
IEEE-ISTO 5001™-1999

Industry Standards and Technology Organization (IEEE-ISTO)
445 Hoes Lane • P.O. Box 1331 • Piscataway, NJ 08855-1331, USA
Phone +1.732.981.3434 • Fax +1.732.562.1571 • http://www.ieee-isto.org/

The Nexus 5001 Forum™
Standard for a Global Embedded Processor

Debug Interface

15 December 1999

IEEE-ISTO 5001™-1999

© 1999, IEEE Industry Standards and Technology Organization. All rights reserved.
The IEEE-ISTO is affiliated with the IEEE and the IEEE Standards Association.

IEEE-ISTO 5001 and Nexus 5001 Forum are trademarks of the IEEE-ISTO.

The Nexus 5001 Forum™ Standard for a
Global Embedded Processor Debug

Interface

Recognized by the IEEE Vehicular Technology Society

History: The Global Embedded Processor Debug Interface Standard (GEPDIS) Consortium was
formed in April 1998 to define and develop a much-needed embedded processor debug interface
standard for embedded control applications. On 23 September 1999, the GEPDIS Consortium
chose the IEEE Industry Standards and Technology Organization (IEEE-ISTO) as the operational
and legal forum in which to continue its efforts. During the transition, the group also changed its
name to the Nexus 5001 Forum™ to reflect the submission of Version 1.0 of their standard to the
IEEE-ISTO for publication, distribution and future management as IEEE-ISTO 5001™ - 1999, The
Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface.

Abstract: A general-purpose specification that addresses the rigorous challenges for debug
interfaces is outlined. Auxiliary pin functions, transfer protocols and standard development
features are defined.

Keywords: Application Programming Interface (API), auxiliary port, Boolean, breakpoint, bit,
client, compliance classification, debug interface, embedded processor, emulator, full-duplex,
half-duplex, Hardware Abstraction Layer (HAL), high-speed input/output (HSIO), low-speed
input/output (LSIO), Nexus, pin, register, Target Abstraction Layer (TAL), watchpoint.

IEEE-ISTO 5001™-1999

ii
© 1999, IEEE Industry Standards and Technology Organization. All rights reserved.

The IEEE-ISTO is affiliated with the IEEE and the IEEE Standards Association.
IEEE-ISTO 5001 and Nexus 5001 Forum are trademarks of the IEEE-ISTO.

Copyright  1999 IEEE-ISTO. All rights reserved.

This document may be copied and furnished to others, and derivative works that comment on, or
otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice, this paragraph and the title of the Document as referenced below are included on all such
copies and derivative works. However, this document itself may not be modified in any way, such
as by removing the copyright notice or references to the IEEE-ISTO and the Nexus 5001
Forum™.

Title: The Nexus 5001 Forum™ Standard for a Global Embedded Processor
Debug Interface

The IEEE-ISTO and the Nexus 5001 Forum™ DISCLAIM ANY AND ALL WARRANTIES,
WHETHER EXPRESSED OR IMPLIED, INCLUDING (WITHOUT LIMITATION) ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

The Nexus 5001 Forum™, a program of the IEEE-ISTO, reserves the right to make changes to
the document without further notice. The document may be updated, replaced or made obsolete
by other documents at any time.

The IEEE-ISTO takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the technology
described in this document, or the extent to which any license under such rights might or might
not be available; neither does it represent that it has made any effort to identify any such rights.

The IEEE-ISTO invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights which may cover technology that may be required
to practice this standard. The IEEE-ISTO and its programs shall not be responsible for identifying
patents for which a license may be required by an IEEE-ISTO Industry Group Standard or for
conducting inquiries into the legal validity or scope of those patents that are brought to its
attention. Inquiries may be submitted to the IEEE-ISTO by e-mail at: ieee-isto@ieee.org.

The Nexus 5001 Forum™ acknowledges that the IEEE-ISTO (acting itself or through its
designees) is, and shall at all times, be the sole entity that may authorize the use of certification
marks, trademarks or other special designations to indicate compliance with these materials.

Use of this IEEE-ISTO Industry Group Standard is wholly voluntary. The existence of an IEEE-
ISTO Industry Group Standard does not imply that there are no other ways to produce, test,
measure, purchase, market or provide other goods and services related to its scope.

IEEE-ISTO 5001™-1999

iii
© 1999, IEEE Industry Standards and Technology Organization. All rights reserved.

The IEEE-ISTO is affiliated with the IEEE and the IEEE Standards Association.
IEEE-ISTO 5001 and Nexus 5001 Forum are trademarks of the IEEE-ISTO.

About the IEEE-ISTO

The IEEE-ISTO is a not-for-profit corporation offering industry groups an innovative and flexible
operational forum and support services. The IEEE-ISTO provides a forum not only to develop
standards, but also to facilitate activities that support the implementation and acceptance of
standards in the marketplace. The organization is affiliated with the IEEE (http://www.ieee.org/)
and the IEEE Standards Association (http://standards.ieee.org/).

For additional information regarding the IEEE-ISTO and its industry programs visit
http://www.ieee-isto.org.

About the Nexus 5001 Forum™

The Nexus 5001 Forum™ (formerly known as the Global Embedded Processor Debug Interface
Consortium) is chartered to advance the development, dissemination and implementation of the
Global Embedded Processor Debug Interface Standard. The Nexus 5001 Forum™ is open to all
interested parties.

For additional information (membership, procedures, articles, news releases, etc.) regarding the
Nexus 5001 Forum™, visit http://www.ieee-isto.org/Nexus5001/.

Feedback

Comments and questions may be submitted to the Nexus 5001 Forum™ through the IEEE-ISTO:

Program Administrator, IEEE-ISTO
445 Hoes Lane
Piscataway, NJ 08855-1331 USA
Telephone: +1.732.981.3434
Fax: +1.732.562.1571
Email: ieee-isto@ieee.org

IEEE-ISTO 5001™-1999

iv
© 1999, IEEE Industry Standards and Technology Organization. All rights reserved.

The IEEE-ISTO is affiliated with the IEEE and the IEEE Standards Association.
IEEE-ISTO 5001 and Nexus 5001 Forum are trademarks of the IEEE-ISTO.

IEEE Vehicular Technology Society Recognition

 VEHICULAR TECHNOLOGY SOCIETY

October 25,1999

Mr. Andrew Salem, President and CEO
IEEE Industry Standards and Technology Organization
445 Hoes Lane
Piscataway, NJ 08855-1331

Dear Mr. Salem:

In response to your letter of September 30, 1999 regarding the publication of the
IEEE-ISTO 5001™-1999, I brought this matter before the IEEE Vehicular
Technology Society (VTS) at their Board of Governors (BOG) meeting on October
8, 1999. The VTS BOG was very supportive of the request from the IEEE-ISTO.
More specifically, the IEEE VTS has taken note of the publication of IEEE-ISTO
5001™-1999, and recognizes it as a significant contribution to the needs of the
Automotive industry. Should the Nexus 5001 Forum, a program of the IEEE-ISTO
desire to advance this standard as an IEEE Standard, the VTS wishes to offer its
services as the sponsor for this effort. The IEEE-ISTO may so note our recognition
of the standard and our offer of sponsorship on the standard itself.

Sincerely,

Dennis Bodson
Chairman
VTS Standards Committee

THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

IEEE-ISTO 5001™-1999

v
© 1999, IEEE Industry Standards and Technology Organization. All rights reserved.

The IEEE-ISTO is affiliated with the IEEE and the IEEE Standards Association.
IEEE-ISTO 5001 and Nexus 5001 Forum are trademarks of the IEEE-ISTO.

Preface

The Nexus 5001 Forum™ (formerly known as the Global Embedded Processor Debug Interface
Consortium) is chartered to advance the development, dissemination and implementation of
IEEE-ISTO 5001™-1999, the Nexus 5001 Forum Standard for a Global Embedded Processor
Debug Interface.

The industry group was formed in April 1998 to define and develop a much-needed embedded
processor debug interface standard for embedded control applications. As advances in
semiconductor and system design continue, embedded applications are using higher-
performance embedded processors. Efficient use of these embedded processors requires
software and hardware development tools that can easily access critical processor functionality.

However, the lack of a unifying standard among the various embedded processors on the market
at the time of publication has impeded this accessibility, preventing tool vendors from creating
standard tools with consistent functionality across a broad range of processors. This, in turn, has
become a gating factor for chipmakers, tool providers and developers. Ultimately customers are
forced to pursue costly custom solutions to meet their tool needs.

IEEE-ISTO 5001-1999, the Nexus 5001 Forum Standard for a Global Embedded Processor
Debug Interface is an open industry standard that provides a general-purpose interface for the
software development and debug of embedded processors. Standardization on this interface
benefits customers' reuse of their Nexus 5001™ compliant development tools on compliant
processor architectures. A future method and a process by which Nexus 5001 compliance can be
validated will further global implementation of the standard.

Although the initial focus of the effort was based on the stringent requirements of the automotive
powertrain applications, a general purpose standard has been developed, aimed to also benefit
data communications and computer peripherals, wireless systems and other embedded control
applications industries.

The Nexus 5001 Forum is open to all interested companies. Members of the Forum represent all
aspects of the technologies required for embedded control applications: embedded processor
suppliers, independent tools providers, semiconductor and hardware development tools, and
software tools (emulators, compilers, simulators, debuggers, RTOS's, etc.).

Additional information regarding the Nexus 5001 Forum can be found on the IEEE-ISTO's
website at http://www.ieee-isto.org/.

IEEE-ISTO 5001™-1999

vi
© 1999, IEEE Industry Standards and Technology Organization. All rights reserved.

The IEEE-ISTO is affiliated with the IEEE and the IEEE Standards Association.
IEEE-ISTO 5001 and Nexus 5001 Forum are trademarks of the IEEE-ISTO.

Contents

Section 1 Introduction 1
1.1 Terms and Definitions 2
1.2 Conventions 3

Section 2 Basic Development Needs for Embedded Processors 5
2.1 Required Development Features for Embedded Processors 5
2.2 Additional Needs for Automotive Powertrain and

Disk Drive Development 7

Section 3 Compliance and Performance Classifications 8
3.1 Compliance Classification 8

3.1.1 Compliance Sub-Class for Application-Specific
Development Needs 9

3.2 Performance Classification 9
3.2.1 Interpreting Performance Classification 11

3.3 Other Terminology within the Nexus Standard 11

Section 4 Development Interface and Features 13
4.1 Development Interface 13

4.1.1 IEEE 1149.1 Interface 14
4.1.2 Nexus Auxiliary Pin Interface 15

4.2 Development Features 15
4.2.1 Application Programming Interface (API) 16
4.2.2 Development Control and Status 16
4.2.3 Read/Write Access 17
4.2.4 Ownership Trace 18
4.2.5 Program Trace 18
4.2.6 Data Trace 21
4.2.7 Memory Substitution 23
4.2.8 Breakpoints/Watchpoints 25
4.2.9 Port Replacement and Sharing 26
4.2.10 Data Acquisition 26

Section 5 Application Programming Interface (API) 28
5.1 Introduction 28
5.2 Overview 30
5.3 Vendor Extensions 31
5.4 Target-Specific Issues 31
5.5 Deliverables 31
5.6 Concepts and Data Types 31

5.6.1 Naming Conventions 31
5.6.2 Header Files 32
5.6.3 Status/Error Values 32

5.7 Target Abstraction Layer (TAL) 33
5.7.1 Opening a Connection—nx_Open 33
5.7.2 Closing a Connection—nx_Close 36
5.7.3 Controlling a Connection—nx_Control 36
5.7.4 Writing Target Memory—nx_WriteMem 40
5.7.5 Reading Target Memory—nx_ReadMem 41
5.7.6 Setting an event—nx_SetEvent 41
5.7.7 Clearing an Event—nx_ClearEvent 46
5.7.8 Reading an Event—nx_GetEvent 46

IEEE-ISTO 5001™-1999

vii
© 1999, IEEE Industry Standards and Technology Organization. All rights reserved.

The IEEE-ISTO is affiliated with the IEEE and the IEEE Standards Association.
IEEE-ISTO 5001 and Nexus 5001 Forum are trademarks of the IEEE-ISTO.

5.8 Emulator HAL 48
5.8.1 Opening a Connection—nxhal_Open 48
5.8.2 Closing a Connection—nxhal_Close 49
5.8.3 Writing to a Nexus IEEE 1149.1 Register—nxhal_WriteNRR 49
5.8.4 Reading a Nexus IEEE 1149.1 Register—nxhal_ReadNRR 50
5.8.5 Reading an Event—nxhal_GetEvent 50

Section 6 Public Messages 51
6.1 Compliance Requirements for Public Messages 51
6.2 Definitions and Terminology 52
6.3 Complete List of Nexus Public Messages 55
6.4 Detailed Description of Public Messages 56

6.4.1 Debug Status 56
6.4.2 Device Identity 57
6.4.3 Ownership Trace 58
6.4.4 Program Trace 58
6.4.5 Data Trace 64
6.4.6 Data Acquisition 69
6.4.7 Error 69
6.4.8 Watchpoint Hit 70
6.4.9 Port Replacement 71
6.4.10 Read/Write Access of Nexus Recommended

Development Registers 72
6.4.11 Read/Write Access of Memory-Mapped Locations and

Memory Substitution Development Registers 75
6.4.12 Memory Substitution 85

Section 7 Auxiliary Port Signals 86
7.1 Pin Functions 87

Section 8 Auxiliary Port Message Protocol 92
8.1 Rules for Messages 97

Section 9 IEEE 1149.1 Message Protocol 98
9.1 IEEE 1149.1 Compatibility 98

9.1.1 Optional Ready (RDY) Output Pin 100
9.2 Selecting the IEEE 1149.1 Port 101
9.3 Selecting an IEEE 1149.1 Register 102
9.4 Read/Write Access via the IEEE 1149.1 Port 103
9.5 Reading and Writing Public Messages 105
9.6 Reading Unsolicited Messages 105

Section 10 Miscellaneous Topics 107
10.1 Multiple Address Threads 107
10.2 Repeat Instructions and Hardware Loops 107

10.2.1 Visibility for Repeat Instructions 107
10.2.2 Visibility for Hardware Loops 108

10.3 Simultaneous Development of Multiple Embedded Processors 108

Appendix A Connector and Electrical Specifications 109
A.1 Connection Options 109

A.1.1 Signal Descriptions 110
A.2 Connector A (IEEE 1149.1 Interface) 111

A.2.1 Signal Layout 111
A.2.2 Implementation Considerations 111
A.2.3 Mechanical Specifications 112

IEEE-ISTO 5001™-1999

viii
© 1999, IEEE Industry Standards and Technology Organization. All rights reserved.

The IEEE-ISTO is affiliated with the IEEE and the IEEE Standards Association.
IEEE-ISTO 5001 and Nexus 5001 Forum are trademarks of the IEEE-ISTO.

