SECTION 3
OPERAND CONVENTIONS

This section describes the conventions used for storing values in registers and
memory, accessing PowerPC registers, and representing data in these registers.

3.1 Data Alignment and Memory Organization

RCPU

Bytes in memory are numbered consecutively starting with zero. Each number is
the address of the corresponding byte.

Memory operands can be bytes, half words, words, or double words, or, for the
load/store multiple and move assist instructions, a sequence of bytes or words. The
address of a memory operand is the address of its first byte (that is, of its lowest-
numbered byte). Operand length is implicit for each instruction.

The operand of a single-register memory access instruction has a natural align-
ment boundary equal to the operand length. In other words, the “natural” address
of an operand is an integral multiple of the operand length. A memory operand is
said to be aligned if it is aligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics
shown in Table 3-1. (Although not permitted as memory operands, quad words are
shown because quad-word alignment is desirable for certain memory operands.)

Table 3-1 Memory Operands

Operand Length ADDRJ28:31]
if aligned
Byte 8 bits xxxx !
Half word 2 bytes xxx0'
Word 4 bytes xx00'
Double word 8 bytes x000'
Quad word 16 bytes 0000
NOTES:

1. An “x” in an address bit position indicates that the bit can be zero
or one independent of the state of other bits in the address.

The concept of alignment is also applied more generally to data in memory. For ex-
ample, 12 bytes of data are said to be word-aligned if the address of the lowest-
numbered byte is a multiple of four.

OPERAND CONVENTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 3-1

Some instructions require their memory operands to have certain alignments. In
addition, alignment may affect performance. For single-register memory access in- | T|
structions, the best performance is obtained when memory operands are aligned.

Additional effects of data placement on performance are described in SECTION 7
INSTRUCTION TIMING.

Instructions are four bytes long and word-aligned.

3.2 Byte Ordering

There are two practical ways to order the four bytes in a word: big-endian and little-
endian. The PowerPC architecture supports both these formats.

Big-endian ordering assigns the lowest address to the highest-order eight bits of
the scalar. This is called big-endian because the big end of the scalar, considered
as a binary number, comes first in memory.

Little-endian byte ordering assigns the lowest address to the lowest-order (right-
most) eight bits of the scalar. The little end of the scalar, considered as a binary
number, comes first in memory.

Two bits in the MSR specify byte ordering: LE (little-endian mode) and ILE (excep-
tion little-endian mode). The LE bit specifies the endian mode in which the proces-
sor is currently operating, and ILE specifies the mode to be used when the system
error handler is invoked. That is, when an exception occurs, the ILE bit (as set for
the interrupted process) is copied into MSR[LE] to select the endian mode for the
context established by the exception. For both bits, a value of zero specifies big-
endian mode and a value of one specifies little-endian mode.

The default byte and bit ordering is big-endian, as shown in Figure 3-1. After a hard
reset, the hard reset handler (using the mtspr instruction) can select little-endian
mode for normal operation and exception processing by setting the LE and ILE bits,
respectively, in the MSR.

MTB
| Byte 0 Byte 1 | \ Byte N (max) |
Big-Endian Byte Ordering
mlsb bit n (max)
(o[1]2] [n |
Big-Endian Bit Ordering
Figure 3-1 Big-Endian Byte Ordering
MOTOROLA OPERAND CONVENTIONS RCPU

3-2 Revised 1 February 1999 REFERENCE MANUAL

If individual data items were indivisible, the concept of byte ordering would be un-
necessary. The order of bits or groups of bits within the smallest addressable unit | T[
of memory is irrelevant, because nothing can be observed about such order. Orde

matters only when scalars, which the processor and programmer regard as indivis-
ible quantities, can be made up of more than one addressable units of memory.

For a device in which the smallest addressable unit is the 64-bit double word, there
is no question of the order of bytes within double words. All transfers of individual
scalars between registers and system memory are of double words. A subset of
the 64-bit scalar (for example, a byte) is not addressable in memory. As a result, to
access any subset of the bits of a scalar, the entire 64-bit scalar must be accessed,
and when a memory location is read, the 64-bit value returned is the 64-bit value
last written to that location.

For PowerPC processors, the smallest addressable memory unit is the byte (8
bits), and scalars are composed of one or more sequential bytes. When a 32-bit
scalar is moved from a register to memory, it occupies four consecutive byte ad-
dresses, and a decision must be made regarding the order of these bytes in these
four addresses.

3.2.1 Structure Mapping Examples

The following C programming example contains an assortment of scalars and one
character string. The value presumed to be in each structure element is shown in
hexadecimal in the comments and are used below to show how the bytes that com-
prise each structure element are mapped into memory.

struct {
int a; /* 0x1112 1314 word */
double b; /* 0x2122 2324 2526 2728 doubleword */
char * c; /* 0x3132 3334 word */
char dl7] /* ‘A’ ,‘B’,‘C’,'D’',‘E’',‘F’',‘Garray of bytes */
short e; /* 0x5152 hal fword */
int £; /* 0x6162 6364 word */

}osi

Note that the C structure mapping introduces padding (skipped bytes) in the map
in order to align the scalars on their proper boundaries — four bytes between a and
b, one byte between d and e, and two bytes between e and f. Both big- and little-
endian mappings use the same amount of padding.

3.2.1.1 Big-Endian Mapping

The big-endian mapping of a structure S is shown in Figure 3-2. Addresses are
shown in hexadecimal at the left of each double word and in small figures below
each byte. The content of each byte, as shown in the preceding C programming
example, is shown in hexadecimal as characters for the elements of the string.

RCPU OPERAND CONVENTIONS MOTOROLA
REFERENCE MANUAL Revised 1 February 1999 3-3

00 11 12 13 14

00 01 02 03 04 05 06 07
08 21 22 23 24 25 26 27 28

08 09 0A 0B oC 0D OE OF
10 31 32 33 34 ‘AN ‘B’ ‘C ‘D

10 11 12 13 14 15 16 17
18 ‘E’ ‘F ‘G’ 51 52

18 19 1A 1B 1C 1D 1E 1F
20 61 62 63 64

20 21 22 23

Figure 3-2 Big-Endian Mapping of Structure S

3.2.1.2 Little-Endian Mapping

Figure 3-3 shows the structure, S, using little-endian mapping. Double words are
laid out from right to left.

