register rA.

Store
Half Word
with Update
Indexed

sthux rS,rA,rB The effective address is the sum (rA|0) + (rB). rS[16:31] is stored into
the half-word in memory addressed by the EA. The EA is placed into
register rA.

Store Word stw rS,d(rA) The effective address is the sum (rA|0) + d. Register rS is stored into
the word in memory addressed by the EA.

Store Word
Indexed

stwx rS,rA,rB The effective address is the sum (rA|0) + (rB). rS is stored into the
word in memory addressed by the EA.

Store Word
with Update

stwu rS,d(rA) The effective address is the sum (rA|0) + d. Register rS is stored into
the word in memory addressed by the EA. The EA is placed into
register rA.

Store Word
with Update
Indexed

stwux rS,rA,rB The effective address is the sum (rA|0) + (rB). Register rS is stored
into the word in memory addressed by the EA. The EA is placed into
register rA.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-37

4.5.5 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of data to and from
the GPRs.

The PowerPC architecture defines the load multiple instruction (lmw) with rA in the
range of registers to be loaded as an invalid form. In the RCPU, however, if rA is
in the range of registers to be loaded, the instruction completes normally, and rA is
loaded from the memory location as follows:

rA ← MEM(EA+(rA–rS)*4, 4)

For integer load and store multiple instructions, the effective address must be a
multiple of four. If not, a system alignment exception is generated.

Table 4-15 Integer Load and Store with Byte Reversal Instructions

Name Mnemonic
Operand
Syntax

Operation

Load
Half Word
Byte-
Reverse
Indexed

lhbrx rD,rA,rB The effective address is the sum (rA|0) + (rB). Bits 0 to 7 of the
half-word in memory addressed by the EA are loaded into
rD[24:31]. Bits 8 to 15 of the half-word in memory addressed by the
EA are loaded into rD[16:23]. The rest of the bits in rD are cleared
to zero.

Load Word
Byte-
Reverse
Indexed

lwbrx rD,rA,rB The effective address is the sum (rA|0)+(rB). Bits 0–7 of the word
in memory addressed by the EA are loaded into rD[24:31]. Bits 8
to 15 of the word in memory addressed by the EA are loaded into
rD[16:23]. Bits 16 to 23 of the word in memory addressed by the
EA are loaded into rD[8:15]. Bits 24 to 31 of the word in memory
addressed by the EA are loaded into rD[0:7].

Store
Half Word
Byte-
Reverse
Indexed

sthbrx rS,rA,rB The effective address is the sum (rA|0)+(rB). rS[24:31] are stored
into bits 0 to 7 of the half-word in memory addressed by the EA.
rS[16:23] are stored into bits 8 to 15 of the half-word in memory
addressed by the EA.

Store Word
Byte-
Reverse
Indexed

stwbrx rS,rA,rB The effective address is the sum (rA|0)+(rB). rS[24:31] are stored
into bits 0 to 7 of the word in memory addressed by EA. Register
rS[16:23] are stored into bits 8 to 15 of the word in memory
addressed by the EA. Register rS[8:15] are stored into bits 16 to
23 of the word in memory addressed by the EA. rS[0:7] are stored
into bits 24 to 31 of the word in memory addressed by the EA.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-38 Revised 1 February 1999 REFERENCE MANUAL

4.5.6 Integer Move String Instructions

The integer move string instructions allow movement of data from memory to reg-
isters or from registers to memory without concern for alignment. These instruc-
tions can be used for a short move between arbitrary memory locations or to initiate
a long move between misaligned memory fields.

Load/store string indexed instructions of zero length have no effect, except that
load string indexed instructions of zero length may set register rD to an undefined
value.

The PowerPC architecture defines the load string instructions with rA in the range
of registers to be loaded as an invalid form. In the RCPU, however, if rA is in the
range of registers to be loaded, the instruction completes normally, and rA is load-
ed from memory.

Table 4-16 Integer Load and Store Multiple Instructions

Name Mnemonic Operand
Syntax

Operation

Load
Multiple
Word

lmw rD,d(rA) The effective address is the sum (rA|0)+d.

n = 32 –rD.

n consecutive words starting at EA are loaded into GPRs rD through
31. If the EA is not a multiple of four the alignment exception handler
is invoked.

Store
Multiple
Word

stmw rS,d(rA) The effective address is the sum (rA|0)+d.

n = (32 –rS).

n consecutive words starting at the EA are stored from GPRs rS
through 31.

If the EA is not a multiple of four the alignment exception handler is
invoked.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-39

Table 4-17 Integer Move String Instructions

Name Mnemonic
Operand
Syntax

Operation

Load String
Word
Immediate

lswi rD,rA,NB The EA is (rA|0).

Let n = NB if NB¦0, n = 32 if NB = 0; n is the number of bytes to load.
Let nr = (n/4); nr is the number of registers to receive data.

n consecutive bytes starting at the EA are loaded into GPRs rD
through rD + nr - 1. Bytes are loaded left to right in each register. The
sequence of registers wraps around to r0 if required. If the four bytes
of register rD + nr - 1 are only partially filled, the unfilled low-order
byte(s) of that register are cleared to zero.

The PowerPC architecture defines the load string instructions with rA
in the range of registers to be loaded as an invalid form. In the RCPU,
however, if rA is in the range of registers to be loaded, the instruction
completes normally, and rA is loaded from memory.

Load String
Word
Indexed

lswx rD,rA,rB The EA is the sum (rA|0)+(rB).

Let n = XER[25:31]; n is the number of bytes to load.

Let nr = CEIL(n/4); nr is the number of registers to receive data.

If n>0, n consecutive bytes starting at the EA are loaded into registers
rD through rD+nr-1.

Bytes are loaded left to right in each register. The sequence of
registers wraps around to r0 if required. If the four bytes of register
rD + nr - 1 are only partially filled, the unfilled low-order byte(s) of that
register are cleared to zero.

If n = 0, the contents of register rD is undefined.

The PowerPC architecture defines the load string instructions with rA
in the range of registers to be loaded as an invalid form. In the RCPU,
however, if rA is in the range of registers to be loaded, the instruction
completes normally, and rA is loaded from memory.

Store String
Word
Immediate

stswi rS,rA,NB The EA is (rA|0).

Let n = NB if NB¦0, n = 32 if NB = 0; n is the number of bytes to store.

Let nr = CEIL(n/4); nr is the number of registers to supply data.

n consecutive bytes starting at the EA are stored from register rS
through rS+nr-1.

Bytes are stored left to right from each register. The sequence of
registers wraps around through r0 if required.

Store String
Word
Indexed

stswx rS,rA,rB The effective address is the sum (rA|0)+(rB).

Let n = XER[25:31]; n is the number of bytes to store.

Let nr = CEIL(n/4); nr is the number of registers to supply data.

n consecutive bytes starting at the EA are stored from register rS
through rS+nr-1.

Bytes are stored left to right from each register. The sequence of
registers wraps around through r0 if required.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-40 Revised 1 February 1999 REFERENCE MANUAL

4.5.7 Floating-Point Load and Store Address Generation

Floating point load and store operations generate effective addresses using the
register indirect with immediate index mode and register indirect with index mode,
the details of which are described below.