A.3 Connector B 114
A.3.1 Signal Layout 115
A.3.2 Implementation Considerations 115
A.3.3 Mechanical Specifications 116

A.4 Connector C (Auxiliary Port and Port Replacement) 117
A.4.1 Signal Layout 117
A.4.2 Implementation Considerations 118
A.4.3 Mechanical Specifications 118

A.5 DC Electrical Characteristics 120
A.6 AC Electrical Characteristics—General 121
A.7 AC Electrical Characteristics—IEEE 1149.1 Interface 121
A.8 AC Electrical Characteristics—Auxiliary Port 122
A.9 Terminations 123

Appendix B Recommendations for Access to Control and Status Registers 125
B.1 Device ID (DID) Register 129
B.2 Client Select Control (CSC) Register 130
B.3 Development Control Register 130
B.4 Development Status (DS) Register 133
B.5 User Base Address (UBA) Register 134
B.6 Read/Write Access Register 135

B.6.1 Read/Write Access Control/Status (RWCS) Register 137
B.6.2 Read/Write Access Address (RWA) Register 138
B.6.3 Read/Write Access Data (RWD) Register 139

B.7 Watchpoint Trigger (WT) Register 139
B.8 Data Trace Register 140

B.8.1 Data Trace Control (DTC) Registerer 140
B.8.2 Data Trace Start and End Address Registers 141

B.9 Breakpoint/Watchpoint Registers 142
B.9.1 Breakpoint/Watchpoint Control Register (BWC) 142
B.9.2 Breakpoint/Watchpoint Address (BWA) 143
B.9.3 Breakpoint/Watchpoint Data (BWD) 144

B.10 Nexus Recommended Registers (NRRs) Concatenated for
Better Transfer Efficiency 144

Appendix C Data Acquisition in Tuning for Applications 145
C.1 Data Acquisition or Measurement of Calibration Variables 145
C.2 Tuning of Calibration Constants 146

Appendix D Topics for Discussion 147
D.1 Minor Classification Changes/Ownership Trace Alternative Use 147
D.2 Reduced Pin Count Option 147
D.3 Multiple Nexus Compliant Embedded Processors on

a Single Target Board 148
D.4 High-Frequency Auxiliary Port 148
D.5 Additional Functionality for Event-In Pin 148
D.6 Add an Exception Status Packet to Indirect Branch Messages 149
D.7 Additional use of RDY pin 149

Appendix E References 150

SECTION 1
Introduction

The Nexus 5001 Forum™ (http://www.ieee-isto.org/Nexus5001/), previously
referred to as the Global Embedded Processor Debug Interface Standard
Consortium (GEPDISC), was formed to develop a much-needed embedded
processor debug interface standard for embedded control applications. The
internal name for this standard is “Nexus,” which is used throughout this document
only.

The goal is a general-purpose specification that addresses the rigorous
challenges for debug interfaces. Applications that may benefit from this standard
interface include automotive powertrain, data communications, computer
peripherals, wireless systems and other control applications.

As advances in semiconductor and system design continue, embedded
applications are using higher-performance embedded processors. Efficient use of
these embedded processors requires software and hardware development tools
that can easily access critical processor functionality. The lack of a unifying
standard among the various embedded processors on the market has impeded
this accessibility, preventing tool vendors from creating standard tools with
consistent functionality across a broad range of processors. Ultimately, system
developers are forced to pursue costly custom solutions to meet their tool needs.

To provide the best opportunity for achieving a world-wide development interface
standard, it is prudent to leverage off an accepted pin interface that exists today—
the IEEE 1149.1 standard.a The Nexus standard defines an extensible auxiliary
port (AUX) that may either be used with the IEEE 1149.1 port or as a stand-alone
development port. The Nexus standard defines the auxiliary pin functions, transfer
protocols and standard development features.

a. For information on references, see APPENDIX E.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 1 of 150 Pages

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

1.1 Terms and Definitions

Table 1-1 lists terms and definitions used in this standard.

Table 1-1 Terms and Definitions

Term Definitions

Address
The term is used to indicate logical address. If there is no address transla-
tion in an application, then it also refers to the physical address.

Application Programming
Interface (API)

API abstracts the semantics of APPENDIX B so that a tool can perform a
common set of operations on any target, irrespective of hardware registers
implemented on the target.

Auxiliary Port (AUX)
Refers to the Nexus auxiliary port. Used as auxiliary port to the IEEE 1149.1
interface, or as a stand-alone development port.

Branch Trace Messaging
(BTM)

Visibility of addresses for taken branches and exceptions, and the number
of sequential instruction units executed between each taken branch.

Data Breakpoint
Processor is halted at an appropriate instruction boundary after a trigger is
set at a data valid time. The trigger is set when the data address and/or
value matches a pre-selected address and/or value.

Calibration Constants
Performance-related constants which must be tuned for automotive power-
train and disk drive applications.

Calibration Variables
Intermediate calculations which must be visible during the calibration or tun-
ing process to enable accurate tuning of calibration constants.

Client
A functional block on an embedded processor which will require develop-
ment visibility and controllability. Examples are a central processing unit
(CPU) and an intelligent peripheral.

Data Acquisition Messaging
(DQM)

Visibility of related data parameters stored in internal resources, e.g. related
calibration variables for automotive applications.

Data Read Messaging
(DRM)

Visibility of data reads to internal memory-mapped resources, e.g. on-chip
random access memory (RAM).

Data Write Messaging
(DWM)

Visibility of data writes to internal memory-mapped resources, e.g. on-chip
RAM.

Data Trace Messaging
(DTM)

Visibility of how data flows through the embedded system. May include
DRM and DWM. Refer to 2.1 Required Development Features for Embed-
ded Processors on Page 5 for more information on data trace requirements.

Full-duplex
Messages can be transmitted in both directions between tool and target
simultaneously.

Global Embedded
Processor Debug Interface

Standard Consortium
(GEPDISC)

GEPDISC, renamed the Nexus 5001 Forum™ (http://www.ieee-isto.org/
Nexus5001/), was formed to develop a much-needed embedded processor
debug interface standard for embedded control applications. The internal
name for this standard is “Nexus,” which is used throughout this document
only.

Half-duplex
Messages can be transmitted in only one direction at a time between tool
and target.

Hardware Breakpoint
Typically a hardware comparator used to halt the processor at an appropri-
ate instruction boundary after an address or data value matches a pre-
selected address or data value.

Page 2 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

1.2 Conventions

This document uses the following notational conventions:

ACTIVE_HIGH Names for signals that are active high are shown in
uppercase text without an overbar. Signals that are active
high are referred to as asserted when they are high and
negated when they are low.

High Speed Input/Output
(HSIO)

The term HSIO, as used in the Nexus standard, is intended to refer to an
external bus of the embedded processor. Assertion and negation timing is
critical to system integrity.

Instruction Breakpoint
Processor is halted when all previous instructions are retired and just prior
to when any architectural state is changed by the instruction associated with
a pre-selected address.

IEEE 1149.1 Instruction
Register (IR) and Data Reg-

ister (DR) Sequence

IEEE 1149.1 IR scan to load an opcode value for selecting a development
register. The selected development register is then accessed via an IEEE
1149.1 DR scan.

Low Speed Input/Output
(LSIO)

LSIO pin functions are typically implemented on microcomputer units
(MCUs), e.g. an output pin to set system configuration. Assertion and nega-
tion timing is not critical to system integrity.

Nexus Internal code name for this standard.

Nexus API API required by the Nexus standard.

Ownership Trace
Messaging (OTM)

Visibility of the process/function that is currently executing.

Public Messages
Messages on the auxiliary pins for accomplishing common visibility and con-
trollability requirements, e.g. DRM and DWM.

Read-Only Memory (ROM) Read-only memory, such as non-volatile flash.

Standard
The phrase “according to the Nexus standard” is used to indicate “according
to the Nexus standard contained in this document.”

Target
Generally refers to an end application or evaluation board, containing one or
more embedded processors, which is connected to a development tool.

Transfer Code (TCODE)
Message header that identifies the number and/or size of packets to be
transferred, and how to interpret each of the packets.

Memory Substitution
Messaging (MSM)

Messaging for a memory substitution access in which internal accesses are
re-directed through the auxiliary pins defined in the Nexus standard.

Nexus Recommended
Register (NRR)

NRRs are defined in APPENDIX B.

Watchpoint
A data or instruction breakpoint that does not cause the processor to halt.
Instead a pin is used to signal that the condition occurred.

Table 1-1 Terms and Definitions (Continued)

Term Definitions
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 3 of 150

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

ACTIVE_LOW A bar over a signal name indicates that the signal is active
low. Active-low signals are referred to as asserted (active)
when they are low, and negated when they are high.

0x0F Hexadecimal numbers

0b0011 Binary numbers

LSB Means least significant bit. The LSB is the lowest bit number,
e.g. bit 0

MSB Means most significant bit. The MSB is the highest bit
number, e.g. bit 31

Set bit To set a bit (or bits) means to establish logic level one on the
bit (or bits), i.e. the voltage that corresponds to Boolean true
(1) state.

Clear bit To clear a bit (or bits) means to establish logic level zero on
the bit (or bits), i.e. the voltage that corresponds to Boolean
false (0) state.

Page 4 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

SECTION 2
Basic Development Needs for Embedded Processors

Embedded developers need to accomplish specific functions using their
development tools in order to accomplish their jobs. For logic analysis the basic
needs are:

• To access instruction trace information with acceptable impact to the
system under development. The developer needs to be able to
interrogate and correlate instruction flow to real-world interactions.

• To retrieve information on how data flows through the system with
acceptable impact to the system under development, and to understand
what system resource(s) are creating and accessing data.

• To assess whether embedded software is meeting the required
performance level with acceptable impact to the system under
development.

For run control the basic needs are:

• To query and modify when the processor is halted, showing all locations
available in the processor’s supervisor map.

• To support breakpoint/watchpoint features in debuggers, either as
hardware (HW) or software (SW) breakpoints depending on the
architecture. Configuration of breakpoint/watchpoint features may be
performed when the processor is halted.

2.1 Required Development Features for Embedded Processors

The evolution of high-performance microprocessor units (MPUs) and highly
integrated MCUs has had an impact on development processes and tools. High-
performance on-chip caches, flash and RAM, and other changes have eliminated
the internal visibility needed for instruction and data trace. Thus there are specific
features the Nexus standard should address, as listed below:

1. Program trace visibility is needed for development tools with acceptable
impact to the system under development. With high-performance on-
chip instruction cache and flash, visibility needed for program trace is
restricted. In some applications the external bus is used for a secondary
function such as general-purpose I/O, or is not available.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 5 of 150

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

2. Data trace visibility is needed for development tools with acceptable
impact to the system under development. With on-chip high
performance data cache and RAM the visibility needed for data trace is
restricted. There are 2 types of data visibility needed:

a. Which process (i.e. which instruction address) wrote which data
parameter and what new value was written?

b. For a chosen data parameter which process(es) accessed it?

3. A standard development methodology and tool set is needed for
embedded applications. Since embedded processor vendors generally
do not support the same development interface/methodology,
development methodology and tools are not compatible.

4. A development pin interface standard is needed to support development
with multiple clients (processor cores or intelligent peripherals) on the
embedded processor. The development pin interface comprises basic
visibility and controllability of each processor independently.

5. An independant processor development pin interface standard is
needed to support development for all mainstream processor
architectures.

6. An embedded development pin interface standard is needed to allow for
connection to multiple development tools. Tool arbitration may be
needed if multiple development tool boxes are connected to the same
target. Arbitration among tools is not addressed in this standard.

7. Multiplexing of development pin functions should be performed in a
manner so that undue constraints are not placed on the embedded
system developer. MCU vendors occasionally multiplex on the same
pins development functions and general purpose I/O (GPIO). Guidelines
should be given to eliminate improper multiplexing, especially out of
reset, which can lead to unpredictable behaviors and anomalies in
development tools. Development pins should be configurable to be in
development mode out of reset.

8. A scalable development pin interface standard, which will work for
different price targets of embedded MCUs/MPUs, is needed.

9. An embedded development pin interface standard is needed for cost-
effective tools.

Page 6 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

2.2 Additional Needs for Automotive Powertrain and Disk Drive Development

The development cycle for mechanical and electro-mechanical control
applications includes additional needs for calibration of mechanical performance-
related constants that are tuned for specific loads. The calibration process is
performed during runtime. For calibration the basic needs for development tools
are:

1. To acquire during mechanical operation (e.g. running an engine),
rotational position synchronous data relating to calibration factors as
they are being used or modified during high-speed transient events. This
should be accomplished with minimal impact to the system under
development.

2. To acquire during mechanical operation, time synchronous data relating
to calibration factors as they are being used or modified during high-
speed transient events. This should be accomplished with minimal
impact to the system under development.

3. To coherently modify table(s) of calibration constants during mechanical
operation.

Refer to the white paper, The Evolution of Powertrain Microcontrollers and its
Impact on Development Processes and Tools, for more information on automotive
powertrain development needs. A copy of the paper can be found on the Nexus
web site, http://www.ieee-isto.org/Nexus5001/microcontrollers_evolution.pdf.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 7 of 150

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

SECTION 3
Compliance and Performance Classifications

The capability of Nexus-compliant development ports shall comprise two basic
designations: the development features supported by the port and the
performance capability for downloading and uploading via the port. All
development features described in the Nexus standard are assigned to at least
one compliance classification: class 1, class 2, class 3 or class 4. Performance
capability is designated by full- or half-duplex capability, and transfer bandwidth in
megabits per second for both downloads to the embedded processor and uploads
from the embedded processor. Thus Nexus-compliant development ports
implemented by embedded processor integrated circuit (IC) vendors shall be
designated as follows:

• Class 1, 2, 3 or 4 compliant

• Download rate (megabits per second)

• Upload rate (megabits per second)

• Full- or half-duplex

3.1 Compliance Classification

Complying embedded processors shall be designated as class 1, 2, 3 or 4, or as
an approved compliance sub-class. Class 1 compliant devices implement the
fewest Nexus development features. Class 4 compliant devices implement the
most Nexus development features. Thus class 4 devices offer the most
development capability and standardization. Classes 1, 2 and 3 devices offer a
graduated subset of the Nexus development features, which may be appropriately
suited for some applications.

Table 3-1 and Table 3-2 show the minimum features for the four compliance
classifications.

Page 8 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

3.1.1 Compliance Sub-Class for Application-Specific Development Needs

To comply with application-specific development needs, compliance sub-classes
for specific applications shall be approved by a standards developing
organization. Sub-classes are allowed when standardized support of application-
specific development features are needed.

3.2 Performance Classification

Complying embedded processors shall be designated by a performance
classification. The embedded processors shall be designated by full- or half-
duplex capability, and transfer bandwidth in megabits per second for both
downloads to the embedded processor and uploads from the embedded
processor.

Full- and half-duplex capability is related to compliance classification as described
in Table 3-3. Refer to APPENDIX A, which contains the connector options defined
at the time this standard was released. Other connector options are expected as
this standard evolves.