11 12 13 14

07 06 05 04 03 02 01 00
21 22 23 24 25 26 27 28
OF OE 0D oC 0B 0A 09 08
‘D’ ‘c ‘B’ ‘N 31 32 33 34
17 16 15 14 13 12 11 10
51 52 ‘G’ ‘F ‘E

1F 1E 1D 1C 1B 1A 19 18
61 62 63 64

23 22 21 20

Figure 3-3 Little-Endian Mapping of Structure S

3.2.2 Data Memory in Little-Endian Mode

This section describes how data in memory is stored and accessed in little-endian
mode.

3.2.2.1 Aligned Scalars

For load and store instructions, the effective address is computed as specified in
the instruction descriptions in SECTION 4 ADDRESSING MODES AND IN-
STRUCTION SET SUMMARY. The effective address is modified as shown in Ta-
ble 3-2 before it is used to access memory.

MOTOROLA OPERAND CONVENTIONS RCPU
3-4 Revised 1 February 1999 REFERENCE MANUAL

Table 3-2 EA Modifications

Data Width (Bytes) EA Modification
8 No change
4 XOR with 0b100
2 XOR with 0b110
1 XOR with Ob111

The modified EA is passed to the main memory and the specified width of the data
is transferred between a GPR or FPR and the addressed memory locations (as
modified). The effective address modification makes it appear to the processor that
individual aligned scalars are stored as little-endian, when in fact they are stored
as big-endian but in different bytes within double words from the order in which they
are stored in big-endian mode.

Taking into account the preceding description of EA modifications, in little-endian
mode structure Sis placed in memory as shown in Figure 3-4.

00 11 12 13 14
00 01 02 03 04 05 06 07
08 21 22 23 24 25 26 27 28
08 09 0A 0B oC 0D OE OF
10 ‘D’ ‘C ‘B’ ‘AN 31 32 33 34
10 11 12 13 14 15 16 17
18 51 52 ‘G’ ‘F ‘E’
18 19 1A 1B 1C 1D 1E 1F
20 61 62 63 64
20 21 22 23 24 25 26 27

Figure 3-4 PowerPC Little-Endian Structure Sin Memory

Because of the modifications on the EA, the same structure S appears to the pro-
cessor to be mapped into memory this way when LM = 1 (little-endian enabled).
This is shown in Figure 3-5.

RCPU OPERAND CONVENTIONS MOTOROLA
REFERENCE MANUAL Revised 1 February 1999 3-5

11 12 13 14

07 06 05 04 03 02 01 00
21 22 23 24 25 26 27 28
OF OE 0D oC 0B 0A 09 08
‘D ‘c ‘B’ ‘AN 31 32 33 34
17 16 15 14 13 12 11 10
51 52 ‘G’ ‘F ‘E’

1F 1E 1D 1C 1B 1A 19 18
61 62 63 64

23 22 21 20

Figure 3-5 PowerPC Little-Endian Structure S as Seen by Processor

Note that as seen by the program executing in the processor, the mapping for the
structure S is identical to the little-endian mapping shown in Figure 3-3. From out-
side of the processor, the addresses of the bytes making up the structure S are as
shown in Figure 3-4. These addresses match neither the big-endian mapping of
Figure 3-2 or the little-endian mapping of Figure 3-3. This must be taken into ac-
count when performing 1/O operations in little-endian mode; this is discussed in
3.2.4 Input/Output in Little-Endian Mode.

3.2.2.2 Misaligned Scalars

Performing an XOR operation on the low-order bits of the address of a scalar re-
quires the scalar to be aligned on a boundary equal to a multiple of its length. When
executing in little-endian mode (LM = 1), the RCPU takes an alignment exception
whenever a load or store instruction is issued with a misaligned EA, regardless of
whether such an access could be handled without causing an exception in big-en-
dian mode (LM = 0).

The PowerPC architecture defines that half words, words, and double words be
placed in memory such that the little-endian address of the lowest-order byte is the
EA computed by the load or store instruction; the little-endian address of the next-
lowest-order byte is one greater, and so on. Figure 3-6 shows a four-byte word
stored at little-endian address 5. The word is presumed to contain the binary rep-
resentation of 0x1112 1314.

12 13 14 00
07 06 05 04 03 02 01 00

11 08
OF OE 0D oC 0B 0A 09 08

Figure 3-6 PowerPC Little-Endian Mode, Word Stored at Address 5

MOTOROLA OPERAND CONVENTIONS RCPU

3-6

Revised 1 February 1999 REFERENCE MANUAL

Figure 3-7 shows the same word stored by a little-endian program, as seen by the
memory system (assuming big-endian mode).

00 12 13 14
00 01 02 03 04 05 06 07
08 11
08 09 0A 0B oC 0D OE OF

Figure 3-7 Word Stored at Little-Endian
Address 5 as Seen by Big-Endian Addressing

NOTE

The misaligned word in this example spans two double words. The
two parts of the misaligned word are not contiguous in the big-endian
addressing space.

An implementation may choose to support only a subset of misaligned little-endian
memory accesses. For example, misaligned little-endian accesses contained with-
in a single double word may be supported, while those that span double words may
cause alignment exceptions.

3.2.2.3 String Operations

The load and store string instructions, listed in Table 3-3, cause alignment excep-
tions when they are executed in little-endian mode.

Table 3-3 Load/Store String Instructions

Mnemonic Description
Iswi Load String Word Immediate
Iswx Load String Word Indexed
stswi Store String Word Immediate
stswx Store String Word Indexed
Iscbx Load String and Compare Byte Indexed

String accesses are inherently misaligned; they transfer word-length quantities be-
tween memory and registers, but the quantities are not necessarily aligned on word
boundaries.

NOTE

The system software must determine whether to emulate the except-
ing instruction or treat it as an illegal operation.