4.5.7.1 Register Indirect with Immediate Index Addressing

Instructions using this addressing mode contain a signed 16-bit immediate index
(d operand) which is sign extended to 32 bits, and added to the contents of a gen-
eral purpose register specified in the instruction (rA operand) to generate the effec-
tive address. A zero in the rA operand causes a zero to be added to the immediate
index (d operand). This is shown in the instruction descriptions as (rA|0).

Figure 4-4 shows how an effective address is generated when using register indi-
rect with immediate index addressing.

Figure 4-4 Register Indirect with Immediate Index Addressing

4.5.7.2 Register Indirect with Index Addressing

Instructions using this addressing mode add the contents of two general-purpose
registers (specified in operands rA and rB) to generate the effective address. A
zero in the rA operand causes a zero to be added to the contents of general-pur-
pose register specified in operand rB. This is shown in the instruction descriptions
as (rA|0).

Figure 4-5 shows how an effective address is generated when using register indi-
rect with index addressing.

No

0 16 17 31

Sign Extension d

0

+

Store
Load

Yes

Instruction Encoding:
0 5 6 10 11 15 16 31

Opcode frD/frS rA d

0 31

Effective Address

rA = 0

Memory
Access

0 63

FPR (frD/frS)

0 31

GPR (rA)

REGIND/IMM IN ADD
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-41

Figure 4-5 Register Indirect with Index Addressing

4.5.8 Floating-Point Load Instructions

There are two basic forms of floating-point load instruction: single-precision and
double-precision formats. Because the FPRs support only floating-point, double-
precision format, single-precision floating-point load instructions convert single-
precision data to double-precision format before loading the operands into the tar-
get FPR. This conversion is described in 4.5.8.1 Double-Precision Conversion
for Floating-Point Load Instructions. Table 4-18 provides a summary of the
floating-point load instructions.

Table 4-18 Floating-Point Load Instructions

Name Mnemonic
Operand
Syntax

Operation

Load
Floating-
Point
Single-
Precision

lfs frD,d(rA) The effective address is the sum (rA|0)+d.

The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point
double-precision format and placed into register frD.

Load
Floating-
Point
Single-
Precision
Indexed

lfsx frD,rA,rB The effective address is the sum (rA|0)+(rB).

The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-
point double-precision and placed into register frD.

No

0 31

GPR (rA)

0

+

0 63

FPR (frD/frS)
Memory
Access

Store
Load

Yes

0 31

GPR (rB)

0 31

Effective Address

Instruction Encoding:
0 5 6 1011 15 16 20 21 30 31

rA = 0?

Opcode frD/frS rA rB Subopcode 0

REG IND/IN ADD
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-42 Revised 1 February 1999 REFERENCE MANUAL

4.5.8.1 Double-Precision Conversion for Floating-Point Load Instructions

The steps for converting from single- to double-precision and loading are as fol-
lows:

WORD[0:31] is the floating-point, single-precision operand accessed from
memory.

Load
Floating-
Point
Single-
Precision
with Update

lfsu frD,d(rA) The effective address is the sum (rA|0)+d.

The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point
double-precision (see 4.5.8.1 Double-Precision Conversion for
Floating-Point Load Instructions) and placed into register frD.

The EA is placed into the register specified by rA.

Load
Floating-
Point
Single-
Precision
with Update
Indexed

lfsux frD,rA,rB The effective address is the sum (rA|0)+(rB).

The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point
double-precision (see 4.5.8.1 Double-Precision Conversion for
Floating-Point Load Instructions) and placed into register frD.

The EA is placed into the register specified by rA.

Load
Floating-
Point
Double-
Precision

lfd frD,d(rA) The effective address is the sum (rA|0)+d.

The double-word in memory addressed by the EA is placed into
register frD.

Load
Floating-
Point
Double-
Precision
Indexed

lfdx frD,rA,rB The effective address is the sum (rA|0)+(rB).

The double-word in memory addressed by the EA is placed into
register frD.

Load
Floating-
Point
Double-
Precision
with Update

lfdu frD,d(rA) The effective address is the sum (rA|0)+d.

The double-word in memory addressed by the EA is placed into
register frD.

The EA is placed into the register specified by rA.

Load
Floating-
Point
Double-
Precision
with Update
Indexed

lfdux frD,rA,rB The effective address is the sum (rA|0)+(rB).

The double-word in memory addressed by the EA is placed into
register frD.

The EA is placed into the register specified by rA.

Table 4-18 Floating-Point Load Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-43

Normalized Operand

If WORD[1:8] >0 and WORD[1:8]<255
frD[0:1] < WORD[0:1]
frD[2] < ¬WORD[1]
frD[3] < ¬WORD[1]
frD[4]< ¬WORD[1]
frD[5:63] < WORD[2:31] || 290b0

Denormalized Operand

If WORD[1:8] =0 and WORD[9:31] ¦0
sign < WORD[0]
exp < -126
frac[0:52] < 0b0 || WORD[9:31] || 20b0
normalize the operand

Do while frac 0 =0
frac < frac[1:52] || 0b0
exp < exp - 1

End
frD[0] < sign
frD[1:11] < exp + 1023
frD[12:63] < frac[1:52]

Infinity / QNaN / SNaN / Zero

If WORD[1:8] =255 or WORD[1:31] =0
frD[1:1] < WORD[0:1]
frD[2] < WORD[1]
frD[3] < WORD[1]
frD[4] < WORD[1]
frD[5:63] < WORD[2:31] || 290b0

For double-precision floating-point load instructions, no conversion is required as
the data from memory is copied directly into the FPRs.

Many floating-point load instructions have an update form in which register rA is
updated with the EA. For these forms, the effective address is placed into register
rA and the memory element (word or double-word) addressed by the EA is loaded
into the floating-point register specified by operand frD.

4.5.8.2 Floating-Point Load Single Operands

If the operand falls in the range of a single denormalized number, the floating-point
assist exception handler is invoked. Refer to 6.11.10 Floating-Point Assist Ex-
ception (0x00E00) for additional information.

4.5.9 Floating-Point Store Instructions

There are two basic forms of the floating-point store instruction: single- and double-
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-44 Revised 1 February 1999 REFERENCE MANUAL

precision. Because the FPRs support only floating-point, double-precision format,
single-precision floating-point store instructions convert double-precision data to
single-precision format before storing the operands. The conversion steps are de-
scribed in 4.5.9.1 Double-Precision Conversion for Floating-Point Store In-
structions. Table 4-19 is a summary of the floating-point store instructions.

Table 4-19 Floating-Point Store Instructions

Name Mnemonic Operand
Syntax

Operation

Store
Floating-
Point
Single-
Precision

stfs frS,d(rA) The EA is the sum (rA|0)+d.

The contents of register frS is converted to single-precision and stored
into the word in memory addressed by the EA.

Store
Floating-
Point
Single-
Precision
Indexed

stfsx frS,rA,rB The EA is the sum (rA|0)+(rB).

The contents of register frS is converted to single-precision and stored
into the word in memory addressed by the EA.

Store
Floating-
Point
Single-
Precision
with Update

stfsu frS,d(rA) The EA is the sum (rA|0)+d.