Table 3-1 Compliance Classification for Static Development Features

Development Feature Class 1 Class 2 Class 3 Class 4 Nexus Feature

STATIC DEVELOPMENT FEATURES

Read/write user registers in debug mode V V V V Refer to SECTION 5

Read/write user memory in debug mode A A A A Read/Write Access

Enter a debug mode from reset A A A A

Development Control
and Status

Enter a debug mode from user mode A A A A

Exit a debug mode to user mode A A A A

Single step instruction in user mode and
re-enter debug mode

A A A A

Stop program execution on instruction/
data breakpoint and enter debug mode
(minimum 2 breakpoints)

A A A A
Breakpoints/
Watchpoints

Note:
“A” indicates a required development feature that must be implemented via the Nexus API.
“V” indicates a required vendor-defined development feature implemented in the Nexus API.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 9 of 150

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

Table 3-2 Compliance Classification for Dynamic Development Features

Development Feature Class 1 Class 2 Class 3 Class 4 Nexus Feature

DYNAMIC DEVELOPMENT FEATURES

Ability to set breakpoint or watchpoint A A A A
Breakpoints/
Watchpoints

Device Identification A A and P A and P A and P
Device ID Message
(see SECTION 6)

Ability to send out an event occurrence
when watchpoint matches

P1 P P P
Watchpoint Message

(see SECTION 6)

Monitor process ownership while pro-
cessor runs in real-time

— P P P Ownership Trace

Monitor program flow while processor
runs in real-time (logical address)

— P P P Program Trace

Monitor data writes while processor runs
in real-time

— — P P
Data Trace

(Writes only)

Read/write memory locations while pro-
gram runs in real-time

— — A and P A and P Read/Write Access

Program execution (instruction/data)
from Nexus port for reset or exceptions

— — — P Memory Substitution

Ability to start ownership, program or
data trace upon watchpoint occurrence

— — — A
Development Control

and Status

Ability to start memory substitution upon
watchpoint occurrence or upon program
access of device-specific address

— — — O
Development Control

and Status

Monitor data reads while processor runs
in real-time

— — O O
Data Trace (Reads and

Writes)

LSIO port replacement and HSIO port
sharing

— O O O
Port Replacement/

Sharing

Transmit data values for acquisition by
tool

— — O O Data Acquisition

Note:
“A” indicates a required development feature that must be implemented via the Nexus API.
“P” indicates a required development feature that must be implemented via the Nexus development port as a Public
Message or with a Nexus port pin (as appropriate).
“O” indicates an optional development feature as defined by the Nexus standard.

1. Since no auxiliary port is required for class 1, the event occurrence should be provided via an EVTO pin defined
in SECTION 7 Auxiliary Port Signals, or via a Message Out mechanism defined in SECTION 9.

Table 3-3 Performance Interface Options

Development Feature Class 1 Class 2 Class 3 Class 4 Nexus Feature

IC DEVELOPMENT INTERFACE OPTIONS

IEEE 1149.1 port X — — — Half-duplex

IEEE 1149.1 or auxiliary input port with
an auxiliary output port

— X X X Full-duplex

Page 10 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

3.2.1 Interpreting Performance Classification

System developers of embedded processors should interpret the performance
classification properly in order to assess the capability needed for their
application. To do so, a basic knowledge is needed of Nexus features, the
developer’s code characteristics and visibility needs.

The transfer bandwidth for downloads can be thought of as the sustainable input
bandwidth required to the device. Conversely, the transfer bandwidth for uploads
can be thought of as the sustainable output bandwidth required from the device.
Bandwidth requirements are typically determined by what Nexus development
features are needed during runtime. Bandwidth requirements are compensated
for by AUX size and clock rate.

The Nexus AUX is used to fulfill the output bandwidth requirements. In calculating
the average output bandwidth requirements for an application, factors that may be
considered are:

• Frequency of taken direct and indirect changes of flow

• Frequency and size of internal data reads/writes that must be visible

• Frequency and size of data that must be read from device

The Nexus AUX or the IEEE 1149.1 port is used to fulfill the input bandwidth
requirements. In calculating the average input bandwidth requirements for an
application, a factor that may be considered is the frequency and size of data that
must be written to the device.

For this and other relevant factors, convert to bandwidth estimates. Refer to
SECTION 5 Application Programming Interface (API) for more information on
converting factors to bandwidth estimates.

3.3 Other Terminology within the Nexus Standard

The following list describes Public Messages and Vendor Defined Messages.
These transfer operations occur via the Nexus AUX or the IEEE 1149.1 interface,
between the development tool and complying embedded processors.

• Public Messages are defined for the AUX and the IEEE 1149.1 interface.
These messages must be used for designated functions when these
functions are implemented. Public Messages are specified pin protocols
for accomplishing common configuration, status and visibility.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 11 of 150

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

• Vendor Defined Messages are allowed via the AUX and the IEEE 1149.1
interface for development features that may be specific to each vendor.
These messages must follow the protocol defined for the AUX.

The terms vendor-defined extensions, vendor-defined operations and vendor-
defined information are used to indicate API extensions that may be implemented
as needed for a vendor’s device.

The term vendor-defined bit fields is used to indicate bit fields that may be defined
as needed for the vendor’s device.

The term device-specific is used to indicate allowances in the Nexus standard to
match characteristics of a vendor’s device. Device-specific packets may be of zero
length (not implemented). For a tool to interpret message contents, it must
determine from the device ID whether device-specific packets exist in each type of
message. Some device-specific packets have their length fixed by this
specification. Other device-specific packets are target processor dependent and
have a fixed size determined by the processor vendor.

Page 12 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

SECTION 4
Development Interface and Features

The development interface shall be implemented by Nexus classes 1, 2, 3 and 4
compliant embedded processors as described in Table 3-3. The development
features shall be implemented by Nexus classes 1, 2, 3 and 4 compliant
embedded processors as described in Table 3-1 and Table 3-2.

4.1 Development Interface

Embedded processors complying to class 1 shall implement the IEEE 1149.1
standard for access to the minimum development features of compliance class 1.
Embedded processors complying to classes 2, 3 and 4 shall implement a Nexus
pin interface according to the Nexus standard, for external visibility required for the
minimum development features of compliance classes 2, 3 and 4. Additionally,
embedded processors complying to classes 2, 3 and 4 shall implement either an
IEEE 1149.1 standard or Nexus pin interface according to the Nexus standard for
access to the minimum development features of compliance classes 2, 3 and 4.

Figure 4-1 illustrates Nexus development interface options for a class 2, 3 or 4
embedded processor.

Figure 4-1 Illustration of IEEE 1149.1/Nexus Development Interface

Embedded
Processor

Auxiliary Output

1149.1 or Auxiliary Input

Debugger, Logic Analyzer,
Data Acquisition, Prototyping

Debugger, Run-time
Parameter Tuning

IEEE 1149.1 Protocol or Packet-based Messaging
- Development Control and Status
- Read/Write Access to internal resources

Packet-Based Messaging

Program Trace
Data Trace
Memory Substitution
Vendor-Defined

Processor independent
Supports multiple on-chip
processors

Note: The auxiliary input port is input only. Although the IEEE 1149.1 interface is
bi-directional, for simplicity it is illustrated as input only.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 13 of 150

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

For implementation of the IEEE 1149.1 interface options for classes 2, 3 and 4
embedded processors, as referenced in Figure 4-1, only 3 auxiliary pinsb are
required for compliance. The performance classification, however, would also be
minimal, and may only meet the transfer bandwidth requirements for low-end
applications or for lower compliance classifications. If faster downloads to the
embedded processor are required than is possible via the IEEE 1149.1 interface,
an auxiliary input port should be implemented.

The Nexus standard allows for greater performance capability in either or both of
the following ways: with a scalable auxiliary pin interface to transfer more bits on
each clock and/or a faster transfer clock to transfer more bits per unit time.
Table 4-1 shows recommendations (not requirements) for AUX type.

4.1.1 IEEE 1149.1 Interface

The IEEE 1149.1 standard defines the required protocol for access to the
minimum development features of compliance class 1. Additionally, the IEEE
1149.1 standard defines the required protocol for access to the minimum
development features of compliance classes 2, 3 and 4, if the Nexus input
interface option is not selected by the embedded processor IC developer.

The IEEE 1149.1 interface shall provide the following capability:

• IEEE 1149.1 sequences for access to processor identification,
development control and status information according to the Nexus
standard, e.g. configuring a breakpoint via API

• IEEE 1149.1 sequences for access to user memory-mapped registers
during halt or runtime according to the Nexus standard

• IEEE 1149.1 sequences for access to development messages
according to the Nexus standard, e.g. ownership trace

• IEEE 1149.1 sequences for access to all device-specific development
features, e.g. user registers when processor is halted

b. Pins include TCK, TMS, TDI, TDO and TRST.

Table 4-1 Recommendations for Auxiliary Port Type

Compliance Class and
Port type

Number of Device Data Pins

1 2 4 8 16

Class 2 input port X X — — —

Class 2 output port X X — — —

Class 3 or 4 input port X X X — —

Class 3 or 4 output port — — X X X

Page 14 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

4.1.2 Nexus Auxiliary Pin Interface

The Nexus pin interface shall be implemented according to the Nexus standard for
external visibility required for the minimum development features of compliance
classes 2, 3 and 4. Additionally, the Nexus pin interface shall be implemented
according to the Nexus standard for access to the minimum development features
of compliance classes 2, 3 and 4, if the IEEE 1149.1 interface option is not
selected by the embedded processor IC developer.

The auxiliary interface shall provide the following external visibility according to
the Nexus standard:c

• Trace of operating system software execution via OTM

• Program trace via BTM

• Data trace via DTM

• Signal watchpoint and breakpoint events

• Runtime system memory substitution via MSM

• Other high-bandwidth information transfer (vendor defined)

Additionally, the auxiliary interface shall provide the following access according to
the Nexus standard, if the IEEE 1149.1 option is not selected by the embedded
processor IC developer:

• Access to processor identification, development control and status
information

• Access to user memory-mapped registers when halted or during
runtime

• Access to all device-specific development features, e.g. user registers
when processor is halted

• Provide optional access according to standard support for compliant
development tools to implement port replacement of development port

• Provide optional access according to standard ability for embedded
processor to transmit data values for acquisition by development tool

4.2 Development Features

The development features are described in 4.2.1 Application Programming
Interface (API) on Page 16 through 4.2.10 Data Acquisition on Page 26.

c. Refer to 1.1 Terms and Definitions on Page 2 for definitions of all new terms in the list.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 15 of 150

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

4.2.1 Application Programming Interface (API)

Embedded processors complying to all classes shall provide an API according to
the Nexus standard.

Application: The Nexus API allows tool vendors to use a common “low-level
semantic” API to abstract the low-level implementation details of each Nexus-
compliant embedded processor. Since the Nexus standard does not mandate that
the NRRs defined in APPENDIX B are implemented, embedded processor
vendors are free to implement a different set of development registers. The
required feature set for each class, however, must be available (refer to Table 3-1
and Table 3-2). The API allows embedded processors not implementing the
NRRs to be accessed in a standard manner.

The Nexus API is suitable for use by tools (debuggers, etc.), and also for the
Nexus validation suite. It is designed to capture the low-level semantics of the
Nexus features, so that it can be used to implement the bottom layers of a tool
vendor’s own target debug API.

Tool vendors support a large number of different host platforms, operating
systems and compilation systems. Emulator vendors similarly support a multitude
of systems. The Nexus API is suitable for use in a wide variety of systems. It has
been designed to not rely on any platform-specific, real-time operating-system-
specific (RTOS-specific) or compiler-specific features.

Description: The Nexus API abstracts the semantics of the NRRs, so that a tools
can perform a common set of operations on any target, irrespective of its class or
its underlying register set.

The Nexus API is divided into two sections, which are described in SECTION 5:

• Emulator Hardware Abstraction Layer (HAL)

• Target Abstraction Layer (TAL)

4.2.2 Development Control and Status

Embedded processors complying to class 1, 2, 3, or 4 shall provide the
development control and status required by the Nexus API.

Application: Standardized development control and status, and standardized
access to it offer a significant degree of commonality. This can be leveraged by
development tool vendors for creating standard tools with consistent functionality
across a broad range of processors. Ultimately, system developers will benefit
with more effective tools to meet their tool needs.

Page 16 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Description: For development control and status, embedded processors may
implement the NRRs described in APPENDIX B, or a set of device-specific
development control and status registers that implement the requirements
specified by the Nexus API.

Nexus recommended development registers comprise the following control and
status registers:

• Device ID Register

• Client Select Register

• Development Control Register

• Development Status Register

• User Base Address Register (memory map base address for user
access of development features)

• Read/Write Access Registers

• Watchpoint Trigger Register

• Data Trace Attribute Registers (minimum of 2)

• Breakpoint/Watchpoint Control Registers (minimum of 2)d

Development control and status registers (Nexus recommended or device-
specific) shall be accessed via the IEEE 1149.1 interface or the auxiliary interface
according to the Nexus standard. A sequence for each interface is recommended
in the Nexus standard.

4.2.3 Read/Write Access

Embedded processors complying to classes 3 and 4 shall provide read/write
access to user memory-mapped resources according to the Nexus standard,
either via the IEEE 1149.1 interface or the auxiliary pin interface. The capability to
perform read/write access shall be provided when the processor is halted or
running.

Application: The Read/Write Access feature supports runtime development
visibility needed for real-time embedded applications. This feature also supports
program tuning needs of automotive powertrain and disk drive applications.

d. Optionally, the 2 Breakpoint/Watchpoint Control Registers may be combined with the 2 Data Trace Attribute
Registers so that a total of 2 registers may be simultaneously active, i.e. 2 Breakpoint/Watchpoint Control
Registers, 2 Data Trace Attribute Registers or 1 Breakpoint/Watchpoint Control Register and 1 Data Trace
Attribute Register.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 17 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Description: The Read/Write Access feature provides DMA-like access to user
memory-mapped resources when the client is halted or during runtime. Either of
two options may be used to implement this feature on the embedded processor.
The NRRs may be implemented, which provide specific registers to support this
feature. Otherwise, Public Messages as described in SECTION 6 are provided to
implement this feature.

4.2.4 Ownership Trace

Embedded processors complying to classes 2, 3 and 4 shall provide ownership
trace visibility according to the Nexus standard.

Application: Ownership trace provides a macroscopic view, such as task flow
reconstruction, when debugging software written in a high level (or object-
oriented) language. It offers the highest level of abstraction for tracking operating
system software execution. This is especially useful when the developer is not
interested in debugging at lower levels.

Ownership trace is especially important for embedded processors with a memory
management unit, in which all processes can use the same logical program and
data spaces. Ownership trace offers development tools a mechanism to decipher
which set of symbolics and sources are associated for lower levels of visibility and
debugging.

Description: Ownership trace information is transmitted out the AUX using OTM.
OTM facilitates ownership trace by providing visibility of which process ID or
operating system task is activated. An Ownership Trace Message is transmitted to
indicate when a new process/task is activated, allowing development tools to trace
ownership flow. Additionally, for embedded processors which implement virtual
addressing or address translation, an Ownership Trace Message is also
transmitted periodically during runtime at a minimum frequency of every 256
Program Trace or Data Trace Messages.