RCPU OPERAND CONVENTIONS MOTOROLA
REFERENCE MANUAL Revised 1 February 1999 3-7

=

3.2.2.4 Load and Store Multiple Instructions
The load and store multiple instructions shown in Table 3-4 cause alignment ex- | Tl

ceptions when executed in little-endian mode.

Table 3-4 Load/Store Multiple Instructions

Mnemonic Instruction
Imw Load Multiple Word
stmw Store Multiple Word

Although the words addressed by these instructions are on word boundaries, each
word is in the half of its containing double word opposite from where it would be in
big-endian mode. Note that the system software must determine whether to emu-
late the excepting instruction or treat it as an illegal operation.

3.2.3 Instruction Memory Addressing in Little-Endian Mode

Each PowerPC instruction occupies 32 bits (one word) of memory. PowerPC pro-
cessors fetch and execute instructions as if the current instruction address had
been advanced one word for each sequential instruction. When operating in little-
endian mode, the address is modified according to the little-endian rule for fetching
word-length scalars; that is, it is XORed with 0b100. A program is thus an array of
little-endian words with each word fetched and executed in order (not including
branches).

Consider the following example:

loop:
cmplwi r5,0
beg done
lwzux r4, r5, r6
add r7, r7, r4
subi r5, 1
b loop
done:
stw r7, total

Assuming the program starts at address 0, these instructions are mapped into
memory for big-endian execution as shown in Figure 3-8.

MOTOROLA OPERAND CONVENTIONS RCPU
3-8 Revised 1 February 1999 REFERENCE MANUAL

00 loop: cmplwi r5, 8 beq done

00 01 02 03|04 05 06 07
08 Iwzux r4, r5, r6 add r7, r7, r4

08 09 OA 0B |0OC OD OE OF
10 subi r5, 1 b loop

10 11 12 13 |14 15 16 17

18 done: stw r7, total
18 19 1A 1B | 1C 1D 1E 1F

Figure 3-8 PowerPC Big-Endian
Instruction Sequence as Seen by Processor

If this same program is assembled for and executed in little-endian mode, the map-
ping seen by the processor appears as shown in Figure 3-9.

Each machine instruction appears in memory as a 32-bit integer containing the val-
ue described in the instruction description, regardless of whether the processor is
operating in big- or little-endian mode. This is because scalars are always mapped
in memory in big-endian byte order.

beq done loop: cmplwi 00

07 06 05 04 |03 02 01 00
add r7, r7, r4 lwzux r4, r5, r6 08

OF OE OD OC|OB OA 09 08
b loop subi r5, 1 10

17 16 15 14 | 13 12 11 10
done: stw r7, total 18

iF 1E 11D 1C | 1B 1A 19 18

Figure 3-9 PowerPC Little-Endian
Instruction Sequence as Seen by Processor

When little-endian mapping is used, all references to the instruction stream must
follow little-endian addressing conventions, including addresses saved in system
registers when the exception is taken, return addresses saved in the link register,
and branch displacements and addresses.

* An instruction address placed in the link register by branch and link, or an in-
struction address saved in an SPR when an exception is taken is the address
that a program executing in little-endian mode would use to access the in-
struction as a word of data using a load instruction.

* An offset in a relative branch instruction reflects the difference between the
addresses of the instructions, where the addresses used are those that a pro-

RCPU
REFERENCE MANUAL

OPERAND CONVENTIONS MOTOROLA
Revised 1 February 1999 3-9

gram executing in little-endian mode would use to access the instructions as
data words using a load instruction.

* A target address in an absolute branch instruction is the address that a pro-
gram executing in little-endian mode would use to access the target instruc-
tion as a word of data using a load instruction.

3.2.4 Input/Output in Little-Endian Mode

Input/output operations transfer a byte stream on both big- and little-endian sys-
tems. For a PowerPC system running in big-endian mode, both the processor and
the memory subsystem recognize the same byte as byte 0. However, this is not
true for a PowerPC system running in little-endian mode because of the modifica-
tion of the three low-order bits when the processor accesses memory.

In order for I/O transfers in little-endian mode to appear to transfer bytes properly,
they must be performed as if the bytes transferred were accessed one at a time,
using the little-endian address modification appropriate for the single-byte transfers
(XOR the bits with Ob111). This does not mean that I/O on little-endian PowerPC
machines must be done using only one-byte-wide transfers. Data transfers can be
as wide as desired, but the order of the bytes within double words must be as if
they were fetched or stored one at a time.

3.3 Floating-Point Data

This subsection describes how floating-point data is represented in floating-point
registers and in memory.

3.3.1 Floating-Point Data Format

The PowerPC architecture defines the representation of a floating-point value in
two different binary, fixed-length formats: a 32-bit format for a single-precision
floating-point value or a 64-bit format for a double-precision floating-point value.
Data in memory may use either the single-precision or double-precision format.
Floating-point registers use the double-precision format.

The length of the exponent and the fraction fields differ between these two preci-
sion formats. The structure of the single-precision format is shown in Figure 3-10;
the structure of the double-precision format is shown in Figure 3-11.

‘ s ‘ EXP ‘ FRACTION

Figure 3-10 Floating-Point Single-Precision Format

MOTOROLA OPERAND CONVENTIONS RCPU
3-10 Revised 1 February 1999 REFERENCE MANUAL

11 12 63

EXP ‘ FRACTION ‘

RCPU
REFERENCE MANUAL

Figure 3-11 Floating-Point Double-Precision Format

Values in floating-point format consist of three fields:

* S (sign bit).
* EXP (exponent + bias)
* FRACTION (fraction)

If only a portion of a floating-point data item in memory is accessed, as with a load
or store instruction for a byte or half word (or word in the case of floating-point dou-
ble-precision format), the value affected depends on whether the PowerPC system
is using big- or little-endian byte ordering, which is described in 3.2 Byte Ordering.
Big-endian mode is the default.