The contents of register frS is converted to single-precision and stored
into the word in memory addressed by the EA.

The EA is placed into the register specified by operand rA.

Store
Floating-
Point
Single-
Precision
with Update
Indexed

stfsux frS,rA,rB The EA is the sum (rA|0)+(rB).

The contents of register frS is converted to single-precision and stored
into the word in memory addressed by the EA.

The EA is placed into the register specified by operand rA.

Store
Floating-
Point
Double-
Precision

stfd frS,d(rA) The effective address is the sum (rA|0)+d.

The contents of register frS is stored into the double-word in memory
addressed by the EA.

Store
Floating-
Point
Double-
Precision
Indexed

stfdx frS,rA,rB The EA is the sum (rA|0)+(rB).

The contents of register frS is stored into the double-word in memory
addressed by the EA.

Store
Floating-
Point
Double-
Precision
with Update

stfdu frS,d(rA) The effective address is the sum (rA|0)+d.

The contents of register frS is stored into the double-word in memory
addressed by the EA.

The EA is placed into register rA.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-45

4.5.9.1 Double-Precision Conversion for Floating-Point Store Instructions

The steps for converting single- to double-precision for floating-point store instruc-
tions are as follows:

Let WORD[0:31] be the word written in memory.

No Denormalization Required

If frS[1:11] > 896 or frS[1:63] = 0
WORD[0:1] < frS[0:1]
WORD[2:31]< frS[5:34]

Denormalization Required

If 874 ð frS[1:11] ð 896
sign < frS[0]
exp < frS[1:11] - 1023
frac < 0b1 || frS[12:63]
Denormalize operand

Do while exp < -126
frac <0 b0 || frac[0:62]
exp < exp + 1

End
WORD0 < sign
WORD[1:8] < 0x00
WORD[9:31] < frac[1:23]

Store
Floating-
Point
Double-
Precision
with Update
Indexed

stfdux frS,rA,rB The EA is the sum (rA|0)+(rB).

The contents of register frS is stored into the double-word in memory
addressed by EA.

The EA is placed into register rA.

Store
Floating-
Point as
Integer
Word

stfiwx frS,rA,rB The EA is the sum (rA|0)+(rB).

The contents of the low-order 32 bits of register frS are stored, without
conversion, into the word in memory addressed by EA.

Table 4-19 Floating-Point Store Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-46 Revised 1 February 1999 REFERENCE MANUAL

For double-precision floating-point store instructions, no conversion is required as
the data from the FPRs is copied directly into memory. Many floating-point store
instructions have an update form, in which register rA is updated with the effective
address. For these forms, if operand rA ¦ 0, the effective address is placed into reg-
ister rA.

Floating-point store instructions are listed in Table 4-19. Recall that rA, rB, and rD
denote GPRs, while frA, frB, frC, frS and frD denote FPRs.

4.5.9.2 Floating-Point Store-Single Operands

If the operand falls in the range of a single denormalized number, the floating-point
assist exception handler is invoked.

If the operand is zero, it is converted to the correct signed zero in single-precision
format.

If the operand is between the range of single denormalized and double denormal-
ized, it is considered a programming error. The hardware handles this case as if
the operand were single denormalized.

If the operand falls in the range of double denormalized numbers, it is considered
a programming error. The hardware handles this case as if the operand were zero.

The following check is done on the stored operand in order to determine whether
it is a denormalized single-precision operand and invoke the floating-point assist
exception handler:

(FRS[1:11]) ≠ 0 AND FRS[1:11] ð 896

Refer to 6.11.10 Floating-Point Assist Exception (0x00E00) for a complete de-
scription of handling denormalized floating-point numbers.

4.5.10 Floating-Point Move Instructions

Floating-point move instructions copy data from one floating-point register to an-
other with data modifications as described for each instruction. These instructions
do not modify the FPSCR. The condition register update option in these instruc-
tions controls the placing of result status into condition register field CR1. If the con-
dition register update option is enabled, then CR1 is set, otherwise CR1 is
unchanged. Floating-point move instructions are listed in Table 4-20.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-47

4.6 Flow Control Instructions

Branch instructions are executed by the BPU. Some of these instructions can redi-
rect instruction execution conditionally based on the value of bits in the condition
register. When the branch processor encounters one of these instructions, it scans
the instructions being processed by the various execution units to determine
whether an instruction in progress may affect the particular condition register bit. If
no interlock is found, the branch can be resolved immediately by checking the bit
in the condition register and taking the action defined for the branch instruction.

If an interlock is detected, the branch is considered unresolved and the direction of
the branch is predicted using static branch prediction as described in Table 4-21.
The interlock is monitored while instructions are fetched for the predicted branch.
When the interlock is cleared, the branch processor determines whether the pre-
diction was correct based on the value of the condition register bit. If the prediction
is correct, the branch is considered completed and instruction fetching continues.
If the prediction is incorrect, the prefetched instructions are purged, and instruction
fetching continues along the alternate path.

When the branch instructions contain immediate addressing operands, the target
addresses can be computed sufficiently ahead of the branch instruction that in-
structions can be prefetched along the target path. If the branch instructions use
the link and count registers, instructions along the target path can be prefetched if
the link or count register is loaded sufficiently ahead of the branch instruction.

Table 4-20 Floating-Point Move Instructions

Name Mnemonic Operand
Syntax

Operation

Floating-
Point Move
Register

fmr
fmr.

frD,frB The contents of register frB is placed into frD.

fmr Floating-Point Move Register
fmr. Floating-Point Move Register with CR Update. The dot

suffix enables the update of the condition register.

Floating-
Point
Negate

fneg
fneg.

frD,frB The contents of register frB with bit 0 inverted is placed into register
frD.

fneg Floating-Point Negate
fneg. Floating-Point Negate with CR Update. The dot suffix

enables the update of the condition register.

Floating-
Point
Absolute
Value

fabs
fabs.

frD,frB The contents of frB with bit 0 cleared to zero is placed into frD.

fabs Floating-Point Absolute Value
fabs. Floating-Point Absolute Value with CR Update. The dot

suffix enables the update of the condition register.

Floating-
Point
Negative
Absolute
Value

fnabs
fnabs.

frD,frB The contents of frB with bit 0 set to one is placed into frD.

fnabs Floating-Point Negative Absolute Value
fnabs. Floating-Point Negative Absolute Value with CR Update.

The dot suffix enables the update of the condition
register.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-48 Revised 1 February 1999 REFERENCE MANUAL

Branching can be conditional or unconditional, and the return address can option-
ally be provided. If the return address is to be provided, the effective address of the
instruction following the branch instruction is placed in the link register after the
branch target address has been computed. This is done regardless of whether the
branch is taken.

4.6.1 Branch Instruction Address Calculation

Branch instructions can change the sequence of instruction execution. Instruction
addresses are always assumed to be on word boundaries; therefore the processor
ignores the two low-order bits of the generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction ad-
dress using the following addressing modes:

• Branch relative
• Branch to absolute address
• Branch conditional to relative address
• Branch conditional to absolute address
• Branch conditional to link register
• Branch conditional to count register

4.6.1.1 Branch Relative Address Mode

Instructions that use branch relative addressing generate the next instruction ad-
dress by sign extending and appending 0b00 to the immediate displacement oper-
and (LI) and adding the resultant value to the current instruction address. Branches
using this address mode have the absolute addressing option disabled (AA, bit 30
in the instruction encoding, equals zero). If the link register update option is en-
abled (LK, bit 31 in the instruction encoding, equals one), the effective address of
the instruction following the branch instruction is placed in the link register.