The Nexus standard defines an OTM Register whose user memory map location
is accessed via the IEEE 1149.1 or auxiliary pin interfaces. The OTM Register is
to be updated as determined by the operating system software, to provide task/
process ID information. When new information is updated in the register by the
embedded processor, the information is transmitted out via the AUX. Refer to
B.5 User Base Address (UBA) Register on Page 134 for more information.

4.2.5 Program Trace

Embedded processors complying to class 2, 3 and 4 shall provide program trace
visibility via the AUX according to the Nexus standard.

Page 18 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Application: The program trace feature defines a standard protocol for program
trace visibility that is processor independent. Additionally, the amount of program
trace signals that must be visible external to the device is significantly reduced
over conventional methods. The benefit is standard logic analysis tools with
consistent functionality.

Description: The program trace feature implements a Program Flow Change
Model in which program trace is synchronized at each program flow discontinuity.
A program flow discontinuity occurs at taken branches and exceptions.

Development tools can interpolate what transpires between program flow
discontinuities by correlating information from BTM and static source or object
code files. Self-modifying code cannot be traced with the Program Flow Change
Model because the source code is not static.

BTM facilitates program trace by providing several key types of visibility. The
visibility comprises the following

• Messaging for taken direct branches includes how many sequential
instruction units were executed since the last taken branch or exception,
and an indication of which client (if more than one are present on the
embedded processor) took the branch. Direct branches that are not
taken are included in the count of sequential instruction units. Direct
branches that are taken are not included in the count of sequential
instruction units.

• Messaging for taken indirect branches and exceptions includes how
many sequential instruction units were executed since the last taken
branch or exception, the unique portion of the branch target address or
exception vector address, and an indication of which client (if more than
one are present on the embedded processor) took the branch. Indirect
branches that are not taken are included in the count of sequential
instruction units. Indirect branches that are taken are not included in the
count of sequential instruction units.

The information regarding the number of sequential instruction units executed
since the last taken branch is used to facilitate the following:

1. Trace which direct branch is taken

2. Detect which instruction may have caused an exception

The unique portion of the indirect branch target address transmitted out the AUX
is relative to a prior address transmitted out the AUX.

BTM can also be triggered during runtime at the occurrence of watchpoint.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 19 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
4.2.5.1 Program Trace Overrun Errors

Embedded processors complying to classes 2, 3 and 4 shall provide the capability
to detect and signal according to the Nexus standard program trace overrun
errors, if the condition occurs during application of the embedded processor. A
program trace error shall be detected and transmitted out the AUX according to
the Nexus standard when any Program Trace Message is lost and not signaled via
the AUX.

Embedded processors complying to class 4 shall provide the capability to delay
the processor and avoid overruns.

Application: The overrun Error Message is to be used by development tools to
notify the developer that program trace information has been lost. A BTM overrun
error occurs when the number of messages to be transmitted via the AUX in a
given time period exceeds the bandwidth capacity of the AUX.

Description: An Error Message provides an indication of which client (if more
than one are present on the embedded processor) generated an error, and what
type of error was generated.

4.2.5.2 Program Trace Synchronization

Embedded processors complying to classes 2, 3 and 4 shall provide the capability
to synchronize program trace according to the Nexus standard. A Program Trace
Message for synchronization shall be transmitted via the AUX by the embedded
processor for the following conditions:

• Initial Program Trace Message upon exit of system reset, exit of a power
down state or exit of a debug mode

• Periodically during runtime at a minimum frequency of every 256
Program Trace Messages

• When program trace is enabled during normal execution of the
embedded processor

• Upon assertion of an Event-In pin

• Program trace overrun error

• Upon overflow of the sequential instruction unit counter

• Optionally upon occurrence of a watchpoint

Application: Due to the nature of some processor architectures, such as reduced
instruction set computer (RISC) processors, some application programs may

Page 20 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
comprise a significant number of direct branch instructions, and very few indirect
branch instructions. Since BTM for taken direct branches does not provide the
target address, program trace for these application programs must be
accomplished in a relative manner (possibly without branch target address
information). Synchronization messages ensure that development tools fully
synchronize with the program flow regularly.

Description: A synchronization message, displayed as an individual message or
as part of another message, always includes an indication of which client (if more
than one are present on the embedded processor) is being synchronized and the
full address of a recently executed instruction.

4.2.6 Data Trace

Embedded processors complying to classes 3 and 4 shall provide data trace for
write visibility via the AUX according to the Nexus standard. Embedded
processors complying to classes 3 and 4 may optionally provide data trace for
read visibility via the AUX according to the Nexus standard.

Application: The data trace feature defines a standard protocol for data trace
visibility of accesses to device-specific internal peripheral and memory locations.
Practical limitations exist which constrain the number of locations which may be
traced via the AUX. In application use, limiting the number of traced locations is
necessary for effective use of data trace. Additionally, excluding processor stack
area from data trace is beneficial.

Description: The data trace feature provides a minimum of 2 data trace windows
which include the following qualifiers:

• Start and end user address for data trace

• Trace reads, writes or both within the start/end address range

Data accesses are monitored and qualifying data accesses are then transmitted
out the AUX using DTM. DTM facilitates data trace by providing several key types
of visibility. The messaging for data trace includes the unique portion of the data
address and the data value. The unique portion of the data address transmitted
out the AUX is relative to the prior data trace address transmitted out the AUX.

4.2.6.1 Data Trace Overrun Errors

Embedded processors complying to classes 3 and 4 shall provide the capability to
detect and signal according to the Nexus standard data trace overrun errors, if the
condition occurs during application of the embedded processor. A data trace error
shall be detected and transmitted out the AUX according to the Nexus standard
when any Data Trace Message is lost and not signaled via the AUX.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 21 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Embedded processors complying to class 4 shall provide the capability to delay
the processor and avoid overruns.

Application: The overrun error message is to be used by development tools to
notify the developer that data trace information has been lost. A DTM overrun
error occurs when the number of messages to be transmitted via the AUX in a
given time period exceeds the bandwidth capacity of the AUX.

Description: An error message provides an indication of which client (if more
than one was present on the device) generated an error, and what type of error
was generated.

4.2.6.2 Data Trace Synchronization

Embedded processors complying to classes 3 and 4 shall provide the capability to
synchronize Data Trace Messages according to the Nexus standard. A Data Trace
Synchronization Message shall be transmitted out the AUX by the embedded
processor for the following conditions:

• Initial Data Trace Message upon exit of system reset, exit of a power
down state or exit of a debug mode

• Periodically during runtime at a minimum frequency of every 256 Data
Trace Messages

• When data trace is enabled during normal execution of the embedded
processor

• Upon assertion of an Event-In pin

• Optionally upon occurrence of a watchpoint

• Data trace overrun error

Application: The output bandwidth requirements for the AUX are minimized for
data trace by messaging out only the unique portion of the data address (instead
of the complete address). Consequently a data trace address is reconstructed
relative to each prior message. Synchronization messages provide the full
address and ensure that development tools fully synchronize with the data trace
regularly. Synchronization messages provide a reference address for subsequent
DTMs, in which only the unique portion of the data trace address is transmitted.

Description: Synchronization information includes an indication of which client (if
more than one are present on the device) is being synchronized and the full
address for a recent data trace.

Page 22 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
4.2.7 Memory Substitution

Embedded processors complying to class 4 shall provide the capability to activate
user memory substitution via the AUX according to the Nexus standard. Memory
substitution shall be capable of being activated upon exit of reset. A class 4
processor optionally may also support memory substitution activated upon the
occurrence of a watchpoint or upon the occurrence of a data access or an
instruction fetch from a device-specific address range. If supported, these optional
capabilities must be implemented according to the Nexus standard.

Application: Memory substitution facilitates the software development process
with program execution via the AUX upon exit of reset. Instructions are fetched
and data is read from the development tool. Providing this capability via the AUX
eliminates the need for a second development port dedicated to the software
development process. Additionally, single stepping with instruction and data
fetches via the AUX can be used for a non-real-time ROM monitor.

Optionally, the feature can be activated upon the occurrence of a watchpoint. This
can support runtime patching for portions of internal ROM memory, with the patch
provided via the AUX. ROM patching during runtime, however, is limited by
capability factors of the complying embedded processor. Some factors that may
limit the embedded processor are:

• The number of watchpoints implemented (one data value patch or one
instruction sequence patch per watchpoint),

• The port size and clock rate of the auxiliary pin interface implemented
and

• The portion of AUX bandwidth allocated for this feature if other
messaging activities are also enabled at the same time.

Another option is to activate memory substitution upon the occurrence of a data
access or an instruction fetch from a device-specific address range. For a full
memory emulation capability, data reads, data writes and instruction fetches
continue via the AUX until the address of a data access or instruction fetch falls
outside a specified address range. The address range is device-specific and not
typically programmable.

Memory substitution is not intended to be used for tuning parameters during
runtime, such as is required for development of automotive powertrain and disk
drive applications. There may be other applications, however, that may be able to
use this feature during runtime.

Description: A class 4 embedded processor shall be capable of the following
three types of memory substitution operations:
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 23 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
• Reading data and fetching instructions via the AUX (both data and
instructions substituted by tool),

• Only reading data via the AUX (only data operands substituted by tool)
and

• Only fetching instructions via the AUX (only instruction operands
substituted by tool).

Note that class 4 compliant embedded processors are not required to write data
via the AUX.

In memory substitution, the processor will make all qualifying memory-mapped
fetches (data, instructions or both) via the AUX, in a single step or normal
processor mode. Operands that are not enabled for memory substitution shall be
accessed normally from user memory. Qualifying memory-mapped fetches are
selected by configuring control and status information via the IEEE 1149.1 port or
the AUX.

A class 4 embedded processor shall be capable of activating memory substitution
upon exit from reset, and optionally capable of activating it upon the occurrence of
a watchpoint or upon the occurrence of a data access or an instruction fetch from
a device-specific address range.

The memory substitution feature can be activated upon exit from reset by
configuring control and status information via the IEEE 1149.1 port or the AUX. It
can be activated on watchpoint occurrence by configuring watchpoint trigger
information via the IEEE 1149.1 port or the AUX. It can be activated on
occurrence of a data access or an instruction fetch from a device-specific address
range. No configuration is required for the latter.

When memory substitution is activated upon exit of reset or a watchpoint
occurrence, the processor will make all qualifying memory-mapped fetches via the
AUX, until the development tool disables memory substitution. When memory
substitution is activated upon the occurrence of a data access or an instruction
fetch from a device-specific address range, the processor will make all qualifying
memory-mapped fetches via the AUX, until the address of a data access or
instruction fetch falls outside the device-specific address range. Once memory
substitution is disabled, user memory shall be accessed normally.

MSM facilitates memory substitution by providing messages for access requests
and transfers via the AUX. These comprise the following:

• Messaging for a memory substitution access request provided from the
processor to an external development tool containing access attributes
such as instruction/data, size, and the memory-mapped address. The
full address is transmitted for each memory substitution access request.

Page 24 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
• Messaging for a memory substitution transfer provided from the external
development tool to a processor containing the instruction or data
specified by access attributes.

• Messaging for the last memory substitution transfer provided from the
external development tool to a processor containing the last instruction
or data specified by access attributes, and a disable command for MSM.
Subsequent memory-mapped accesses will be accessed normally from
the internal memory-mapped resource designated by the access
attributes.

For patching an ROM instruction sequence, the last memory substitution transfer
may consist of a direct branch to the address following the patched instruction
sequence.

4.2.8 Breakpoints/Watchpoints

Embedded processors complying to class 1, 2, 3 or 4 shall provide a minimum of
2 instruction/data hardware breakpoints.e Embedded processors complying to
class 2, 3 or 4 shall provide according to the Nexus standard the capability to
message via the AUX any occurrence of a watchpoint.

Application: The breakpoint and watchpoint features facilitate the software
development process by allowing the developer to halt at a specific processor
state or to signal a specific processor state. If there is an internal ROM or if a
breakpoint or trap instruction does not exist in the vendor’s architecture, then this
feature becomes a valuable tool for development.

Description: Breakpoints and watchpoints comprise the following:

• Data breakpoint—processor is halted at an appropriate instruction
boundary after a trigger is set at a data valid time. The trigger is set
when the data address and/or data value matches a pre-selected
address and/or value.

• Instruction breakpoint—processor is halted when all previous
instructions are retired and just prior to when any architectural state is
changed by the instruction associated with a pre-selected address.

• Watchpoint—a data or instruction breakpoint which does not cause the
processor to halt. A watchpoint message via the AUX is used to signal
that the condition occurred.

e. Optionally, the 2 Breakpoint/Watchpoint Control Registers may be combined with the 2 Data Trace Attribute
Registers so that a total of 2 registers may be simultaneously active, i.e. 2 Breakpoint/Watchpoint Control
Registers, 2 Data Trace Attribute Registers or 1 Breakpoint/Watchpoint Control Register and 1 Data Trace
Attribute Register.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 25 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
4.2.9 Port Replacement and Sharing

Embedded processors complying to class 2, 3 or 4 may optionally implement
support on the auxiliary pins according to the Nexus standard for LSIO port
replacement. Embedded processors complying to class 2, 3 or 4 may optionally
share AUX pins according to the Nexus standard with a second HSIO port.

Application: In embedded processor applications the use of every pin is
scrutinized by embedded processor developers. Inevitably there are never enough
pins available on the embedded processor to meet both the application and
development needs. Pins that are designated for product development are often
reduced or removed to make way for other pin functions directly used in the
application. Port replacement and sharing support is intended to solve this
dilemma by using common embedded processor ports for a secondary
development support function.

Description: Port replacement provides a mechanism for LSIO pin functions to be
replaced using messages via the AUX. The standard messages between the
development tool and AUX provide the necessary information for the development
tool to replace the LSIO port (with additional delay).

The mechanism is enabled in a plug and play manner. When a development tool
is connected to the AUX, it enables the AUX with Port Replacement Messages.
When no development tool is connected, the port functions as only an LSIO port.

Port sharing allows a primary port function, such as an external bus of the
embedded processor, to be shared with an auxiliary output port function. For
example, an L2 cache bus function and the auxiliary output port function may
share the same pins.

Most bus traffic in a typical application will be due to external bus cycles on the
shared pins for accessing system resources. During external bus cycles, AUX
control signals are negated and the development tool ignores the external bus
information. Upon occurrence of a condition that generates development
information (e.g. BTM and DTM), a corresponding message is sent out the shared
pins and captured by the tool.

4.2.10 Data Acquisition

Embedded processors complying to class 2, 3 or 4 may optionally implement
support for data acquisition by the development tool from the embedded
processor, via the AUX, according to the Nexus standard.

Application: The feature provides a mechanism for visibility of intermediate
variables calculated by the embedded processor. An application includes time-
critical parameters passed to an external co-processor for rapid prototyping. The

Page 26 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
embedded processor is required to queue up data for acquisition by the
development tool.

Description: DQM provides the capability to message on the AUX internal data
related to one another. Because of construction, DQM is a more efficiently packed
message than DTM.

DQM facilitates data acquisition by providing several key types of visibility: display
data ID tag (to specify which group of data) and all data values. The display data
ID tag is typically a reference number to identify the data, e.g. 3 may represent
time-critical parameters passed to an external co-processor for rapid prototyping.