The significand consists of a leading implied bit concatenated on the right with the
FRACTION. This leading implied bit is a one for normalized numbers and a zero
for denormalized numbers in the unit bit position (that is, the first bit to the left of
the binary point). Parameters for the two floating-point formats are listed in Table
3-5.

Table 3-5 IEEE Floating-Point Fields

Parameter Single-Precision Double-Precision

Exponent bias +127 +1023

Maximum exponent +127 +1023

(unbiased)

Minimum exponent -126 -1022

Format width 32 bits 64 bits

Sign width 1 bit 1 bit

Exponent width 8 bits 11 bits

Fraction width 23 bits 52 bits

Significand width 24 bits 53 bits

The exponent is expressed as an 8-bit value for single-precision numbers oran 11-
bit value for double-precision numbers. These bits hold the biased exponent; the
true value of the exponent can be determined by subtracting 127 for single-preci-
sion numbers and 1023 for double-precision values. This is shown in Figure 3-12.
Note that using a bias eliminates the need for a sign bit. The highest-order bit is

OPERAND CONVENTIONS MOTOROLA
Revised 1 February 1999 3-11

used both to generate the number, and is an implicit sign bit. Note also that two
values are reserved — all bits set indicates that the number is an infinity or NaN
and all bits cleared indicates that the number is either zero or denormalized.

3.3.2 Value Representation

The PowerPC architecture defines numerical and non-numerical values represent-
able within single- and double-precision formats. The numerical values are approx-
imations to the real numbers and include the normalized numbers, denormalized
numbers, and zero values. The non-numerical values representable are the posi-
tive and negative infinities and the NaNs. The positive and negative infinities are
adjoined to the real numbers but are not numbers themselves, and the standard
rules of arithmetic do not hold when they appear in an operation. They are related
to the real numbers by “order” alone. It is possible, however, to define restricted
operations among numbers and infinities as defined in the following paragraphs.
The relative location on the real number line for each of the defined entities is
shown in Figure 3-13.

Biased Exponent Single-Precision Double-Precision
(binary) (unbiased) (unbiased)
11..... 11 Reserved for Infinities and NaNs
11..... 10 +127 +1023
11..... 01 +126 +1022
Positive <
10..... 00 1 1
Zero g 01..... 11 0 0
o1..... 10 -1 -1
Negative
00..... 01 -126 -1022
00..... 00 Reserved for Zeros and Denomalized Numbers
Figure 3-12 Biased Exponent Format
MOTOROLA OPERAND CONVENTIONS RCPU

3-12 Revised 1 February 1999 REFERENCE MANUAL

Unrepresentable, small numbers

-

v

—INF ‘—NORM ‘—DENORM ‘ -0 ‘

+0 | +DENORM | +NORM

+INF

The positive and negative NaNs are not related to the numbers or +x by order or
value, but they are encodings that convey diagnostic information such as the rep-
resentation of uninitialized variables.

|« Tiny—>

|<—|Tiny—>|

Figure 3-13 Approximation to Real Numbers

Table 3-6 describes each of the floating-point formats.

Table 3-6 Recognized Floating-Point Numbers

Sign Bit Exponent (Biased) Leading Bit Mantissa Value
0 Maximum X Non-zero +NaN
0 Maximum X Zero +Infinity
0 0 < Exponent < Maximum 1 Non-zero +Normalized
0 0 0 Non-zero +Denormalized
0 0 0 Zero +0
1 0 0 Zero -0
1 0 0 Non-zero —Denormalized
1 0 < Exponent < Maximum 1 Non-zero —Normalized
1 Maximum X Zero —Infinity
1 Maximum X Non-zero —NaN

3.3.3 Normalized Numbers (tNORM)
The values for normalized numbers have a biased exponent value in the range:

* 1-254 in single-precision format
* 1-2046 in double-precision format

The implied unit bit is one. Normalized numbers are interpreted as follows:

NORM = (-1)¢ x 2F x (1.fraction)

where (s) is the sign, (E) is the unbiased exponent and (1.fraction) is the significand
composed of a leading unit bit (implied bit) and a fractional part. The format for nor-

malized numbers is shown in Figure 3-14.

RCPU

REFERENCE MANUAL

OPERAND CONVENTIONS

Revised 1 February 1999

MOTOROLA
3-13

=

MIN < E)((;CA)QEB')T <MAX MANTISSA = ANY BIT PATTERN

SIGN OF MANTISSA, 0 OR 1

Figure 3-14 Format for Normalized Numbers

The ranges covered by the magnitude (M) of a normalized floating-point number
are approximately equal to the following:

Single-precision format:
1.2x10%8 § M & 3.4x1038
Double-precision format:

2.2x1073%8 3 M & 1.8x10308

3.3.4 Zero Values (+0)

Zero values have a biased exponent value of zero and a fraction value of zero. This
is shown in Figure 3-15. Zeros can have a positive or negative sign. The sign of
zero is ignored by comparison operations (that is, comparison regards +0 as equal
to —-0).

EXI?B?NSEEN[I; 0 MANTISSA =0

SIGN OF MANTISSA, 0 OR 1
Figure 3-15 Format for Zero Numbers

3.3.5 Denormalized Numbers (+DENORM)

Denormalized numbers have a biased exponent value of zero and a non-zero frac-
tion value. The format for denormalized numbers is shown in Figure 3-16.

EXPONENT =0 MANTISSA = ANY NON-ZERO
(BIASED) BIT PATTERN

SIGN OF MANTISSA, 0 OR 1

Figure 3-16 Format for Denormalized Numbers

Denormalized numbers are non-zero numbers smaller in magnitude than the rep-
resentable normalized numbers. They are values in which the implied unit bit is ze-
ro. Denormalized numbers are interpreted as follows:

MOTOROLA OPERAND CONVENTIONS RCPU
3-14 Revised 1 February 1999 REFERENCE MANUAL

=

DENORM = (-1)8 x 2E™MN x (0.fraction)
| R
Emin is the minimum representable exponent value (that is, —126 for single-preci- | —I
sion, —1022 for double-precision).
3.3.6 Infinities (xx)

Positive and negative infinities have the maximum biased exponent value:

* 255 in the single-precision format
* 2047 in the double-precision format

The format for infinities is shown in Figure 3-17.