Figure 4-6 shows how the branch target address is generated when using the
branch relative addressing mode.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-49

Figure 4-6 Branch Relative Addressing

4.6.1.2 Branch Conditional Relative Address Mode

If the branch conditions are met, instructions that use the branch conditional rela-
tive address mode generate the next instruction address by sign extending and ap-
pending 0b00 to the immediate displacement operand (BD) and adding the
resultant value to the current instruction address. Branches using this address
mode have the absolute addressing option disabled (AA, bit 30 in the instruction
encoding, equals zero). If the link register update option is enabled (LK, bit 31 in
the instruction encoding, equals one), the effective address of the instruction fol-
lowing the branch instruction is placed in the link register.

Figure 4-7 shows how the branch target address is generated when using the
branch conditional relative addressing mode.

0 5 6 29 30 31

0x12 LI AA LK

0 31

Branch Target Address

Instruction Encoding:

+
0 31

Current Instruction Address

0 5 6 29 30 31

LI 0 0Sign Extension

BR ADDR
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-50 Revised 1 February 1999 REFERENCE MANUAL

Figure 4-7 Branch Conditional Relative Addressing

4.6.1.3 Branch to Absolute Address Mode

Instructions that use branch to absolute address mode generate the next instruc-
tion address by sign extending and appending 0b00 to the LI operand. Branches
using this address mode have the absolute addressing option enabled (AA, bit 30
in the instruction encoding, equals one). If the link register update option is enabled
(LK, bit 31 in the instruction encoding, equals one), the effective address of the in-
struction following the branch instruction is placed in the link register.

Figure 4-8 shows how the branch target address is generated when using the
branch to absolute address mode.

Figure 4-8 Branch to Absolute Addressing

0 5 6 1011 15 16 30 31

0x10 BO BI BD AA LK

Yes

0 31

Branch Target Address

Instruction Encoding:

No

+
0 31

Current Instruction Address

0 31

Next Sequential Instruction Address

0 16 17 29 30 31

Sign Extension BD 0 0

Condition
True?

BR COND REL ADDR

0 5 6 29 30 31

0x12 LI AA LK

0 5 6 29 30 31

0 29 30 31

Branch Target Address

Instruction Encoding:

LI 0 0Sign Extension

0 0
BR TO ABS
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-51

4.6.1.4 Branch Conditional to Absolute Address Mode

If the branch conditions are met, instructions that use the branch conditional to ab-
solute address mode generate the next instruction address by sign extending and
appending 0b00 to the BD operand. Branches using this address mode have the
absolute addressing option enabled (AA, bit 30 in the instruction encoding, equals
one). If the link register update option is enabled (LK, bit 31 in the instruction en-
coding, equals one), the effective address of the instruction following the branch
instruction is placed in the link register.

Figure 4-9 shows how the branch target address is generated when using the
branch conditional to absolute address mode.

Figure 4-9 Branch Conditional to Absolute Addressing

4.6.1.5 Branch Conditional to Link Register Address Mode

If the branch conditions are met, the branch conditional to link register instruction
generates the next instruction address by fetching the contents of the link register
and clearing the two low order bits to zero. If the link register update option is en-
abled (LK, bit 31 in the instruction encoding, equals one), the effective address of
the instruction following the branch instruction is placed in the link register.

Figure 4-10 shows how the branch target address is generated when using the
branch conditional to link register address mode.

0 5 6 1011 15 16 29 30 31

0x10 BO BI BD AA LK

0 16 17 29 30 31

0 29 30 31

Branch Target Address

Instruction Encoding:

No
0 31

Next Sequential Instruction Address

Sign Extension BD 0 0

Condition
True?

Yes

0 0
BR COND TO ABS
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-52 Revised 1 February 1999 REFERENCE MANUAL

Figure 4-10 Branch Conditional to Link Register Addressing

4.6.1.6 Branch Conditional to Count Register

If the branch conditions are met, the branch conditional to count register instruction
generates the next instruction address by fetching the contents of the count regis-
ter and clearing the two low order bits to zero. If the link register update option is
enabled (LK, bit 31 in the instruction encoding, equals one), the effective address
of the instruction following the branch instruction is placed in the link register.

Figure 4-11 shows how the branch target address is generated when using the
branch conditional to count register address mode.

0 5 6 10 11 15 16 20 21 30 31

Condition
True?

0 0

30 31

LR

0 29

0 31

Branch Target Address

Instruction Encoding:

No
0 31

Next Sequential Instruction Address

Yes

0x13 BO BI 0 0 0 0 0 0x10 LK

||

BR COND TO LR ADDR
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-53

Figure 4-11 Branch Conditional to Count Register Addressing

4.6.2 Conditional Branch Control

For branch conditional instructions, the BO and BI operands specify the conditions
under which the branch is taken.

4.6.2.1 BO Operand and Branch Prediction

The encodings for the BO operand are shown in Table 4-21.

0 0

30 31

CTR

0 29

0 31

Branch Target Address

Instruction Encoding:

Condition
True?

No

Yes

0 31

Next Sequential Instruction Address

0 5 6 1011 15 16 20 21 30 31

0x13 BO BI 00000 0x210 LK

||

BR COND TO COUNT REG
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-54 Revised 1 February 1999 REFERENCE MANUAL

The first four bits of the BO operand specify how the branch is affected by or affects
the condition and count registers. The fifth bit, shown in Table 4-21 as having the
value y, is used for branch prediction. The branch always encoding of the BO op-
erand does not have a y bit.

Clearing the y bit to zero indicates that the following behavior is likely:

• For bcx with a negative value in the displacement operand, the branch is tak-
en.

• In all other cases (bcx with a non-negative value in the displacement operand,
bclrx, or bcctrx), the branch is not taken.

Setting the y bit to one reverses the preceding indications.

Note that branch prediction occurs for branches to the LR or CTR only if the target
address is ready.

The sign of the displacement operand is used as described above even if the target
is an absolute address. The default value for the y bit should be zero, and should
only be set to one if software has determined that the prediction corresponding to
y = one is more likely to be correct than the prediction corresponding to y = zero.
Software that does not compute branch predictions should set the y bit to zero.

For all three of the branch conditional instructions, the branch should be predicted
to be taken if the value of the following expression is one, and to fall through if the
value is zero.

((BO[0] & BO[2]) | S) ⊕ BO[4]

In the expression above, S (bit 16 of the branch conditional instruction coding) is

Table 4-21 BO Operand Encodings

BO1

NOTES:
1. The z indicates a bit that must be zero; otherwise, the instruction form is invalid. The y bit provides a hint

about whether a conditional branch is likely to be taken.