As mentioned above, the embedded processor must queue up DQM. In the Nexus
standard a user memory-mapped interface and protocol is recommended (not
required) for the embedded processor to queue up DQM. The user memory-
mapped locations are configured via the IEEE 1149.1 or auxiliary pin interface.
The protocol recommended consists of writing to a designated user memory-
mapped location to generate a DQM with a specific display data ID tag.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 27 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
SECTION 5
Application Programming Interface (API)

5.1 Introduction

The Nexus API consists of two layers (see Figure 5-1).

Figure 5-1 Software Layers Showing Nexus API Layers

These layers are defined by a standard set of header files, supplied as part of the
Nexus API specification (see the Nexus API Header Files section on the Nexus web
site, http://www.ieee-isto.org/Nexus5001/standard.html). The implementations of
these layers must conform to the standard header files.

• The Target Abstraction Layer (TAL)

The semiconductor vendor supplies the emulator vendor with the source
code or binaries for the TAL. It provides an implementation of the Nexus
debug semantics, using the underlying target’s on-chip debug hardware.
It uses the emulator HAL in order to communicate with the target
system.

Tools (and the Nexus Validation Tests) are built on top of this API. Tools
will typically consist of multiple layers of APIs. The TAL API is used to
implement the bottom levels of the tool vendor’s existing APIs. For this
reason, the TAL API only provides facilities to access the debug
hardware features itself, and does not implement anything that is
normally provided in the tool vendor’s higher-level APIs.

Emulator HAL

Target Abstraction Layer

N
ex

us
 A

P
I

To
ol

 v
en

do
r

sp
ec

ifi
c

A
P

I(
s)

Tool (or Nexus
Conformance Suite)

Tool Vendor-Specific
API(s)

Page 28 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
• The Emulator Hardware Abstraction Layer (HAL)

An implementation of this layer is supplied by an emulatorf vendor for
their emulator hardware. It abstracts the mechanisms by which the host
machine communicates with the emulator hardware and will typically
include a device driver to communicate with the underlying emulator/
host interface.

There are two typical tool/emulator scenarios:

1. Figure 5-2 where the tool executes directly on the emulator. Thus the
TAL executes on the emulator itself.

Figure 5-2 Emulator-Based Tool

2. Figure 5-3 where the tool executes on a host computer connected to an
emulator, and the host and the emulator are connected via some means
(e.g. Ethernet or PCI). In this situation, a device driver interface is
typically used on the host to communicate to the emulator hardware.

Thus the “real-time” properties of the interface (e.g. reading trace
packets at high speed) are dealt with by both the emulator hardware and
firmware, in conjunction with a device driver running on the host.

Figure 5-3 Host-Based Tool, Connected to Target via Emulator

The TAL and Emulator HAL are designed with the model described in Figure 5-3
in mind. They assume that high-speed tool/emulator interface issues are resolved
in the lower-levels of the Emulator HAL interface (such as the device driver).

f. In this context, the term emulator is used to describe the hardware/software layer that is used to interface
between the debugging tool and the target.

Emulator
Target

Tool
IEEE 1149.1

AUX

Target
EmulatorHost

Tool
IEEE 1149.1

AUX
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 29 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
5.2 Overview

Table 5-1 cross-references the development features listed in sub-section
3.1 Compliance Classification on Page 8 with the corresponding Nexus API
Function.

Table 5-1 Cross-Reference of Development Features and Nexus API Functions

Development Feature Nexus API Function

Read/write user registers in debug
mode

nx_Control()

Read/write user memory in debug mode
nx_WriteMem()
nx_ReadMem()

Enter a debug mode from reset nx_Control()

Enter a debug mode from user mode nx_Control()

Exit a debug mode to user mode nx_Control()

Single step instruction in user mode and
re-enter debug mode

nx_SetEvent()

Stop program execution on instruction/
data breakpoint and enter debug mode
(minimum 2 breakpoints)

nx_SetEvent()

Ability to set breakpoint or watchpoint nx_SetEvent()

Device Identification nx_Control()

Ability to send out an event occurrence
when watchpoint matches

nx_SetEvent()

Monitor process ownership while pro-
cessor runs in real-time

nx_GetEvent()

Monitor program flow while processor
runs in real-time (logical address)

nx_GetEvent()

Monitor data writes while processor runs
in real-time

nx_GetEvent()

Read/write memory locations while pro-
gram runs in real-time

nx_WriteMem()
nx_ReadMem()

Program execution (instruction/data)
from Nexus port for reset or exceptions

nx_GetEvent()

Ability to start ownership, program, or
data trace upon watchpoint occurrence

nx_SetEvent()

Ability to start memory substitution upon
watchpoint occurrence or upon program
access of device-specific address

nx_SetEvent()

Monitor data reads while processor runs
in real-time

nx_GetEvent()

LSIO port replacement and HSIO port
sharing

nx_Control()

Transmit data values for acquisition by
tool

nx_SetEvent()

Page 30 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
5.3 Vendor Extensions

The Nexus standard, and thus the Nexus API, allows vendor-defined extensions
in terms of:

1. Vendor-defined extensions to standard Nexus operations

2. Additional vendor-defined operations

3. Additional vendor-defined information in messages

These extensions are made using a data-driven approach (i.e. extra data
structures are used with the standard Nexus API operations).

5.4 Target-Specific Issues

Nexus targets have a large amount of device-specific behavior, such as the size
of physical addresses or the number and size of registers. The basic data types
associated with these aspects are defined by the semiconductor vendor.
However, as the emulator vendor supplies a binary instance of the API, the
implementation of the Emulator HAL is the area that finally resolves these
platform-specific issues.

5.5 Deliverables

1. The Nexus standard supplies the API header files.

2. Semiconductor vendors supply Emulator vendors with an
implementation of the Target Abstraction Layer, in source code or binary
form.

3. The Emulator vendors compile the Target Abstraction Layer, and build it
with their implementation of the Emulator HAL in order to provide a
binary deliverable that can be used by a tool vendor.

5.6 Concepts and Data Types

5.6.1 Naming Conventions

The Nexus API uses the following naming conventions:

• Target Abstraction Layer data types are prefixed with “nxt_”; functions
are prefixed with “nx_”; constants are prefixed with “NX_”. Vendor-
defined types are prefixed with “nxvt_”.

• Emulator HAL functions are prefixed with “nxhal_”.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 31 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
5.6.2 Header Files

The following Nexus API header files, will be made available on the Nexus web
site, http://www.ieee-isto.org/Nexus5001/.

• nxtypes.h defines the standard data types.

• nxapi.h defines the standard Target Abstraction Layer entry points.

• nxhal.h defines the Emulator HAL entry points.

• nxvtypes.h should be supplied by the semiconductor vendor.
It defines the target-specific data types.

5.6.3 Status/Error Values

A common set of status/error values is defined in nxtypes.h.
typedef enum {

NX_ERROR_NONE = 0, /* success */
NX_ERROR_FAILED = 1, /* generic failure */
NX_ERROR_NO_CAPABILITY = 2, /* operation not within capabilities */
NX_ERROR_NOSPACE = 3 /* insufficient buffer space or requested op */

} nxt_Status;

In addition, both the Target Abstraction Layer, and the Emulator HAL use either a
callback routine or an nx_GetLastError() routine to provide further information on
the cause of errors.
void (*errorCallback)(const char *)

This callback can be invoked to provide much more detailed error information
than what is normally available from standard error return codes (e.g. “write to
address 0x42 failed”). Note that setting this pointer to null will prevent callbacks.

As an alternative to using the preceding callback mechanism, a “get last error”
routine can be used:

nxt_Status nx_GetLastError(char * lastError, int maxBytes)

where lastError is a pointer to a buffer allocated for the error string and maxBytes
is the size of the allocated error buffer.

The number of error codes is limited as there are few actions possible when an
error occurs.

5.6.3.1 Error Handling

The Nexus APIs are designed to be used as the lowest level of a vendor’s own
APIs. Thus, facilities to validate memory addresses etc. are not implemented in

Page 32 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
the Nexus APIs—they are assumed to be implemented according to the higher-
level APIs’ requirements. Thus, it is possible to invoke the Nexus API routines with
invalid data. This can cause undefined effects (e.g. writing to invalid memory).
Thus, the higher-level APIs are assumed to be checking the validity of such
operations before they are performed.

As a last resort, the Nexus API connection should be capable of being closed
without disturbing the host machine (i.e. without crashing, or locking a device
driver connection).

5.7 Target Abstraction Layer (TAL)

Sub-sections 5.7.1 Opening a Connection—nx_Open on Page 33 through
5.7.8 Reading an Event—nx_GetEvent on Page 46 describe the TAL functions
and data types. The Emulator HAL functions are described in sub-section
5.8 Emulator HAL on Page 48.

5.7.1 Opening a Connection—nx_Open
nxt_Handle *nx_Open (const nxt_TargetSpec *tSpec,

void (*errorCallback)(const char *),
nxt_Status *status);

Note that it is the responsibility of the Target Abstraction Layer to allocate and de-
allocate the memory associated with the handle.

5.7.1.1 Preconditions

nxtypes.h defines the following types used for opening a connection:

nxt_Endian is used to specify the byte ordering of the emulator and/or target.
typedef enum {

NX_ENDIAN_UNKNOWN, /* used for initial assignment */
NX_ENDIAN_BIG,
NX_ENDIAN_LITTLE,
NX_ENDIAN_OTHER

} nxt_Endian;

nxt_PortType specifies either the Nexus AUX or the IEEE 1149.1 JTAG port.
typedef enum {

NX_PORT_TYPE_UNAVAILABLE, /* an unused port */
NX_PORT_TYPE_JTAG,
NX_PORT_TYPE_AUX,
NX_PORT_TYPE_OTHER /* reserved for future use */

} nxt_PortType;
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 33 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
nxt_TargetSpec is used when opening a connection to a target system.
typedef struct {

nxt_PortType accessPort; /* port for access/ctrl */
nxt_PortType unsolicitedPort; /* port for unsolicited messages */
nxt_Endian targetEndian;
nxvt_VendorDefinedTargetSpec VendorTargetSpec;

/* see header files for vendor extensions */
} nxt_TargetSpec;

nxapi.h defines the nx_Open function.

The tSpec parameter should be set up to define the target’s byte ordering and the
ports on which it is connected. The available options depend upon the target and
the Emulator system. The full set of connection options is defined below:

In order to connect to the IEEE 1149.1 JTAG port for access functions only:
tSpec.accessPort = NX_PORT_TYPE_JTAG;
tSpec.unsolicitedPort = NX_PORT_TYPE_UNAVAILABLE;

In order to connect to the IEEE 1149.1 JTAG port for access functions, and also
for unsolicited messages (where available):

tSpec.accessPort = NX_PORT_TYPE_JTAG;
tSpec.unsolicitedPort = NX_PORT_TYPE_JTAG;

In order to connect to the IEEE 1149.1 JTAG port for access functions, and the
AUX port for unsolicited messages (where available):

tSpec.accessPort = NX_PORT_TYPE_JTAG;
tSpec.unsolicitedPort = NX_PORT_TYPE_AUX;

In order to connect to the AUX port for both access and unsolicited messages
(where available):

tSpec.accessPort = NX_PORT_TYPE_AUX;
tSpec.unsolicitedPort = NX_PORT_TYPE_AUX;

5.7.1.2 Postconditions

If nx_Open succeeds, a handle is returned and status is set to NX_ERROR_NONE. If it
fails, NULL is returned and the status is set to NX_ERROR_NO_CAPABILITY.

nxtypes.h defines nxt_Handle as:
typedef struct {

nxt_Capability cap; /* capabilities */
nxt_TargetSpec targetSpec;
void *nxTALPrivatePtr; /* private data as needed for the API */
void *nxHALPrivatePtr; /* private data as needed for the HAL */

} nxt_Handle;

The nxTALPrivatePtr and nxHALPrivatePtr allows the API and Emulator HAL
implementations to reference private data (such that they can avoid keeping static
state). void * is used so that this data is opaque to a user of the API/HAL. Use of
these pointers is optional.

Page 34 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
When nx_Open returns successfully, nxt_Capability has been set up to define the
target’s capabilities. The capabilities provide a fuller set of information than the
Nexus Class system classifications.

5.7.1.2.1 Event Capabilities

Most of the Nexus features are abstracted as events (see 5.7.6 Setting an
event—nx_SetEvent on Page 41). Thus, the target’s capabilities are described in
terms of event ID values.

Event IDs that are not available are defined by NX_EVENTID_INVALID.
#define NX_EVENTID_INVALID (0)

typedef struct {
char *apiVersionString; /* NUL character terminated version string */
char *halInfo; /* NUL character terminated HAL-specific string */
nxt_Endian targetEndian; /* target byte order */
nxt_Endian emuEndian; /* emulator byte order */
int deviceId; /* as per DID Message (see APPENDIX B) */
int maxMemMap;
int maxMemAccessPriority;
int maxAccessSize;

/* event IDs for event capabilities or NX_EVENTID_INVALID if not used */

int btmEventId;
int dtmMinEventId;
int dtmMaxEventId;
int otmEventId;
int substitutionEventId;
int watchMinEventId;
int watchMaxEventId;
int breakMinEventId;
int breakMaxEventId;

} nxt_Capability;

deviceId is extracted from the target.

maxMemMap and maxMemAccessPriority determine the maximum number of
memory map and memory access priority structures that can be used in memory
read/write operations (see 5.7.4 Writing Target Memory—nx_WriteMem on Page
40 and 5.7.5 Reading Target Memory—nx_ReadMem on Page 41).

maxAccessSize indicates the maximum allowable memory access size in bits. A
value of 0 indicates a don’t care selection (i.e. use default size).

If BTM is not available, btmEventId is equal to NX_EVENTID_INVALID, otherwise
btmEventId identifies the ID to use.

Availability of OTM and memory substitution is similarly indicated using the
otmEventId and substitutionEventId fields.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 35 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
If DTM is not available, dtmMinEventId and dtmMaxEventId are equal to
NX_EVENTID_INVALID. Otherwise, these fields are used to indicate the ID of the first
and last DTM channels (e.g. if 2 DTM channels are available, and are allocated
from event ID 4 upward, dtmMinEventId would be set to 4 and dtmMaxEventId
would be set to 5).

The availability and number of watchpoints and breakpoints are denoted by
watchMinEventId, watchMaxEventId, breakMinEventId and breakMaxEventId.

5.7.2 Closing a Connection—nx_Close
nxt_Status nx_Close (nxt_Handle *handle);

5.7.2.1 Preconditions

handle is from a successful invocation of nx_Open.

5.7.2.2 Postconditions

nx_Close does not return a status code because, in the unlikely event of a failure,
nothing can be done anyway. After calling nx_Close, the handle is de-allocated in
the TAL, and must not be used in subsequent operations.

It must be possible to call nx_Close to “abort” a connection in the event of failure;
this may involve calling it from a non-sequential thread (e.g. from a signal handler
context).