EXPONENT = MAXIMUM

SIGN OF MANTISSA, 0 OR 1

Figure 3-17 Format for Positive and Negative Infinities

The fraction value is zero. Infinities are used to approximate values greater in mag-
nitude than the maximum normalized value. Infinity arithmetic is defined as the lim-
iting case of real arithmetic, with restricted operations defined between numbers
and infinities. Infinities and the reals can be related as follows:

-x < every finite number < +x

Arithmetic using infinite numbers is always exact and does not signal any excep-
tion, except when an exception occurs due to the invalid operations as described
in 6.11.10.6 Invalid Operation Exception Conditions.

3.3.7 Not a Numbers (NaNs)

NaNs have the maximum biased exponent value and a non-zero fraction value.
The format for NaNs is shown in Figure 3-18. The sign bit of NaNs is ignored (that
is, NaNs are neither positive nor negative). If the high-order bit of the fraction field
is a zero, the NaN is a signaling NaN (SNaN); otherwise it is a quiet NaN (QNaN).

EXPONENT = MAXIMUM MANTISSA = ANY NON-ZERO
(BIASED) BIT PATTERN

SIGN OF MANTISSA (0 for +NaN; 1 for —-NaN)

Figure 3-18 Format for NANs

Signaling NaNs signal exceptions when they are specified as arithmetic operands.

Quiet NaNs represent the results of certain invalid operations, such as invalid arith-

RCPU OPERAND CONVENTIONS MOTOROLA
REFERENCE MANUAL Revised 1 February 1999 3-15

disabled (FPSCR[VE] = 0). Quiet NaNs propagate through all operations, except
ordered comparison, floating round to single precision, and conversion to integer
operations. Quiet NaNs do not signal exceptions, except during ordered compari-
son and conversion to integer operations. Specific encodings in QNaNs can thus
be preserved through a sequence of operations and used to convey diagnostic in-
formation to help identify results from invalid operations.

metic operations on infinities or on NaNs, when the invalid operation exception is
| T|

When a QNaN results from an operation because an operand is a NaN or because
a QNaN is generated due to a disabled invalid operation exception, the following
rule is applied to determine the QNaN with the high-order fraction bit set to one that
is to be stored as the result:

If (frA) is a NaN
Then frD « (frA)
Else if (frB) is a NaN
Then frD « (frB)
Else if (frC) is a NaN
Then frD « (frC)
Else if generated QNaN
Then frD < generated QNaN

If the operand specified by frA is a NaN, that NaN is stored as the result. Otherwise,
if the operand specified by frB is a NaN (if the instruction specifies an frB operand),
that NaN is stored as the result. Otherwise, if the operand specified by frC is a NaN
(if the instruction specifies an frC operand), that NaN is stored as the result. Oth-
erwise, if a QNaN is generated by a disabled invalid operation exception, that
QNaN is stored as the result. If a QNaN is to be generated as a result, the QNaN
generated has a sign bit of zero, an exponent field of all ones, and a high-order
fraction bit of one with all other fraction bits zero. An instruction that generates a
QNaN as the result of a disabled invalid operation generates this QNaN. This is
shown in Figure 3-19.

0 111..1 1000....0

SIGN OF MANTISSA, NaN OR 1

Figure 3-19 Representation of QNaN

3.3.8 Sign of Result

The following rules govern the sign of the result of an arithmetic operation, when
the operation does not yield an exception. These rules apply even when the oper-
ands or results are +0 or +x.

The sign of the result of an addition operation is the sign of the source operand hav-
ing the larger absolute value. The sign of the result of the subtraction operation, x
—vy, is the same as the sign of the result of the addition operation, x+(-y).

MOTOROLA OPERAND CONVENTIONS RCPU
3-16 Revised 1 February 1999 REFERENCE MANUAL

When the sum of two operands with opposite sign, or the difference of two oper-
ands with the same sign, is exactly zero, the sign of the result is positive in all
rounding modes except round toward negative infinity (—x), in which case the sign
is negative.

* The sign of the result of a multiplication or division operation is the exclusive
OR of the signs of the source operands.

* The sign of the result of a round to single-precision or convert to/from integer
operation is the sign of the source operand.

For multiply-add instructions, these rules are applied first to the multiplication op-
eration and then to the addition or subtraction operation (one of the source oper-
ands to the addition or subtraction operation is the result of the multiplication
operation).

3.3.9 Normalization and Denormalization

When an arithmetic operation produces an intermediate result, consisting of a sign
bit, an exponent, and a non-zero significand with a zero leading bit, the result is not
a normalized number and must be normalized before it is stored.

A number is normalized by shifting its significand left while decrementing its expo-
nent by one for each bit shifted, until the leading significand bit becomes one. The
guard bit and the round bit participate in the shift with zeros shifted into the round
bit; see 3.4.1 Execution Model for IEEE Operations.

During normalization, the exponent is regarded as if its range were unlimited. If the
resulting exponent value is less than the minimum value that can be represented
in the format specified for the result, the intermediate result is said to be “tiny” and
the stored result is determined by the rules described in 6.11.10.9 Underflow Ex-
ception Condition. The sign of the number does not change.

When an arithmetic operation produces a non-zero intermediate result whose ex-
ponent is less than the minimum value that can be represented in the format spec-
ified, the stored result may need to be denormalized. The result is determined by
the rules described in 6.11.10.9 Underflow Exception Condition.

A number is denormalized by shifting its significand to the right while incrementing
its exponent by one for each bit shifted until the exponent equals the format's min-
imum value. If any significant bits are lost in this shifting process, a loss of accuracy
has occurred, and an underflow exception is signaled. The sign of the number does
not change.

When denormalized numbers are operands of multiply and divide operations, op-
erands are prenormalized internally before the operations are performed.