Description

0000y Decrement the CTR, then branch if the decremented CTR ¦ 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR ¦ 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR ¦ 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-55

the sign bit of the displacement operand if the instruction has a displacement op-
erand and is zero if the operand is reserved. BO[4] is the y bit, or zero for the
branch always encoding of the BO operand. (Advantage is taken of the fact that,
for bclrx and bcctrx, bit 16 of the instruction is part of a reserved operand and
therefore must be zero.)

4.6.2.2 BI Operand

The 5-bit BI operand in branch conditional instructions specifies which of the 32 bits
in the CR represents the condition to test.

4.6.2.3 Simplified Mnemonics for Conditional Branches

To provide a simplified mnemonic for every possible combination of BO and BI
fields would require 210 = 1024 mnemonics, most of which would be only margin-
ally useful. The abbreviated set found in E.5 Simplified Mnemonics for Branch
Instructions is intended to cover the most useful cases. Unusual cases can be
coded using a basic branch conditional mnemonic (bc, bclr, bcctr) with the condi-
tion to be tested specified as a numeric operand.

4.6.3 Branch Instructions

Table 4-22 describes the RCPU branch instructions.

Table 4-22 Branch Instructions

Name Mnemonic Operand
Syntax

Operation

Branch b
ba
bl
bla

imm_addr b Branch. Branch to the address computed as the sum of
the immediate address and the address of the current
instruction.

ba Branch Absolute. Branch to the absolute address
specified.

bl Branch then Link. Branch to the address computed as the
sum of the immediate address and the address of the
current instruction. The instruction address following this
instruction is placed into the link register (LR).

bla Branch Absolute then Link. Branch to the absolute
address specified. The instruction address following this
instruction is placed into the link register (LR).
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-56 Revised 1 February 1999 REFERENCE MANUAL

4.6.4 Condition Register Logical Instructions

Similar to the system call (sc) instruction, condition register logical instructions,
shown in Table 4-23, and the move condition register field (mcrf) instruction are
defined as flow control instructions, although they are executed by the IU.

Note that if the link register update option (LR) is enabled for any of these instruc-
tions, the PowerPC architecture defines these forms of the instructions as invalid.

Branch
Conditional

bc
bca
bcl
bcla

BO,BI,
target_addr

The BI operand specifies the bit in the condition register (CR) to be
used as the condition of the branch. The BO operand is used as de-
scribed in Table 4-21.
bc Branch Conditional. Branch conditionally to the address

computed as the sum of the immediate address and the
address of the current instruction.

bca Branch Conditional Absolute. Branch conditionally to the
absolute address specified.

bcl Branch Conditional then Link. Branch conditionally to the
address computed as the sum of the immediate address
and the address of the current instruction. The instruction
address following this instruction is placed into the link
register.

bcla Branch Conditional Absolute then Link. Branch
conditionally to the absolute address specified. The
instruction address following this instruction is placed into
the link register.

Branch
Conditional
to Link
Register

bclr
bclrl

BO,BI The BI operand specifies the bit in the condition register to be used as
the condition of the branch. The BO operand is used as described in
Table 5–21.

bclr Branch Conditional to Link Register. Branch conditionally
to the address in the link register.

bclrl Branch Conditional to Link Register then Link. Branch
conditionally to the address specified in the link register.
The instruction address following this instruction is then
placed into the link register.

Branch
Conditional
to Count
Register

bcctr
bcctrl

BO,BI The BI operand specifies the bit in the condition register to be used as
the condition of the branch. The BO operand is used as described in
Table 5–21.

bcctr Branch Conditional to Count Register. Branch
conditionally to the address specified in the count
register.

bcctrl Branch Conditional to Count Register then Link. Branch
conditionally to the address specified in the count
register. The instruction address following this instruction
is placed into the link register.

Note: If the “decrement and test CTR” option is specified (BO[2]=0),
the instruction form is invalid.

Table 4-22 Branch Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-57

Refer to E.6 Simplified Mnemonics for Condition Register Logical Instruc-
tions for simplified mnemonics.

4.6.5 System Linkage Instructions

This section describes the system linkage instructions (see Table 4-29). The sys-
tem call (sc) instruction permits a program to call on the system to perform a ser-
vice and the system to return from performing a service or from processing an
exception.

Table 4-23 Condition Register Logical Instructions

Name Mnemonic Operand
Syntax

Operation

Condition
Register AND

crand crbD,crbA,crbB The bit in the condition register specified by crbA is ANDed
with the bit in the condition register specified by crbB. The
result is placed into the condition register bit specified by crbD.

Condition
Register OR

cror crbD,crbA,crbB The bit in the condition register specified by crbA is ORed with
the bit in the condition register specified by crbB. The result is
placed into the condition register bit specified by crbD.

Condition
Register XOR

crxor crbD,crbA,crbB The bit in the condition register specified by crbA is XORed
with the bit in the condition register specified by crbB. The
result is placed into the condition register bit specified by crbD.

Condition
Register
NAND

crnand crbD,crbA,crbB The bit in the condition register specified by crbA is ANDed
with the bit in the condition register specified by crbB. The
complemented result is placed into the condition register bit
specified by crbD.

Condition
Register NOR

crnor crbD,crbA,crbB The bit in the condition register specified by crbA is ORed with
the bit in the condition register specified by crbB. The
complemented result is placed into the condition register bit
specified by crbD.

Condition
Register
Equivalent

creqv crbD,crbA,
crbB

The bit in the condition register specified by crbA is XORed
with the bit in the condition register specified by crbB. The
complemented result is placed into the condition register bit
specified by crbD.

Condition
Register AND
with
Complement

crandc crbD,crbA,
crbB

The bit in the condition register specified by crbA is ANDed
with the complement of the bit in the condition register specified
by crbB and the result is placed into the condition register bit
specified by crbD.

Condition
Register OR
with
Complement

crorc crbD,crbA,
crbB

The bit in the condition register specified by crbA is ORed with
the complement of the bit in the condition register specified by
crbB and the result is placed into the condition register bit
specified by crbD.

Move
Condition
Register Field

mcrf crfD,crfS The contents of crfS are copied into crfD. No other condition
register fields are changed.
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-58 Revised 1 February 1999 REFERENCE MANUAL

4.6.6 Simplified Mnemonics for Branch and Flow Control Instructions

To simplify assembly language programming, a set of simplified mnemonics and
symbols is provided for the most frequently used forms of branch conditional, trap,
and certain other instructions; for more information, see APPENDIX E SIMPLI-
FIED MNEMONICS.

Mnemonics are provided so that branch conditional instructions can be coded with
the condition as part of the instruction mnemonic rather than as a numeric operand.
Some of these are shown as examples with the branch instructions.

PowerPC-compliant assemblers provide the mnemonics and symbols listed here
and possibly others.

4.6.7 Trap Instructions

The trap instructions shown in Table 4-25 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system
trap handler is invoked. If the tested conditions are not met, instruction execution
continues normally.

Table 4-24 System Linkage Instructio ns

Name Mnemonic Operand
Syntax

Operand Syntax

System Call sc — When executed, the effective address of the instruction following the
sc instruction is placed into SRR0. MSR[16:31] are placed into
SRR1[16:31], and SRR1[0:15] are set to undefined values. Then a
system call exception is generated.