The higher-level APIs built on top of the Nexus APIs will typically contain time-out
and error recovery mechanisms. These are not built into the Nexus API itself
because doing so would make the Nexus API definitions dependent on the
platform and RTOS, and thus restrict the environments on which the API could be
deployed.

5.7.3 Controlling a Connection—nx_Control
nxt_Status nx_Control (nxt_Handle *handle, nxt_CtrlData ctrl);

5.7.3.1 Preconditions

handle is from a successful invocation of nx_Open, and ctrl specifies the control
operation to apply.

nxt_CtrlTag specifies a control action; these correspond to non-event-based
control of the target system (i.e. controls that globally apply to the target).

Page 36 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
typedef enum {
NX_CTRL_SET_CLIENT = 0x1,
NX_CTRL_OVERRUN_MODE = 0x2,
NX_CTRL_SUBSTITUTION_MODE = 0x3,
NX_CTRL_RESETORHALT = 0x4,
NX_CTRL_EVENTIN = 0x5,
NX_CTRL_CLIENTBREAK = 0x6,

NX_CTRL_RESTART_FROM_BREAKPOINT = 0x50
 /* values from 0x100 upward are for vendor extensions */

} nxt_CtrlTag;

typedef struct {
nxt_CtrlTag cTag;
union {
struct {
int clientId;

} setClient; /* if cTag == NX_CTRL_SET_CLIENT */
/* core select = client select */

struct {
int delay; /* == 0 to disable */

} overrunMode; /* if cTag == NX_CTRL_OVERRUN_MODE */
struct {
int enable; /* if == 0 disable substitution else enable it */
int forInstructions; /* valid if enable != 0 */
int forData; /* valid if enable != 0 */

} substitutionMode; /* if cTag == NX_CTRL_SUBSTITUTION_MODE */
struct {
int performResetSequence;
int haltState;
} resetOrHalt;; /* if cTag == NX_CTRL_RESETORHALT */

struct {
 nxvt_Registers regs;

} restartFromBreakpoint; /* NX_CTRL_RESTART_FROM_BREAKPOINT */
struct {
int eventIn;

} eventInMode; /* if cTag == NX_CTRL_EVENTIN */
struct {
int clientBreakpoint;

} clientBreakpointMode; /* if cTag == NX_CTRL_CLIENTBREAK */
} u;
nxvt_VendorDefinedCtrlData vendorDefinedCtrlData;

} nxt_CtrlData;

The following control operations are possible (where x is an instance of
nxt_CtrlData).

To select a client

x.cTag = NX_CTRL_SET_CLIENT

x.u.setClient.clientId specifies the client.

If an invalid value is given (e.g. the target does not contain multiple clients),
nx_Control will return NX_ERROR_NO_CAPABILITY.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 37 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
To disable, or enable, a specified trace overrun mode

x.cTag = NX_CTRL_OVERRUN_MODE

x.u.overrunMode.delay defines a specified trace overrun mode.

• When equal to 0, enables overruns.

• When equal to 1, delays for BTM.

• When equal to 2, delays for BTM and OTM.

• When equal to 3, delays for BTM, DTM and OTM.

To disable, or enable, a specified memory substitution mode out of reset

(Unless explicitly enabled, substitution out of reset is disabled by default.)

x.cTag = NX_CTRL_SUBSTITUTION_MODE

Assigning x.u.substitutionMode.enable a value of 0 disables memory
substitution, and assigning a value other than 0 enables it.

When enabling memory substitution, x.u.substitutionMode.forInstructions
and x.u.substitutionMode.forData are used to enable the instruction and data
substitution features.

To perform a reset or halt/unhalt the target

x.cTag = NX_CTRL_RESETORHALT

If x.u.resetOrHalt.performResetSequence is not equal to 0, a reset will be
applied to the target:

• If the target’s IEEE 1149.1 JTAG port is being used for the Nexus control
port (nx_Open was invoked with tSpec.accessPort equal to
NX_PORT_TYPE_JTAG), reset will be applied to the IEEE 1149.1 JTAG port.

• If the target’s AUX port is being used for the Nexus control port (nx_Open
was invoked with tSpec.accessPort equal to NX_PORT_TYPE_AUX), reset
will be applied to the AUX port.

If x.u.resetOrHalt.performResetSequence is equal to 0, a reset sequence will not
be applied.

x.u.resetOrHalt.haltState is used to alter the halt (or “debug”) state of the
target.

Page 38 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
• When equal to 0, the target will be unhalted, i.e. removed from debug
mode so that it is free to continue execution (assuming it is not stopped
at a breakpoint/single step event).

• When not equal to 0, the target will be halted, i.e. put into debug mode
such that it will not execute until unhalted.

To define EVTI development control

x.cTag = NX_CTRL_EVENTIN

x.u.eventInMode.eventIn defines the action that will occur when the EVTI signal
transitions from high to low.

• When equal to 0, use EVTI for program or data trace synchronization.

• When equal to 1, use EVTI for breakpoint generation.

• When equal to 2, EVTI transitions have no action.

To enable, or disable, global breakpoint recognition

x.cTag = NX_CTRL_CLIENTBREAK

x.u.clientBreakpointMode.clientBreakpoint enables global breakpoint breaks
on the client.

• When equal to 0, break for internal breakpoints only.

• When equal to 1, break for global and internal breakpoints.

To restart from a breakpoint

x.cTag = NX_CTRL_RESTART_FROM_BREAKPOINT

x.u.restartFromBreakpoint.regs contains a device-specific data structure,
which contains the state of all the target’s general-purpose registers. This data
structure is described in header file nxvtypes.h.

In order to restart from a breakpoint, a breakpoint must have previously occurred
(see 5.7.8 Reading an Event—nx_GetEvent on Page 46).

Vendor-Defined control operations

x.cTag values from 0x100 upward can be used to allow vendors to supply
additional control operations.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 39 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
The x.u.vendorDefinedCtrlData field is used to supply vendor-defined
information with respect to a vendor-defined value in x.cTag.

5.7.3.2 Postconditions

The selected operation or configuration is performed and NX_ERROR_NONE is
returned, or another nxt_Status value is returned to indicate an error.

5.7.4 Writing Target Memory—nx_WriteMem

nxt_Status nx_WriteMem (nxt_Handle *handle,
 const int map, const int accessPriority,
 const nxvt_Address addr, const size_t numBytes,
 const int accessSize, const void *bytesToWrite);

5.7.4.1 Preconditions

handle is from a successful invocation of nx_Open.

map is used to specify a memory map; not all targets support this facility.
handle->cap.maxMemMap determines the maximum value that can be used.

accessPriority is used to specify a bus access priority to be used when applying
the write operation. handle->cap.maxMemAccessPriority determines the
maximum value which can be used.

addr is used to specify the target address to write to. Because the size of the
target’s address varies from target to target, the address is vendor defined.

accessSize is used to specify the byte access size to be used during the data
transfer. A value of 0 indicates that the Target Abstraction Layer is allowed to
determine the access size to be used. handle->cap.maxAccessSize determines
the maximum value that can be used.

numBytes is used to specify how many bytes to write, and bytesToWrite contains
numBytes of data to transfer.

5.7.4.2 Postconditions

If the operation succeeds, NX_ERROR_NONE is returned, otherwise NX_ERROR_FAILED
is returned, and the implementation is free to invoke the error callback supplied
with nx_Open to provide further information.

Page 40 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
5.7.5 Reading Target Memory—nx_ReadMem

nxt_Status nx_ReadMem (nxt_Handle *handle,
const int map, const int accessPriority,
const nxvt_Address addr, const size_t numBytes,
const int accessSize, void *bytesRead);

As per nx_WriteMem, but reads target memory instead of writing it.

5.7.6 Setting an event—nx_SetEvent

nxt_Status nx_SetEvent (nxt_Handle *handle, const nxt_SetEvent *setEvent);

5.7.6.1 Preconditions

handle is from a successful invocation of nx_Open.

setEvent is of type nxt_SetEvent, which specifies all the data necessary when
setting an event.
typedef struct {
 nxt_EventType eType;
 int eid;
 union {
 struct {

nxt_RWMode rwMode; /* trigger on read, write or both */
nxvt_Address addr;
nxt_BreakpointOperand op; /* match ID address/data, or both */

 nxvt_Word data;
 nxvt_Word mask;

nxt_EventOutputMode eoMode;

 } breakpoint;
 struct {
 nxt_RWMode rwMode; /* trigger on read, write or both */
 nxvt_Address addr;
 nxt_WatchpointOperand op; /* match ID address/ data, or both */

nxvt_Word data;
 nxvt_Word mask;

nxt_EventOutputMode eoMode;
} watchpoint;

 struct {
 int startTriggerId; /* disabled == 0, else = event ID */
 int endTriggerId; /* disabled == 0, else = event ID */

} btm;
struct {

 nxt_RWMode rwMode;
 int startTriggerId; /* disabled == 0, else = event ID */
 int endTriggerId; /* disabled == 0, else = event ID */
 nxvt_Address startAddr; /* (addr >= startAddr) && (addr <= endAddr) */
 nxvt_Address endAddr;
 } dtm;
 struct {
 int startTriggerId; /* disabled == 0, else = event ID */
 } substitution;
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 41 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
 nxvt_VendorDefinedBasicSetEvent vendorDefinedBasic;
 } u;
 nxvt_VendorDefinedExtensionSetEvent vendorDefinedExtension;
} nxt_SetEvent;

nxt_EventType specifies the type of an event.
typedef enum {
 NX_ETYPE_STEP = 0x1, /* single step */
 NX_ETYPE_BREAKPOINT = 0x10, /* breakpoint */
 NX_ETYPE_WATCHPOINT = 0x20, /* watchpoint */
 NX_ETYPE_BTM = 0x50, /* branch trace messaging */
 NX_ETYPE_DTM = 0x51, /* data trace messaging */
 NX_ETYPE_OTM = 0x52, /* ownership trace messaging */
 NX_ETYPE_SUBSTITUTION = 0x70 /* memory substitution */
 /* values from 0x100 upwards are for vendor extensions */
} nxt_EventType;

nxt_RWMode is used when setting breakpoint and watchpoint events, to specify the
type of memory access they will match.
typedef enum {
 NX_RWMODE_READ,
 NX_RWMODE_WRITE,
 NX_RWMODE_READ_OR_WRITE
} nxt_RWMode;

Similarly, nxt_BreakpointOperand and nxt_WatchpointOperand specify the
address/data to use when matching for the event.
typedef enum {
 NX_BREAKPOINT_DATAADDR,

NX_BREAKPOINT_DATAVALUE,
NX_BREAKPOINT_DATAADDR_AND_DATAVALUE,

 NX_BREAKPOINT_INSTRADDR
} nxt_BreakpointOperand;

typedef enum {
NX_WATCHPOINT_DATAADDR,
NX_WATCHPOINT_DATAVALUE,

 NX_WATCHPOINT_DATAADDR_AND_DATAVALUE
NX_WATCHPOINT_INSTRADDR

} nxt_WatchpointOperand;

nxt_EventOutputMode is used when setting the mode for the Event-Out (EVTO)
pin.
typedef enum {
 NX_EVTO_NOCHANGE, /* occurrence does not change Event-Out pin */
 NX_EVTO_TRIGGERED /* occurrence asserts Event Output */
} nxt_EventOutputMode;

Page 42 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
The following events may be set (where x is an instance of nxt_SetEvent):

Single Step Event

x.eType is NX_ETYPE_STEP;

x.eid is not used for this type of event.

When the step event occurs, an NX_READ_EVENT_BREAKSTEP will be returned from
nx_GetEvent (see 5.7.8 Reading an Event—nx_GetEvent on Page 46).

Breakpoint/Watchpoint Event

If x.eType is NX_ETYPE_BREAKPOINT, then when a breakpoint event occurs,
NX_READ_EVENT_BREAKSTEP will be returned (see 5.7.8 Reading an Event—
nx_GetEvent on Page 46).

If x.eType is NX_ETYPE_WATCHPOINT, then when the watchpoint event occurs,
NX_READ_EVENT_MESSAGE will be returned (see 5.7.8 Reading an Event—
nx_GetEvent on Page 46).

x.eid must correspond to the relevant event ID value from the nxt_Capability
value returned in nxt_Handle (see 5.7.1.2.1 Event Capabilities on Page 35).

x.u.breakpoint.rwMode or x.u.watchpoint.rwMode specifies whether the match
will occur for a read and/or write operation; x.u.breakpoint.op or
x.u.watchpoint.op specifies the type of match that will be made:

Instruction Address Breakpoint

x.u.breakpoint.op = NX_BREAKPOINT_INSTRADDR

x.u.breakpoint.addr specifies the instruction address to match against.

x.u.breakpoint.rwMode is not used in this case.

Data Address Breakpoint

x.u.breakpoint.op = NX_BREAKPOINT_DATAADDR

x.u.breakpoint.addr specifies the data address to match against.

x.u.breakpoint.rwMode specifies whether read and/or write accesses
will trigger it.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 43 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Data Value Breakpoint

x.u.breakpoint.op = NX_BREAKPOINT_DATAVALUE

x.u.breakpoint.rwMode specifies whether read and/or write accesses
will trigger it.

x.u.breakpoint.data specifies the data to match against;
x.u.breakpoint.mask specifies the mask to use when performing the
match.

Data Address and Data Value Breakpoint

x.u.breakpoint.op = NX_BREAKPOINT_DATAADDR_AND_DATAVALUE

x.u.breakpoint.addr specifies the data address to match against.

x.u.breakpoint.data specifies the data to match against;
x.u.breakpoint.mask specifies the mask to use when performing the
match.

Watchpoints

The previous examples are the same for watchpoint values.

Branch Trace Messaging (BTM)

x.eType = NX_ETYPE_BTM

x.eid must correspond to the btmEventId value from the nxt_Capability value
returned in nxt_Handle (see 5.7.1.2.1 Event Capabilities on Page 35). If this is
NX_EVENTID_INVALID, BTM is not available.

x.u.btm.startTriggerId specifies an event ID that can enable the specified BTM
event. To make it permanently enabled, supply NX_EVENTID_INVALID here,
otherwise use the event ID from a breakpoint/watchpoint event ID (see
5.7.1.2.1 Event Capabilities on Page 35).

Similarly x.u.btm.endTriggerId specifies an event ID that can disable the
specified BTM event.

When the watchpoint event occurs, NX_READ_EVENT_MESSAGE will be returned (see
5.7.8 Reading an Event—nx_GetEvent on Page 46).

Page 44 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Data Trace Messaging (DTM)

x.eType = NX_ETYPE_DTM

x.eid must correspond to a value between the dtmMinEventId and dtmMaxEventId
values from the nxt_Capability value returned in nxt_Handle (see
5.7.1.2.1 Event Capabilities on Page 35). If this is NX_EVENTID_INVALID, DTM is
not available.

x.u.dtm.startTriggerId specifies an event ID that can enable the specified DTM
event. To make it permanently enabled, supply NX_EVENTID_INVALID here,
otherwise use the event ID from a breakpoint/watchpoint event ID (see
5.7.1.2.1 Event Capabilities on Page 35).