3.3.10 Data Handling and Precision

There are specific instructions for moving floating-point data between the FPRs
and memory. Data in double-precision format is not altered during the move. Sin-

RCPU OPERAND CONVENTIONS MOTOROLA
REFERENCE MANUAL Revised 1 February 1999 3-17

gle-precision data is converted to double-precision format when loaded from mem-
ory into an FPR. A format conversion from double- to single-precision is performed
when data from an FPR is stored. Floating-point exceptions cannot occur during
these operations.

All arithmetic operations use floating-point double-precision format.

Floating-point single-precision formats are used by the following four types of in-
structions:

* Load Floating-Point Single-Precision (lfs) — This instruction accesses a sin-
gle-precision operand in single-precision format in memory, converts it to dou-
ble-precision, and loads itinto an FPR. Exceptions are not detected during the
load operation.

* Round to floating-point single-precision — If the operand is not already in sin-
gle-precision range, the floating round to single-precision instruction rounds a
double-precision operand to single-precision, checking the exponent for sin-
gle-precision range and handling any exceptions according to respective en-
able bits in the FPSCR. The instruction places that operand into an FPR as a
double-precision operand. For results produced by single-precision arithmetic
instructions and by single-precision loads, this operation does not alter the
value.

* Single-precision arithmetic instructions — These instructions take operands
from the FPRs in double-precision format, perform the operation as if it pro-
duced an intermediate result correct to infinite precision and with unbounded
range, and then force this intermediate result to fit in single-precision format.
Status bits in the FPSCR and in the condition register are set to reflect the sin-
gle-precision result. The result is then converted to double-precision format
and placed into an FPR. The result falls within the range supported by the sin-
gle format.

For single-precision operations, source operands must be representable in
single-precision format. If they are not, the result placed into the target FPR,
and the setting of status bits in the FPSCR and in the condition register, are
undefined.

» Store Floating-Point Single-Precision (stfs) — This form of instruction con-
verts a double-precision operand to single-precision format and stores that
operand into memory. If the operand requires denormalization in order to fit in
single-precision format, it is automatically denormalized prior to being stored.
No exceptions are detected on the store operation (the value being stored is
effectively assumed to be the result of an instruction of one of the preceding
three types).

When the result of a load floating-point single-precision (Ifs), floating-point round
to single-precision (frspx), or single-precision arithmetic instruction is stored in an
FPR, the low-order 29 fraction bits are zero. This is shown in Figure 3-20.

MOTOROLA OPERAND CONVENTIONS RCPU
3-18 Revised 1 February 1999 REFERENCE MANUAL

Bit 35 —+

EXP XXXXXXXXXXXXXXXXXXXXXXX00000000000000000000000000000

1112 63

Figure 3-20 Single-Precision Representation in an FPR

The floating-point round to single-precision (frpsx) instruction allows conversion
from double to single precision with appropriate exception checking and rounding.
This instruction should be used to convert double-precision floating-point values
(produced by double-precision load and arithmetic instructions) to single-precision
values before storing them into single-format memory elements or using them as
operands for single-precision arithmetic instructions. Values produced by single-
precision load and arithmetic instructions can be stored directly, or used directly as
operands for single-precision arithmetic instructions, without preceding the store,
or the arithmetic instruction, by frspx.

A single-precision value can be used in double-precision arithmetic operations.
The reverse is true only if the double-precision value can be represented in single-
precision format. Some implementations may execute single-precision arithmetic
instructions faster than double-precision arithmetic instructions. Therefore, if dou-
ble-precision accuracy is not required, using single-precision data and instructions
can speed operations.

3.3.11 Rounding

RCPU

All arithmetic instructions defined by the PowerPC architecture produce an inter-
mediate result considered infinitely precise. This result must then be written with a
precision of finite length into an FPR. After normalization or denormalization, if the
infinitely precise intermediate result cannot be represented in the precision re-
quired by the instruction, it is rounded before being placed into the target FPR.

The instructions that potentially round their result are the arithmetic, multiply-add,
and rounding and conversion instructions. As shown in Figure 3-21, whether
rounding occurs depends on the source values.

OPERAND CONVENTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 3-19

Rounding FI =0

FR=0
Fl=1
Fraction
Incremented FR=0
il RND FLO DIAG

Figure 3-21 Rounding Flow Diagram

Each of these instructions sets FPSCR bits FR and Fl, according to whether round-
ing occurs (Fl) and whether the fraction was incremented (FR). If rounding occurs,
Fl is set to one and FR may be either zero or one. If rounding does not occur, both
FR and Fl are cleared. Other floating-point instructions do not alter FR and FI. Four
modes of rounding are provided that are user-selectable through the floating-point
rounding control field in the FPSCR. These are encoded as follows in Table 3-7.

Table 3-7 FPSCR Bit Settings — RN Field

RN Rounding Mode
00 Round to nearest
01 Round toward zero
10 Round toward +infinity
11 Round toward —infinity

Let Z be the infinitely precise intermediate arithmetic result or the operand of a con-
version operation. If Z can be represented exactly in the target format, no rounding
occurs and the result in all rounding modes is equivalent to truncation of Z. If Z can-
not be represented exactly in the target format, let Z1 and Z2 be the next larger and
next smaller numbers representable in the target format that bound Z; then Z1 or
Z2 can be used to approximate the result in the target format.

MOTOROLA OPERAND CONVENTIONS RCPU
3-20 Revised 1 February 1999 REFERENCE MANUAL

Figure 3-22 shows a graphical representation of Z, Z1, and Z2.
| T|

By incrementing LSB of Z
Infinitely precise value
By truncating after LSB

A
)

z2 Z1 0 z2 Z1

Negative values «————» Positive values
Z1/22

Figure 3-22 Relation of Z1 and Z2

Rounding follows the four following rules:

* Round to nearest — Choose the best approximation (Z1 or Z2). In case of a
tie, choose the one which is even (i.e., with least significant bit equal to zero).
Refer to 3.4.1 Execution Model for IEEE Operations for details on how the
processor selects the best approximation.

* Round toward zero — Choose the smaller in magnitude (Z1 or Z2).

* Round toward +infinity — Choose Z1.

* Round toward —infinity — Choose Z2.