The exception causes the next instruction to be fetched from offset
0xC00 from the base physical address indicated by the new setting of
MSR[IP]. Refer to 6.11.8 System Call Exception (0x00C00) for more
information.

This instruction is context synchronizing.

Return from
Interrupt

rfi — SRR1[16:31] are placed into MSR[16:31], then the next instruction is
fetched, under control of the new MSR value, from the address
SRR0[0:29] || 0b00.

This is a supervisor-level, context-synchronizing instruction.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-59

The trap instructions evaluate a trap condition as follows:

The contents of register rA is compared with either the sign-extended SIMM field
or with the contents of register rB, depending on the trap instruction. The compar-
ison results in five conditions which are ANDed with operand TO. If the result is not
zero, the trap exception handler is invoked. These conditions are provided in Table
4-26.

A standard set of codes has been adopted for the most common combinations of
trap conditions. Refer to E.7 Simplified Mnemonics for Trap Instructions for a
description of these codes and of simplified mnemonics employing them.

4.7 Processor Control Instructions

Processor control instructions are used to read from and write to the machine state
register (MSR), condition register (CR), and special purpose registers (SPRs).

4.7.1 Move to/from Machine State Register and Condition Register Instructions

Table 4-27 summarizes the instructions for reading from or writing to the machine
state register and the condition register.

Table 4-25 Trap Instructions

Name Mnemonic Operand
Syntax

Operand Syntax

Trap Word
Immediate

twi TO,rA,SIMM The contents of rA is compared with the sign-extended SIMM oper-
and. If any bit in the TO operand is set to one and its corresponding
condition is met by the result of the comparison, then the system trap
handler is invoked.

Trap Word tw TO,rA,rB The contents of rA is compared with the contents of rB. If any bit in the
TO operand is set to one and its corresponding condition is met by the
result of the comparison, then the system trap handler is invoked.

Table 4-26 TO Operand Bit Encoding

TO Bit ANDed with Condition

0 Less than

1 Greater than

2 Equal

3 Logically less than

4 Logically greater than
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-60 Revised 1 February 1999 REFERENCE MANUAL

4.7.2 Move to/from Special Purpose Register Instructions

Simplified mnemonics are provided for the mtspr and mfspr instructions so they
can be coded with the SPR name as part of the mnemonic rather than as a numeric
operand. Some of these are shown as examples with the two instructions. (See Ta-
ble 4-28.) Refer to E.8 Simplified Mnemonics for Special-Purpose Registers
for a complete list of these mnemonics.

Table 4-27 Move to/from Machine State Register/Condition Register Instructions

Name Mnemonic Operand
Syntax

Operation

Move to
Condition
Register
Fields

mtcrf CRM,rS The contents of rS are placed into the condition register under control
of the field mask specified by operand CRM. The field mask identifies
the 4-bit fields affected. Let i be an integer in the range 0-7. If CRM(i)
= 1, then CR field i (CR bits 4*i through 4*i+3) is set to the contents of
the corresponding field of rS.

Move to
Condition
Register
from XER

mcrxr crfD The contents of XER[0:3] are copied into the condition register field
designated by crfD. All other fields of the condition register remain
unchanged. XER[0:3] is cleared to zero.

Move from
Condition
Register

mfcr rD The contents of the condition register are placed into rD.

Move to
Machine
State
Register

mtmsr rS The contents of rS are placed into the MSR.

This instruction is a supervisor-level instruction and is context
synchronizing.

Move from
Machine
State
Register

mfmsr rD The contents of the MSR are placed into rD. This is a supervisor-level
instruction.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-61

For mtspr and mfspr instructions, the SPR number coded in assembly language
does not appear directly as a 10-bit binary number in the instruction. The number
coded is split into two 5-bit halves that are reversed in the instruction, with the high-
order five bits appearing in bits [16:20] of the instruction and the low-order five bits
in bits [11:15].

Table 4-29 summarizes SPR encodings to which the RCPU permits user-level ac-
cess.

Table 4-30 summarizes SPR encodings that the RCPU permits at the supervisor
level.

Table 4-28 Move to/from Special Purpose Register Instructions

Name Mnemonic Operand
Syntax

Operation

Move to
Special
Purpose
Register

mtspr SPR,rS The SPR field denotes a special purpose register, encoded as shown
in Table 4-29 and Table 4-30 below. The contents of rS are placed
into the designated SPR.

Simplified mnemonic examples:

mtxer rA mtspr 1,rA
mtlr rA mtspr 8,rA
mtctr rA mtspr 9,rA

Move from
Special
Purpose
Register

mfspr rD,SPR The SPR field denotes a special purpose register, encoded as shown
in Table 4-29 and Table 4-30 below. The contents of the designated
SPR are placed into rD.

Simplified mnemonic examples:

mfxer rA mfspr rA,1
mflr rA mfspr rA,8
mfctr rA mfspr rA,9

Table 4-29 User-Level SPR Encodings

Decimal
Value in rD SPR[0:4] SPR[5:9]

Register
Name

Description

1 0b00001 00000 XER Integer exception register

8 0b01000 00000 LR Link register

9 0b01001 00000 CTR Count register

268 0b01100 01000 TBL Time base — lower (read only)

269 0b01101 01000 TBU Time base — upper (read only)
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-62 Revised 1 February 1999 REFERENCE MANUAL

Table 4-31 summarizes SPR encodings that the RCPU permits in debug mode, or
in supervisor mode when debug mode is not enabled out of reset.

Table 4-30 Supervisor-Level SPR Encodings

Decimal
Value in rD1

NOTES:
1. If the SPR field contains any value other than one of the values shown in Table 4-30, the instruction form

is invalid. For an invalid instruction form in which SPR[0]=1, either a privileged instruction type program ex-
ception or software emulation exception is generated if the instruction is executed by a user-level program.
(Refer to the discussion of these two exception types in SECTION 6 EXCEPTIONS for more information.)
If the instruction is executed by a supervisor-level program, the software emulation exception handler is in-
voked.
SPR[0] = 1 if and only if writing the register is supervisor-level. Execution of this instruction specifying a
defined and supervisor-level register when MSR[PR] = 1 results in a privileged instruction type program ex-
ception.

SPR[0:4] SPR[5:9] Register
Name

Description

18 0b10010 00000 DSISR DAE/source instruction service register

19 0b10011 00000 DAR Data address register

22 0b10110 00000 DEC Decrementer register

26 0b11010 00000 SRR0 Save and restore register 0

27 0b11011 00000 SRR1 Save and restore register 1

80 0b10000 00010 EIE External interrupt enable (write only)

81 0b10001 00010 EID External interrupt disable (write only)

82 0b10010 00010 NRI Non-recoverable exception

272 0b10000 01000 SPRG0 SPR general 0

273 0b10001 01000 SPRG1 SPR general 1

274 0b10010 01000 SPRG2 SPR general 2

275 0b10011 01000 SPRG3 SPR general 3

284 0b11100 01000 TBL2

2. The PowerPC architecture defines the encodings as TBRs, although it is the same as the SPR encodings.
Moving to the time base is performed by the mtspr instruction, and moving from the time base is performed
by the mftb instruction.