Similarly x.u.dtm.endTriggerId specifies an event ID that can disable the
specified DTM event.

When the DTM event occurs, NX_READ_EVENT_MESSAGE will be returned (see
5.7.8 Reading an Event—nx_GetEvent on Page 46).

x.u.dtm.rwMode specifies whether a read and/or write access will trigger the DTM
event; x.u.dtm.startAddr and endAddr specify the addresses within which
accesses will trigger.

Ownership Trace Messaging (OTM)

x.eType = NX_ETYPE_OTM

x.eid must correspond to otmEventId from the nxt_Capability value returned in
nxt_Handle (see 5.7.1.2.1 Event Capabilities on Page 35). If this is
NX_EVENTID_INVALID, OTM is not available.

If x.eid is NX_EVENTID_INVALID, OTM will be disabled. If x.eid is equal to
otmEventId and otmEventId is not NX_EVENTID_INVALID, then OTM is enabled.

Memory Substitution

x.eType = NX_ETYPE_SUBSTITUTION

x.eid must correspond to substitutionEventId from the nxt_Capability value
returned in nxt_Handle (see 5.7.1.2.1 Event Capabilities on Page 35). If this is
NX_EVENTID_INVALID, memory substitution is not available.

x.u.substitution.startTriggerId specifies an event ID that can enable the
specified substitution event. To make it permanently enabled, supply
NX_EVENTID_INVALID here, otherwise use the event ID from a breakpoint/
watchpoint event ID (see 5.7.1.2.1 Event Capabilities on Page 35).
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 45 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Vendor-defined events/vendor-defined event extensions

x.eType values from 0x100 upwards can be used to allow vendors to supply
additional events.

The x.u.vendorDefinedBasic field is used to supply vendor-defined information
with respect to a vendor-defined value in x.eType.

The x.u.vendorDefinedExtension field is used to allow vendor-defined extensions
to standard events.

5.7.6.2 Postconditions

If the operation succeeds, NX_ERROR_NONE is returned, otherwise NX_ERROR_FAILED
or NX_ERROR_NO_CAPABILITY is returned.

5.7.7 Clearing an Event—nx_ClearEvent

void nx_ClearEvent (nxt_Handle *handle, const int eid);

5.7.7.1 Preconditions

handle is from a successful invocation of nx_Open.

eid is the ID of an event previously set up with nx_SetEvent.

5.7.7.2 Postconditions

Once this function completes, the specified event will be disabled.

5.7.8 Reading an Event—nx_GetEvent

nxt_Status nx_GetEvent (nxt_Handle *handle, nxt_ReceivedEvent *event,
int maxBytes, const int block);

5.7.8.1 Preconditions

handle is from a successful invocation of nx_Open.

event is a pointer to a block of memory to receive the event.

maxBytes is set by the caller to equal the maximum number of bytes that can be
received in an event.

block specifies whether this function will block until an event is available from the
target.

Page 46 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
5.7.8.2 Postconditions

The following data types are used to hold the event:

nxt_Packet defines a Nexus Packet.
typedef struct {
int numBitsInPacket;
void *data; /* stream of ((numBitsInPacket + 7)/8) bytes */

} nxt_Packet;

nxt_Message defines a Nexus Message.
typedef struct {
nt numPackets;
nxt_Packet *packets;

} nxt_Message;

nxt_ReadEvent defines the type of event.
typedef enum {
NX_READ_EVENT_MESSAGE = 0x1,
NX_READ_EVENT_BREAKSTEP = 0x2,
NX_READ_EVENT_INPUTPIN = 0x3

} nxt_ReadEvent;

nxt_ReceivedEvent contains the actual event:
typedef struct {
 nxt_ReadEvent rTag;
 union {

nxt_Message message; /* rTag == NX_READ_EVENT_MESSAGE */
nxvt_Registers regs; /* rTag == NX_READ_EVENT_BREAKPOINT */
struct {

 int level;
} inputPin;;/* rTag == NX_READ_EVENT_INPUTPIN */

 } u;
} nxt_ReceivedEvent;

If block is equal to 1, nx_GetEvent will block until an event is available. The
nxt_ReceivedEvent *event data structure can be modified as follows:

• If a message was read, x.rTag is NX_READ_EVENT_MESSAGE.

x->u.message contains the message.

NOTE
Ultimately, it would be desirable to supply a library here that decodes a
message into a C data structure. However, at this point in time, this
functionality is considered out of the scope of this specification.

• If a breakpoint or single step occurred, x->rTag is equal to
NX_READ_EVENT_BREAKSTEP.

x->u.regs contains the target’s register state. The target will not
execute further until restarted using nx_Control with
NX_CTRL_RESTART_FROM_BREAKSTEP. These registers are vendor defined.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 47 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
• If the AUX port’s Event-In pin changes state, x->rTag is equal to
NX_READ_EVENT_INPUTPIN.

x->u.level contains the current level of the pin.

If block is equal to 0, nx_GetEvent will return an event if one is available.

5.8 Emulator HAL

nxhal.h defines the entry points.

CAUTION
The Emulator HAL described here is incomplete - it provides
mechanisms to connect and disconnect. IEEE 1149.1 implementations
will be able to access any underlying facilities using the NRR read/write
mechanism. Similarly, AUX implementations will be able to access the
target using the WriteMessage and Get Event mechanisms.

However, the HAL specified here does not provide generic functionality
necessary to implement get breakpoint/step event, read/write the
target’s purpose register state or implement with the debug exception
handler to restart. These facilities are not addressed by the Nexus
Hardware Specifications, and can not be readily expressed in a totally
portable Emulator HAL. Therefore, they are left as target-specific
features that will vary from HAL to HAL.

5.8.1 Opening a Connection—nxhal_Open

This function is used by nx_Open to connect to the Emulator; its parameters are
identical to nx_Open.

nxhal.h defines the nxhal_Open function.
nxt_Handle *nxhal_Open (const nxt_TargetSpec *tSpec,

void (*errorCallback)(const char *),
nxt_Status *status);

5.8.1.1 Preconditions

tSpec should be set up to define the target’s byte ordering, and the ports on which
the target can be connected. The available options depend upon the target and
the Emulator system. The full set of connection options are defined in
5.7.1 Opening a Connection—nx_Open on Page 33.

Page 48 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
5.8.1.2 Postconditions

If nxhal_Open succeeds, a handle is returned and status is set to NX_ERROR_NONE; if
it fails, NULL is returned, and status is set to NX_ERROR_NO_CAPABILITY.

Before nxhal_Open returns successfully, it must set the following fields of
nxt_Capability to define the emulator’s capabilities:

• halInfo. A NUL-terminated string containing a version/information
number specific to the Emulator.

• emuEndian. The Emulator’s byte ordering.

5.8.2 Closing a Connection—nxhal_Close

This function is used by nx_Close to close a connection to the Emulator; its
parameters and behavior are identical to 5.7.2 Closing a Connection—nx_Close
on Page 36.
void nxhal_Close (nxt_Handle *handle);

5.8.3 Writing to a Nexus IEEE 1149.1 Register—nxhal_WriteNRR

This function is used by various functions in the Target Abstraction Layer, whose
implementation needs to write the underlying debug control registers, which are
accessible via NRRs.

This function is only available for targets that are configured to perform access
control via IEEE 1149.1 JTAG (i.e. nxhal_Open was invoked with
tSpec.accessPort equal to NX_PORT_TYPE_JTAG).
nxt_Status nxhal_WriteNRR (nxt_Handle *handle,
 const int index, const int numBitsInNRR,
 const void *data);

5.8.3.1 Preconditions

handle is from a successful invocation of nxhal_Open.

index ranges from 0 through 127; it is used to identify which NRR to write.

numBitsInNRR specifies the number of bits in the NRR, specified by index.

data contains ((numBitsInNRR+7)/8) bytes of data to write to the NRR.

5.8.3.2 Postconditions

If the write operation succeeds, nxhal_WriteNRR will return NX_ERROR_NONE, or else
it will return NX_ERROR_FAILED.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 49 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
5.8.4 Reading a Nexus IEEE 1149.1 Register—nxhal_ReadNRR

This function is used by various functions in the Target Abstraction Layer, whose
implementations need to read the underlying debug control registers, which are
accessible via NRRs.

This function is only available for targets that are configured to perform access
control via IEEE 1149.1 (i.e. nxhal_Open was invoked with tSpec.accessPort
equal to NX_PORT_TYPE_JTAG).
nxt_Status nxhal_ReadNRR (nxt_Handle *handle,

const int index, const int numBitsInNRR,
void *data);

5.8.4.1 Preconditions

handle is from a successful invocation of nxhal_Open.

index ranges from 0 through 127; it is used to identify which NRR to read.

numBitsInNRR specifies the bit size of the NRR, specified by index.

5.8.4.2 Postconditions

If the read operation succeeds, data points to ((numBitsInNRR+7)/8) bytes read
from the NRR and NX_ERROR_NONE is returned, else NX_ERROR_FAILED is returned.

5.8.5 Reading an Event—nxhal_GetEvent

This function is used by nx_GetEvent (see 5.7.8 Reading an Event—nx_GetEvent
on Page 46).

nxt_Status nxhal_GetEvent (nxt_Handle *handle, nxt_ReceivedEvent *event,
int maxBytes, const int block);

This function behaves as per nx_GetEvent, except that it does not need to
implement nxt_ReceivedEvent.rTag equal to NX_READ_EVENT_BREAKSTEP.

Page 50 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
SECTION 6
Public Messages

The AUX provides a high-speed communication link between the tool and a target
processor. All communication over this link uses messages in one or both
directions.

The format and meaning of certain messages, called Public Messages, are
defined by this specification. Other messages can be vendor defined and defined
by the target processor vendor. Tools require enhanced capability to be able to
support Vendor Defined Messages.

All messages start with a 6-bit TCODE which uniquely defines the type of
message. Fifty-six TCODEs (values 0 to 55) indicate that the message is a Public
Message defined by the Nexus standard, or reserved for future definition by the
Nexus standard. Seven TCODEs (values 56 to 62) indicate that the message is a
Vendor Defined Message. One TCODE (value 63) indicates that the message is a
Vendor Defined Message and then a second level code designated by the vendor
further identifies the specific message.

In addition to being transferred over the AUX, Public Messages can also be
transferred via an IEEE 1149.1 port using the method described in SECTION 8.

6.1 Compliance Requirements for Public Messages

Embedded processors complying to class 2, 3 or 4 shall implement messaging via
the AUX according to the Nexus standard. Embedded processors complying to
class 1 may optionally implement messaging via the IEEE 1149.1 interface.

Embedded processors shall implement the minimum Public Messages as
required per the compliance class. Table 6-1 lists the minimum required Public
Messages per compliance class. Embedded processors may optionally
implement Vendor Defined Messages.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 51 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
6.2 Definitions and Terminology

The following terms relate to Public Messages:

Message: Each message starts with a 6-bit TCODE, which defines the type of
information carried in the message and its format. The TCODE packet length for
all Public Messages must be 6 bits. When messages are transferred via the AUX,
message start/end (MSE) signaling protocol, described in SECTION 8 Auxiliary
Port Message Protocol, defines the start and the end of each message.

Transmission Order: Messages are transmitted least-significant bit(s) first.
Additionally, program and Data Trace Messages are transmitted in a temporal
order such that the transmission of messages should correlate as closely as
possible with the temporal occurrence of activity on the embedded processor.

Packet: A packet is a distinct piece of the information contained within a message
and messages may contain one or more packets. A common alternative term for a
packet is a field. When messages are transferred via the AUX, MSE signaling
protocol defines the end of each variable-length packet.

Port Boundary: This relates the size of a packet to the width of the Auxiliary Input
Port or Auxiliary Output Port.

Variable: When the format of a message specifies that a packet is variable-size, it
means that the message must contain the packet but that its size may vary from a

Table 6-1 Minimum Required Public Messages

Message Type
Compliance

Class
Minimum Required Public Messages

Device ID 2, 3, 4 Device ID.

Ownership Trace 2, 3, 4 Ownership Trace.

Program Trace 2, 3, 4 Direct Branch, Indirect Branch, Synchronization1, Error.

Data Trace 3, 4 Data Write, Data Write Message with Sync, Error.

Read/Write
Access

3, 4

1) For embedded processors that implement the recommended registers
defined in APPENDIX B: Target Ready, Read Register, Write Register, Read/
Write Response.

2) For embedded processors that implement device-specific registers: Read
Target, Write Target, Read Next Target Data, Write Next Target Data, Target
Response.

Watchpoint 2, 3, 4 Watchpoint Message.

Memory
Substitution

4 Read Tool, Read Next Tool Data, Tool Response.

1. The Direct Branch with Sync and Indirect Branch with Sync Message may be implemented instead of the
Synchronization Message.

Page 52 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
minimum of 1 bit. When messages are transferred via the AUX, variable-size
packets must end on a port boundary, if necessary by zero filling bit positions
beyond the highest-order bit of the variable data. Since variable-size packets may
be of different lengths in messages of the same type, the tool must use the MSE
signaling protocol to determine the end of packet boundaries.

Device-Specific: The term device-specific is used to indicate allowances in the
Nexus standard to match characteristics of a vendor’s device. Device-specific
packets may be of zero length (not implemented). For a tool to interpret message
content, it must determine from the device ID whether device-specific packets
exist in each type of message.

Some device-specific packets have their lengths fixed by this specification. Other
device-specific packets are target processor dependent and have a fixed size
determined by the processor vendor.

Sync and Non-Sync Trace Messages: Program Trace and Data Trace Messages
fall into two broad categories—normal (or non-sync) versions and with-sync
versions. The main difference between the two categories is that with-sync
versions include full addresses whereas normal versions contain addresses which
are relative to a previous trace message.

Next Address Generation: To minimize the size of trace messages, the address
packets in the normal (non-sync) versions of all trace messages contain a
compressed address. This compressed address, called the unique portion of the
address, is relative to the address associated with a previous trace message of
the same type. Program Trace Messages contain an address that is relative to the
previous Program Trace Message; Data Trace Messages contain an address that
is relative to the previous Data Trace Message.

The target processor computes the relative address by exclusive-OR-ing the
current program or data address with the full address associated with the previous
Program Trace Message or Data Trace Message (see Figure 6-1).

Number of Messages Cancelled: Several messages for program and data trace
synchronization (Direct Branch Message With Sync, Indirect Branch Message
With Sync, Data Write Message with Sync, Data Read Message with Sync)
contain a packet for the number of messages cancelled. There are three device-
specific interpretations of this field:

1. For embedded processors which transmit only valid messages, this field
will have a value of 0.

2. For embedded processors that do not queue up Program/Data Trace
Messages as they become back-logged, but can truncate the current
message as it is being transmitted to send out a fresher message, this
field will have a value of 1 if the previous message has been truncated.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 53 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
3. For embedded processors that send out preliminary Program Trace
Messages (e.g. speculative execution) and later correct the trace
information by cancelling fully transmitted messages, this field will notify
the tool of the number of fully transmitted program (or data) messages to
be cancelled.