If Z is to be rounded up and Z1 does not exist (that is, if there is no number larger
than Z that is representable in the target format), then an overflow exception occurs
if Z is positive and an underflow exception occurs if Z is negative. Similarly, if Z is
to be rounded down and Z2 does not exist, then an overflow exception occurs if Z
is negative and an underflow exception occurs if Z is positive. The results in these
cases are defined in 6.11.10 Floating-Point Assist Exception (0x00E00).

3.4 Floating-Point Execution Models

The following paragraphs describe the floating-point execution models for IEEE
operations, as well as that for a special multiply-add type of instruction. In addition,
the execution model for non-IEEE compliant operation, used to accelerate time-
critical operations, is described.

The IEEE-754 standard includes 32-bit and 64-bit arithmetic. The standard re-
quires that single-precision arithmetic be provided for single-precision operands.
The standard permits double-precision arithmetic instructions to have either (or
both) single-precision or double-precision operands, but states that single-preci-
sion arithmetic instructions should not accept double-precision operands.

The PowerPC architecture follows these guidelines:

* Double-precision arithmetic instructions can have operands of either or both
precisions.

RCPU OPERAND CONVENTIONS MOTOROLA
REFERENCE MANUAL Revised 1 February 1999 3-21

* Single-precision arithmetic instructions require all operands to be single-pre-

cision. || ol
* Double-precision arithmetic instructions produce double-precision values.
* Single-precision arithmetic instructions produce single-precision values.

For arithmetic instructions, conversions from double- to single-precision must be
done explicitly by software, while conversions from single- to double-precision are
done implicitly.

Although the double-precision format specifies an 11-bit exponent, exponent arith-
metic uses two additional bit positions to avoid potential transient overflow condi-
tions. An extra bit is required when denormalized double-precision numbers are
prenormalized. A second bit is required to permit computation of the adjusted ex-
ponent value in the following cases when the corresponding exception enable bit
is one:

* Underflow during multiplication using a denormalized factor.
* Overflow during division using a denormalized divisor.

3.4.1 Execution Model for IEEE Operations

The following description uses 64-bit arithmetic as an example. Thirty-two-bit arith-
metic is similar except that the fraction field is a 23-bit field and the single-precision
guard, round, and sticky bits (described in this section) are logically adjacent to the
23-bit FRACTION (or mantissa) field.

The bits and fields for the IEEE 64-bit execution model are defined as follows:

* The S bit is the sign bit.

* The C bit is the carry bit that captures the carry out of the significand.

* The L bit is the leading unit bit of the significand which receives the implicit bit
from the operands.

* The FRACTION is a 52-bit field that accepts the fraction (mantissa) of the op-
erands.

* The guard (G), round (R), and sticky (X) bits are extensions to the low-order
bits of the accumulator. The G and R bits are required for post normalization
of the result. The G, R, and X bits are required during rounding to determine
if the intermediate result is equally near the two nearest representable values.
The X bit serves as an extension to the G and R bits by representing the log-
ical OR of all bits that may appear to the low-order side of the R bit, either due
to shifting the accumulator right or other generation of low-order result bits.
The G and R bits participate in the left shifts with zeros being shifted into the
R bit. Table 3-8 shows the relationship among the G, R, and X bits, the inter-
mediate result (IR), the next lower in magnitude representable number (NL),
and the next higher in magnitude representable number (NH).

MOTOROLA OPERAND CONVENTIONS RCPU
3-22 Revised 1 February 1999 REFERENCE MANUAL

Table 3-8 Interpretation of G, R, and X Bits

G| R | X Interpretation
0 0 0 | IR is exact

0| 0| 1

0 1 0 | IR closerto NL

0 1 1

0 | IR midway between NL and NH

1 1 0 IR closerto NH

1 1 1

The significand of the intermediate result is made up of the L bit, the FRACTION,
and the G, R, and X bits.

The infinitely precise intermediate result of an operation is the result normalized in
bits L, FRACTION, G, R, and X of the floating-point accumulator.

Before results are stored into an FPR, the significand is rounded if necessary, us-
ing the rounding mode specified by FPSCR[RN]. If rounding causes a carry into C,
the significand is shifted right one position and the exponent is incremented by one.
This may yield an inexact result and possibly exponent overflow. Fraction bits to
the left of the bit position used for rounding are stored into the FPR, and low-order
bit positions, if any, are set to zero.

Four rounding modes are provided which are user-selectable through FPSCR[RN]
as described in 3.3.11 Rounding. For rounding, the conceptual guard, round, and
sticky bits are defined in terms of accumulator bits.

Table 3-9 shows the positions of the guard, round, and sticky bits for double-pre-
cision and single-precision floating-point numbers.

Table 3-9 Location of the Guard, Round and Sticky Bits

Format Guard Round Sticky
Double G bit R bit X bit
Single 24 25 26-52 G,R,X

Rounding can be treated as though the significand were shifted right, if required,
until the least significant bit to be retained is in the low-order bit position of the
FRACTION. If any of the guard, round, or sticky bits are non-zero, the result is in-
exact.

RCPU OPERAND CONVENTIONS MOTOROLA
REFERENCE MANUAL Revised 1 February 1999 3-23

Z1 and Z2, defined in 3.3.11 Rounding, can be used to approximate the result in
the target format when one of the following rules is used: | T|

* Round to nearest
— Guard bit = 0: The result is truncated. (Result exact (GRX = 000) or closest
to next lower value in magnitude (GRX =001, 010, or 011)
— Guard bit = 1: Depends on round and sticky bits:
* Case a: If the round or sticky bit is one (inclusive), the result is increment-
ed. (result closest to next higher value in magnitude (GRX =101, 110, or
111))
 Case b: If the round and sticky bits are zero (i.e., the result is midway be-
tween the closest representable values), the result is rounded to an even
value. That is, if the low-order bit of the result is one, the result is incre-
mented. If the low-order bit of the result is zero, the result is truncated.
* If during the round to nearest process, truncation of the unrounded number
produces the maximum magnitude for the specified precision, the following
action is taken:
— Guard bit = 1: Store infinity with the sign of the unrounded result.
— Guard bit = 0: Store the truncated (maximum magnitude) value.
* Round toward zero — Choose the smaller in magnitude of Z1 or Z2. If the
guard, round, or sticky bit is non-zero, the result is inexact.
* Round toward +infinity
Choose Z1.
* Round toward —infinity
Choose Z2.