Time base — lower (write only)

285 0b11101 01000 TBU2 Time base — upper (write only)

287 0b11111 01000 PVR Processor version register (read only)

560 0b10000 10001 ICCST I-Cache Control and Status Register

561 0b10001 10001 ICADR I-cache address register

562 0b10010 10001 ICDAT I-cache data port

1022 0b11110 11111 FPECR Floating-point exception cause register
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-63

4.7.3 Move from Time Base Instruction

The mftb instruction is used to read from the time base register. The instruction is
permitted at the user or supervisor privilege level.

Simplified mnemonics for the mftb instruction allow it to be coded with the TBR
name as part of the mnemonic. Refer to E.8 Simplified Mnemonics for Special-
Purpose Registers for details. Notice that the simplified mnemonics for move from
time base and move from time base upper are variants of the mftb instruction rath-
er than of mfspr. The mftb instruction serves as both a basic and simplified mne-
monic. Assemblers recognize an mftb mnemonic with two operands as the basic
form and an mftb mnemonic with one operand as the simplified form.

Table 4-31 Development Support SPR Encodings

Decimal
Value in rD

SPR[0:4] SPR[5:9] Register
Name

Description

144 0b10000 00010 CMPA Comparator A Value Register

145 0b10001 00010 CMPB Comparator B Value Register

146 0b10010 00010 CMPC Comparator C Value Register

147 0b10011 00010 CMPD Comparator D Value Register

148 0b10100 00010 ECR Exception Cause Register

149 0b10101 00010 DER Debug Enable Register

150 0b10110 00010 COUNTA Breakpoint Counter A Value and Control

151 0b10111 00010 COUNTB Breakpoint Counter B Value and Control

152 0b11000 00010 CMPE Comparator E Value Register

153 0b11001 00010 CMPF Comparator F Value Register

154 0b11010 00010 CMPG Comparator G Value Register

155 0b11011 00010 CMPH Comparator H Value Register

156 0b11100 00010 LCTRL1 L-Bus Support Comparators Control 1

157 0b11101 00010 LCTRL2 L-Bus Support Comparators Control 2

158 0b11110 00010 ICTRL I-Bus Support Control

159 0b11111 00010 BAR Breakpoint Address Register

630 0b10110 10011 DPDR Development Port Data Register
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-64 Revised 1 February 1999 REFERENCE MANUAL

Table 4-33 summarizes the time base (TBL/TBU) register encodings to which
user-level access read access (using the mftb instruction) is permitted.

Writing to the time base is permitted at the supervisor privilege level only and is ac-
complished with the mtspr instruction (see 4.7.2 Move to/from Special Purpose
Register Instructions) or the mttb simplified mnemonic (see E.8 Simplified Mne-
monics for Special-Purpose Registers).

4.8 Memory Synchronization Instructions

Memory synchronization instructions can control the order in which memory oper-
ations are completed with respect to asynchronous events and the order in which
memory operations are seen by other processors and by other mechanisms that
access memory.

The synchronize (sync) instruction delays execution of subsequent instructions
until all previous instructions have completed (i.e., all internal pipeline stages and
instruction buffers have emptied), all previous memory accesses are performed
globally, and the sync or eieio operation is broadcast onto the external bus inter-
face. This set of conditions is referred to as execution serialization (or simply seri-
alization).

The enforce in-order execution of I/O (eieio) instruction serializes load/store in-
structions. No load or store instruction following eieio is issued until all loads and
stores preceding eieio have completed execution.

The instruction synchronize (isync) instruction causes the RCPU to halt instruction
fetch until all instructions currently in the processor have completed execution, i.e.,
all issued instructions as well as the pre-fetched instructions waiting to be issued.
This condition is referred to as fetch serialization.

Table 4-32 Move from Time Base Instruction

Name Mnemonic Operand
Syntax

Operation

Move from
Time Base

mftb rD,TBR The TBR field denotes either the time base lower (TBL) or time base
upper (TBU), encoded as shown in Table 4-33. The contents of the
designated register are copied to rD.

Table 4-33 User-Level TBR Encodings

Decimal
Value in rD

SPR[0:4] SPR[5:9] Register
Name

Description

268 0b01100 01000 TBL Time base lower (read only)

269 0b01101 01000 TBU Time base upper (read only)
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-65

The proper use of the load word and reserve indexed (lwarx) and store word con-
ditional indexed (stwcx.) instructions allows programmers to emulate common
semaphore operations such as “test and set”, “compare and swap”, “exchange
memory”, and “fetch and add”. Examples of these semaphore operations can be
found in APPENDIX D SYNCHRONIZATION PROGRAMMING EXAMPLES. The
lwarx instruction must be paired with an stwcx. instruction with the same effective
address used for both instructions of the pair. The reservation granularity is 32
bytes.

The concept behind the use of the lwarx and stwcx. instructions is that a
processor may load a semaphore from memory, compute a result based on the
value of the semaphore, and conditionally store it back to the same location. The
conditional store is performed based on the existence of a reservation established
by the preceding lwarx. If the reservation exists when the store is executed, the
store is performed and a bit is set to one in the condition register. If the reservation
does not exist when the store is executed, the target memory location is not modi-
fied and a bit is set to zero in the condition register.

The lwarx and stwcx. primitives allow software to read a semaphore, compute a
result based on the value of the semaphore, store the new value back into the
semaphore location only if that location has not been modified since it was first
read, and determine if the store was successful. If the store was successful, the
sequence of instructions from the read of the semaphore to the store that updated
the semaphore appear to have been executed atomically (that is, no other proces-
sor or mechanism modified the semaphore location between the read and the up-
date), thus providing the equivalent of a real atomic operation. However, other
processors may have read from the location during this operation.

The lwarx and stwcx. instructions require the EA to be aligned. Exception handling
software should not attempt to emulate a misaligned lwarx or stwcx. instruction,
because there is no correct way to define the address associated with the reserva-
tion.

In general, the lwarx and stwcx. instructions should be used only in system pro-
grams, which can be invoked by application programs as needed.

At most one reservation exists at a time on a given processor. The address asso-
ciated with the reservation can be changed by a subsequent lwarx instruction. The
conditional store is performed based on the existence of a reservation established
by the preceding lwarx regardless of whether the address generated by the lwarx
matches that generated by the stwcx. A reservation held by the processor is
cleared by any of the following:

• execution of an stwcx. instruction to any address
• execution of an sc instruction
• execution of an instruction that causes an exception
• occurrence of an asynchronous exception
• attempt by some other device to modify a location in the reservation granular-

ity (32 bytes)
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-66 Revised 1 February 1999 REFERENCE MANUAL

When an lwarx instruction is executed, the load/store unit issues a cycle to the
load/store bus with a special attribute.

In case of an external memory access, this attribute causes the external bus inter-
face (EBI) to set a storage reservation on the cycle address. The EBI must either
snoop the external bus or receive some indication from external snoop logic in case
the storage reservation is broken by some other processor accessing the same lo-
cation. When an stwcx. instruction to external memory is executed, the EBI checks
if the reservation was lost. If so, the cycle is blocked from going to the external bus,
and the EBI notifies the LSU that the stwcx. instruction did not complete.

The RCPU memory synchronization instructions are summarized in Table 4-34.