Where the result is to have fewer than 53 bits of precision because the instruction
is a floating round to single-precision or single-precision arithmetic instruction, the
intermediate result either is normalized or is placed in correct denormalized form
before the result is potentially rounded.

3.4.2 Execution Model for Multiply-Add Type Instructions

The PowerPC architecture makes use of a special form of instruction that performs
up to three operations in one instruction (a multiply, an add, and a negate). With
this added capability is the special feature of being able to produce a more exact
intermediate result as an input to the rounder. The 32-bit arithmetic is similar ex-
cept that the fraction field is smaller.

NOTE

The rounding occurs only after add; therefore, the computation of the
sum and product together are infinitely precise before the final result
is rounded to a representable format.

The first part of the operation is a multiply. The multiply has two 53-bit significands
as inputs, which are assumed to be prenormalized, and produces a result conform-
ing to the above model. If there is a carry out of the significand (into the C bit), the
significand is shifted right one position, placing the L bit into the most significant bit
of the FRACTION and placing the C bit into the L bit. All 106 bits (L bit plus the frac-

MOTOROLA OPERAND CONVENTIONS RCPU
3-24 Revised 1 February 1999 REFERENCE MANUAL

tion) of the product take part in the add operation. If the exponents of the two inputs
to the adder are not equal, the significand of the operand with the smaller exponent
is aligned (shifted) to the right by an amount added to that exponent to make it
equal to the other input’s exponent. Zeros are shifted into the left of the significand
as it is aligned and bits shifted out of bit 105 of the significand are ORed into the X'
bit. The add operation also produces a result conforming to the above model with
the X' bit taking part in the add operation.

The result of the add is then normalized, with all bits of the add result, except the
X' bit, participating in the shift. The normalized result provides an intermediate re-
sult as input to the rounder that conforms to the model described in 3.4.1 Execu-
tion Model for IEEE Operations, where:

* The guard bit is bit 53 of the intermediate result.
* The round bit is bit 54 of the intermediate result.
* The sticky bit is the OR of all remaining bits to the right of bit 55, inclusive.

If the instruction is floating negative multiply-add or floating negative multiply-sub-
tract, the final result is negated.

Status bits are set to reflect the result of the entire operation: for example, no status
is recorded for the result of the multiplication part of the operation.

3.4.3 Non-IEEE Operation

The RCPU depends on a software envelope to fully implement the IEEE-754 float-
ing-point specification. Even when all exceptions are disabled (i.e., when exception
enable bits in the FPSCR are cleared), tiny results and denormalized operands
cause FPU exceptions that invoke a software routine to deliver (with hardware as-
sistance) the correct IEEE result.

To accelerate time-critical operations and make them more deterministic, the
RCPU provides a non-IEEE mode of operation. In this mode, whenever a tiny result
is detected and floating-point underflow exception is disabled (FPSCR[UE] = 0),
the hardware delivers a correctly signed zero instead of invoking the floating-point
assist exception handler.

Non-IEEE mode is entered by setting the NI (non-IEEE enable) bit in the FPSCR.

Denormalized numbers are never generated in non-IEEE mode. Therefore, when
denormalized operands are detected, they are treated exactly as they are in IEEE
mode. Refer to 6.11.10 Floating-Point Assist Exception (0x00E00) for more in-
formation.

The hardware never asserts the FPSCRXX (inexact) bit on an underflow condition;
it is done as a part of the floating-point assist interrupt handler. Therefore, in non-
IEEE mode, FPSCRXX cannot be depended upon to be a complete accumulation
of all inexact conditions.

RCPU OPERAND CONVENTIONS MOTOROLA
REFERENCE MANUAL Revised 1 February 1999 3-25

3.4.4 Working Without the Software Envelope
Even when the processor is operating in non-IEEE mode, the software envelope | Tl

may be invoked when denormalized numbers are used as the input to the calcula-
tion or when an enabled IEEE exception is detected. To ensure that the software
envelope is never invoked, the user needs to do the following:

* Set the NI bit in the FPSCR to enable non-IEEE mode.
* Disable all floating-point exceptions.
* Avoid using denormalized numbers as inputs to floating-point calculations.

MOTOROLA OPERAND CONVENTIONS RCPU
3-26 Revised 1 February 1999 REFERENCE MANUAL

	SECTION 3 OPERAND CONVENTIONS
	3.1 Data Alignment and Memory Organization
	3.2 Byte Ordering
	3.2.1 Structure Mapping Examples
	3.2.1.1 Big-Endian Mapping
	3.2.1.2 Little-Endian Mapping

	3.2.2 Data Memory in Little-Endian Mode
	3.2.2.1 Aligned Scalars
	3.2.2.2 Misaligned Scalars
	3.2.2.3 String Operations
	3.2.2.4 Load and Store Multiple Instructions

	3.2.3 Instruction Memory Addressing in Little-Endian Mode
	3.2.4 Input/Output in Little-Endian Mode

	3.3 Floating-Point Data
	3.3.1 Floating-Point Data Format
	3.3.2 Value Representation
	3.3.3 Normalized Numbers (±NORM)
	3.3.4 Zero Values (±0)
	3.3.5 Denormalized Numbers (±DENORM)
	3.3.6 Infinities (±°)
	3.3.7 Not a Numbers (NaNs)
	3.3.8 Sign of Result
	3.3.9 Normalization and Denormalization
	3.3.10 Data Handling and Precision
	3.3.11 Rounding

	3.4 Floating-Point Execution Models
	3.4.1 Execution Model for IEEE Operations
	3.4.2 Execution Model for Multiply-Add Type Instructions
	3.4.3 Non-IEEE Operation
	3.4.4 Working Without the Software Envelope