Table 4-34 Memory Synchronization Instructions

Name Mnemonic Operand
Syntax

Operation

Enforce In-
Order
Execution of
I/O

eieio — The eieio instruction provides an ordering function for the effects of
load and store instructions executed by a given processor. Executing
an eieio instruction ensures that all memory accesses previously
initiated by the given processor are complete with respect to main
memory before allowing any memory accesses subsequently initiated
by the given processor to access main memory.

Instruction
Synchronize

isync — This instruction causes instruction fetch to be halted until all
instructions currently in the processor have completed execution, i.e.,
all issued instructions as well as the pre-fetched instructions waiting to
be issued.

This instruction has no effect on other processors or on their caches.

Load Word
and
Reserve
Indexed

lwarx rD,rA,rB The effective address is the sum (rA|0) + (rB). The word in memory
addressed by the EA is loaded into register rD.

This instruction creates a reservation for use by an stwcx. instruction.
An address computed from the EA is associated with the reservation,
and replaces any address previously associated with the reservation.

The EA must be a multiple of four. If it is not, the alignment exception
handler is invoked.

Store Word
Conditional
Indexed

stwcx. rS,rA,rB The effective address is the sum (rA|0) + (rB).

If a reservation exists, register rS is stored into the word in memory
addressed by the EA and the reservation is cleared.

If a reservation does not exist, the instruction completes without
altering memory.

The EQ bit in the condition register field CR0 is modified to reflect
whether the store operation was performed (i.e., whether a reservation
existed when the stwcx. instruction began execution). If the store was
completed successfully, the EQ bit is set to one.

The EA must be a multiple of four; otherwise, the alignment exception
handler is invoked.
RCPU ADDRESSING MODES AND INSTRUCTION SET SUMMARY MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 4-67

4.9 Memory Control Instructions

This section describes memory control instructions. In the RCPU, only one such
instruction is supported: Instruction cache block invalidate (icbi).

4.10 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provid-
ed for some of the most frequently used instructions such as no-op, load immedi-
ate, load address, move register, and complement register). PowerPC compliant
assemblers provide the simplified mnemonics listed in E.9 Recommended Sim-
plified Mnemonics. Programs written to be portable across the various assem-
blers for the PowerPC architecture should not assume the existence of mnemonics
not defined in this manual.

For a complete list of simplified mnemonics, see APPENDIX E SIMPLIFIED MNE-
MONICS.

Synchronize sync — Executing a sync instruction ensures that all instructions previously
initiated by the given processor appear to have completed before any
subsequent instructions are initiated by the given processor. When the
sync instruction completes, all memory accesses initiated by the
given processor prior to the sync will have been performed with
respect to all other mechanisms that access memory. The sync
instruction can be used to ensure that the results of all stores into a
data structure, performed in a critical section of a program, are seen
by other processors before the data structure is seen as unlocked.

Table 4-35 Instruction Cache Management Instruction

Name Mnemonic
Operand
Syntax Operation

Instruction
Cache
Block
Invalidate

icbi rA,rB The effective address is the sum (rA|0) + (rB).

This instruction causes any subsequent fetch request for an
instruction in the block to not find the block in the cache and to be sent
to storage. The instruction causes the target block in the instruction
cache of the executing processor to be marked invalid. If the target
block is not accessible to the program for loads, the system data
storage error handler may be invoked.

This is a supervisor-level instruction.

Table 4-34 Memory Synchronization Instructions (Continued)

Name Mnemonic Operand
Syntax

Operation
 MOTOROLA ADDRESSING MODES AND INSTRUCTION SET SUMMARY RCPU

4-68 Revised 1 February 1999 REFERENCE MANUAL

	SECTION 4 ADDRESSING MODES AND INSTRUCTION SET SUMMARY
	4.1 Memory Addressing
	4.1.1 Memory Operands
	4.1.2 Addressing Modes and Effective Address Calculation

	4.2 Classes of Instructions
	4.2.1 Definition of Boundedly Undefined
	4.2.2 Defined Instruction Class
	4.2.3 Illegal Instruction Class
	4.2.4 Reserved Instruction Class

	4.3 Integer Instructions
	4.3.1 Integer Arithmetic Instructions
	4.3.2 Integer Compare Instructions
	4.3.3 Integer Logical Instructions
	4.3.4 Integer Rotate and Shift Instructions
	4.3.4.1 Integer Rotate Instructions
	4.3.4.2 Integer Shift Instructions

	4.4 Floating-Point Instructions
	4.4.1 Floating-Point Arithmetic Instructions
	4.4.2 Floating-Point Multiply-Add Instructions
	4.4.3 Floating-Point Rounding and Conversion Instructions
	4.4.4 Floating-Point Compare Instructions
	4.4.5 Floating-Point Status and Control Register Instructions

	4.5 Load and Store Instructions
	4.5.1 Integer Load and Store Address Generation
	4.5.1.1 Register Indirect with Immediate Index Addressing
	4.5.1.2 Register Indirect with Index Addressing
	4.5.1.3 Register Indirect Addressing

	4.5.2 Integer Load Instructions
	4.5.3 Integer Store Instructions
	4.5.4 Integer Load and Store with Byte Reversal Instructions
	4.5.5 Integer Load and Store Multiple Instructions
	4.5.6 Integer Move String Instructions
	4.5.7 Floating-Point Load and Store Address Generation
	4.5.7.1 Register Indirect with Immediate Index Addressing
	4.5.7.2 Register Indirect with Index Addressing

	4.5.8 Floating-Point Load Instructions
	4.5.8.1 Double-Precision Conversion for Floating-Point Load Instructions
	4.5.8.2 Floating-Point Load Single Operands

	4.5.9 Floating-Point Store Instructions
	4.5.9.1 Double-Precision Conversion for Floating-Point Store Instructions
	4.5.9.2 Floating-Point Store-Single Operands

	4.5.10 Floating-Point Move Instructions

	4.6 Flow Control Instructions
	4.6.1 Branch Instruction Address Calculation
	4.6.1.1 Branch Relative Address Mode
	4.6.1.2 Branch Conditional Relative Address Mode
	4.6.1.3 Branch to Absolute Address Mode
	4.6.1.4 Branch Conditional to Absolute Address Mode
	4.6.1.5 Branch Conditional to Link Register Address Mode
	4.6.1.6 Branch Conditional to Count Register

	4.6.2 Conditional Branch Control
	4.6.2.1 BO Operand and Branch Prediction
	4.6.2.2 BI Operand
	4.6.2.3 Simplified Mnemonics for Conditional Branches

	4.6.3 Branch Instructions
	4.6.4 Condition Register Logical Instructions
	4.6.5 System Linkage Instructions
	4.6.6 Simplified Mnemonics for Branch and Flow Control Instructions
	4.6.7 Trap Instructions

	4.7 Processor Control Instructions
	4.7.1 Move to/from Machine State Register and Condition Register Instructions
	4.7.2 Move to/from Special Purpose Register Instructions
	4.7.3 Move from Time Base Instruction

	4.8 Memory Synchronization Instructions
	4.9 Memory Control Instructions
	4.10 Recommended Simplified Mnemonics