Figure 6-1 Next Address Generation Example

Periodic Message Counter: Because addresses contained in normal program
and Data Trace Messages are relative, the loss or corruption of a trace message
means that the tool will be unable to correctly recreate addresses following the
corruption or loss. To minimize the effect of any such loss or corruption of a trace
message, the target processor must send a with-sync version at least every
256 trace messages.

To provide this function, the target processor must maintain two periodic message
counters, one for counting normal Program Trace Messages and the other for
counting normal Data Trace Messages.

Example of how the target processor generates the address to send in a trace
message:

Previous absolute address (A1) = 0x003FC01,
Absolute address associated with new trace occurrence (A2) = 0x0003F365

A1 = 0000 0000 0000 0011 1111 1100 0000 0001

A2 = 0000 0000 0000 0011 1111 0011 0110 0101

A1⊕ A2 = 0000 0000 0000 0000 0000 1111 0110 0100

The unique portion of the address (M1), sent in the message (high-order
zeros are suppressed):

M1 = 1111 0110 0100

Example of how the tool recreates the address based on its previously calcu-
lated address and the address contained in the trace message:

Previously calculated address (A1) = 0x003FC01,
Address in message (M1) = 0xF64

A1 = 0000 0000 0000 0011 1111 1100 0000 0001

M1 = 0000 0000 0000 0000 0000 1111 0110 0100

A1⊕ M1 = 0000 0000 0000 0011 1111 0011 0110 0101

Address recreated by the tool = 0x0003F365

Page 54 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Program Address and Data Address Threads: On embedded processors that
implement data and program trace, there will be an address thread for each type
of trace - the data address thread and the instruction address thread. Messages
containing a data address packet will be encoded and compressed using the data
address most recently transmitted, thus creating a data address thread. Likewise,
messages containing an instruction address packet will be encoded and
compressed using the instruction address most recently transmitted, thus creating
an instruction address thread.

Source of Message Transmission: Many of the Public Messages contain a
packet that may be used to identify which client was the source of the message
transmission. In embedded processors that comprise only a single client, this
packet need not be transmitted. For embedded processors that comprise multiple
clients, this packet must be transmitted as part of the message to identify the
source of the message transmission.

6.3 Complete List of Nexus Public Messages

Table 6-2 gives a complete list of Nexus Public Messages.

Table 6-2 Nexus Public Messages

Message Name
TCODE
Value

Direction

Debug Status 0 From target

Device ID 1 From target

Ownership Trace 2 From target

Program Trace, Direct Branch 3 From target

Program Trace, Indirect Branch 4 From target

Data Trace, Data Write 5 From target

Data Trace, Data Read 6 From target

Data Acquisition 7 From target

Error 8 From target

Program Trace Synchronization 9 From target

Program Trace Correction 10 From target

Program Trace, Direct Branch with
Sync.

11 From target

Program Trace, Indirect Branch with
Sync.

12 From target

Data Trace, Data Write with Sync. 13 From target

Data Trace, Data Read with Sync. 14 From target

Watchpoint Hit 15 From target

Target Ready 16 Both ways
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 55 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
6.4 Detailed Description of Public Messages

In this sub-section, Public Messages are grouped according to their function.

In the following Public Message descriptions, a description table lists the most
significant bits (transmitted last) at the top of the table, and the least significant bits
(transmitted first) at the bottom of the table (see Table 6-3 through Table 6-31).

6.4.1 Debug Status

Read Register 17 From tool

Write Register 18 From tool

Read/Write Response 19 Both ways

Port Replacement, Output 20 From target

Port Replacement, Input 21 From tool

Read Target/Tool 22 Both ways

Write Target/Tool 23 Both ways

Read Next Target/Tool Data 24 Both ways

Write Next Target/Tool Data 25 Both ways

Target/Tool Response 26 Both ways

Reserved 27–55 Both ways

Vendor Defined Message 56–62 Both ways

Vendor Defined Extension Message 63 (0x3F) Both ways

Table 6-3 Debug Status Message

Debug Status Message Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

1 STATUS Device-specific Status information1

1. For target processors that implement the NRRs described in APPENDIX B, the status packet
contains the same information as the Development Status (DS) Register. For target processors
that implement device-specific registers, the status packet must provide all the information
required by the API.

0 SRC Device-specific Client that is source of message.

6 TCODE Fixed Value = 0

Table 6-2 Nexus Public Messages (Continued)

Message Name
TCODE
Value

Direction

Page 56 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Message Occurrence: This message is output by the target whenever there is a
change of state of any of the following:

• Entry to the debug exception handler

• Exit from the debug exception handler

• Change in power-managed state of the processor

• Detection of a breakpoint

In addition to having the target processor send a Device Status Message
whenever the debug status changes, the tool is able to request the current debug
status at any time. For target processors that implement the NRRs described in
APPENDIX B, the tool requests the current debug status by sending a Read
Register Message containing the Development Status opcode. For target
processors that implement device-specific registers, the API knows which device-
specific register(s) to read to obtain device status.

6.4.2 Device Identity

Message Occurrence: If the AUX is enabled, i.e. a tool is connected, this
message is output by the target processor only after the target’s debug logic has
been reset by the tool. The tool resets the target’s debug logic by asserting and
de-asserting the RSTI signal.

NOTE
A Device Identity Message is not automatically output following power-
on reset, even when a tool is connected. The tool must specifically reset
the target’s debug logic for this message to occur.

In addition to having the target processor send a Device Identity Message following
a debug logic reset, the tool is able to request the device identity at any time. For
target processors that implement the NRRs described in APPENDIX B, the tool
requests the device identity by sending a Read Register Message containing the
device identity opcode. For target processors which implement device-specific
registers, the API knows which register to read to obtain the device identity.

Table 6-4 Device Identity Message

Device Identity Message Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

32 ID Fixed
ID information. Refer to B.1 Device ID
(DID) Register on Page 129.

6 TCODE Fixed Value = 1
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 57 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
6.4.3 Ownership Trace

Message Occurrence: There are three ways in which this message may occur:

1. For target processors in which the OTM Register is a read-only alias of a
process ID register, this message is output whenever the process ID
changes.

2. For target processors where the OTM Register is directly written by the
operating system or application code to indicate the current process or
task, this message is output whenever the operating system writes to
the OTM Register.

3. For target processors using virtual memory, this message is output
immediately prior to (or immediately following) a Program or Data Trace
with Sync Message produced when a periodic message counter expires.
This allows a tool to be regularly updated with the latest process ID.

6.4.4 Program Trace

There are six different Public Messages associated with program tracing:

• Program Trace, Direct Branch

• Program Trace, Indirect Branch

• Program Trace, Direct Branch with Sync

• Program Trace, Indirect Branch with Sync

• Program Trace Synchronization

• Program Trace Correction

Table 6-5 Ownership Trace Message

Ownership Trace Message Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

1 PROCESS Device-specific Task/process ID.

0 SRC Device-specific
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 2

Page 58 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Message Occurrence: This message is output by the target processor whenever
there is a change of program flow caused by a conditional branch. To conserve
AUX bandwidth and trace buffer space, the target processor may queue trace
information about taken direct branches and output one message containing up to
eight I-CNT packets.

Message Occurrence: This message is output by the target processor whenever
there is a change of program flow caused by a subroutine call, return instruction or
asynchronous interrupt/trap.

Table 6-6 Program Trace, Direct Branch Message

Program Trace, Direct Branch
Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

1 I-CNT Variable

Number of instruction units executed since the
last taken branch. Each message may contain
up to eight of these packets, each one corre-
sponding to a direct branch taken.1

1. In target architectures in which all instructions are the same size, this packet contains the number of
instructions executed since last taken branch. If instructions are of variable size, then the number
reported is the number of instruction units.

0 SRC Device-specific
Client that is source of message. For targets
with only a single client, this packet can be
omitted.

6 TCODE Fixed Value = 3

Table 6-7 Program Trace, Indirect Branch Message

Program Trace, Indirect Branch
Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

1 U-ADDR Variable
The unique portion of the branch target address
for a taken indirect branch or exception.

1 I-CNT Variable
Number of instruction units executed since the
last taken branch. 1

1. In target architectures in which all instructions are the same size, then this packet contains the
number of instructions executed since last taken branch. If instructions are of variable size, then the
number reported is the number of instruction units.

0 SRC Device-specific
Client which is source of message. For targets
with only a single client, this packet can be
omitted.

6 TCODE Fixed Value = 4
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 59 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Message Occurrence: This message is output by the target processor when any
of the following conditions occurs:

1. Upon exit from system reset. This is required to allow the number of
instruction units executed packet in a subsequent Program Trace
Message to be correctly interpreted by the tool. This trace message
follows exit from reset for target processors not capable of immediately
generating a Program Trace Synchronization Message.

2. A direct branch is detected after program trace is enabled during normal
execution of the embedded processor.

3. Upon exit from a power-down state. This is required to allow the number
of instruction units executed packet in a subsequent Program Trace
Message to be correctly interpreted by the tool.

4. A direct branch is detected following the processor exiting from debug
mode.

5. A direct branch is detected and an overrun condition had previously
occurred in which one or more branch trace occurrences were discarded
by the target processor’s debug logic. To inform the tool that an overrun
condition occurred, the target outputs an Error Message (TCODE = 8)
with an Error code (ECODE) value of 00001 or 00111 immediately prior
to the Program Trace, Direct Branch with Sync Message.

Table 6-8 Program Trace, Direct Branch with Sinc Message

Program Trace, Direct Branch with
Sync Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

1 F-ADDR Variable
The full target address for a taken direct
branch. Most significant bits that have a
value of 0 may be truncated.

1 CANCEL Variable

Number of previous Program Trace Mes-
sages that should be ignored by the tool.
This packet is generated only by proces-
sors performing speculative execution
where a trace message may be output
before it is known whether the branch was
actually taken.

0 SRC Device-specific
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 11

Page 60 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
6. A direct branch is detected and the periodic Program Trace Message
counter has expired indicating that 255 without-sync versions of
Program Trace Messages have been sent since the last with-sync
version. The value of 255 is a maximum number, target processors may
use a smaller value.

7. A direct branch is detected, the Event-In (EVTI) pin has been asserted
and the EIT field in the Development Control Register (APPENDIX B)
determines that EVTI pin action is to generate program trace
synchronization. This message is output by target processors not
capable of immediately generating a Program Trace Synchronization
Message.

8. Upon overflow of the sequential instruction unit counter. Since a limited
counter size must be implemented in the embedded processor, there will
likely be sequential instruction sequences (with no taken branches)
which will cause the counter to overflow.

9. Upon the occurrence of a watchpoint hit and the next taken direct branch
(optional). This trace message follows the watchpoint hit message for
target processors not capable of immediately generating a Program
Trace Synchronization Message.

Message Occurrence: This message is output by the target processor when any
of the following conditions occurs:

Table 6-9 Program Trace, Indirect Branch with Sync Message

Program Trace, Indirect Branch with
Sync Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

1 F-ADDR Variable
The full target address for a taken indirect
branch or exception. Most significant bits
that have a value of 0 may be truncated.

1 CANCEL Variable

Number of previous Program Trace Mes-
sages that should be ignored by the tool.
This packet is generated only by proces-
sors performing speculative execution
where a trace message may be output
before it is known whether the branch was
actually taken.

0 SRC Device-specific
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 12
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 61 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
1. Upon exit from system reset. This is required to allow the number of
instruction units executed packet in a subsequent Program Trace
Message to be correctly interpreted by the tool. This trace message
follows exit from reset for target processors not capable of immediately
generating a Program Trace Synchronization Message.

2. An indirect branch is detected after program trace is enabled during
normal execution of the embedded processor.

3. Upon exit from a power-down state. This is required to allow the number
of instruction units executed packet in a subsequent Program Trace
Message to be correctly interpreted by the tool.

4. An indirect branch is detected following the processor exiting from debug
mode.

5. An indirect branch (a change of program flow caused by a subroutine
call, return instruction or asynchronous interrupt/trap) is detected and an
overrun condition had previously occurred in which one or more branch
trace occurrences were discarded by the target processor’s debug logic.
To inform the tool that an overrun condition occurred, the target outputs
an Error Message (TCODE = 8) with an ECODE value of 00001 or
00111 immediately prior to the Program Trace, Indirect Branch with Sync
Message.

6. An indirect branch is detected and the periodic Program Trace Message
counter has expired, indicating that 255 without-sync versions of
Program Trace Messages have been sent since the last with-sync
version. The value of 255 is a maximum number—target processors may
use a smaller value.

7. An indirect branch is detected, a debug control register field specifies
that EVTI pin action is to generate program trace synchronization and
the Event-In (EVTI) pin has been asserted. This message is output by
target processors not capable of immediately generating a Program
Trace Synchronization Message.

8. Upon overflow of the sequential instruction unit counter. Since a limited
counter size must be implemented in the embedded processor, there will
likely be sequential instruction sequences (with no taken branches)
which will cause the counter to overflow.

9. Upon the occurrence of a watchpoint hit and the next taken indirect
branch (optional). This trace message follows the watchpoint hit
message for target processors not capable of immediately generating a
Program Trace Synchronization Message.

Page 62 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Message Occurrence: This message is output by the target processor when any
of the following conditions occurs:

1. Upon exit from reset. This is required to allow the number of instruction
units executed packet in a subsequent Program Trace Message to be
correctly interpreted by the tool.

2. When program trace is enabled during normal execution of the
embedded processor.

3. Upon exit from a power-down state. This is required to allow the number
of instruction units executed packet in a subsequent Program Trace
Message to be correctly interpreted by the tool.

4. Upon exiting from debug mode.

5. An overrun condition had previously occurred in which one or more
branch trace occurrences were discarded by the target processor’s
debug logic. To inform the tool that an overrun condition occurred, the
target outputs an Error Message (TCODE = 8) with an ECODE value of
00001 or 00111 immediately prior to the Program Trace Synchronization
Message.

6. The periodic Program Trace Message counter has expired indicating
that 255 without-sync versions of Program Trace Messages have been
sent since the last with-sync version. The value of 255 is a maximum
number—target processors may use a smaller value.

7. A debug control register field specifies that EVTI pin action is to
generate program trace synchronization, and the Event-In (EVTI) pin
has been asserted.

Table 6-10 Program Trace Synchronization Message

Program Trace Synchronization
Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

1 PC Variable
The full current instruction address. Most
significant bits that have a value of 0 may
be truncated.

0 SRC Device-specific
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 9
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 63 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

8. Upon overflow of the sequential instruction unit counter. Since a limited
counter size must be implemented in the embedded processor, there will
likely be sequential instruction sequences (with no taken branches)
which will cause the counter to overflow.

9. Upon the occurrence of a watchpoint hit (optional). This trace message
immediately follows the watchpoint hit message for target processors
capable of immediately generating a Program Trace Synchronization
Message. The program counter (PC) value included is the value of the
PC at the time of the watchpoint hit.

Message Occurrence: This message is output by the target processor when it
determines after a Program Trace Message has been sent, that the value in the
number of instruction units executed packet is incorrect.

Note that if ADJUST = 1, this indicates that the last taken branch was actually
cancelled. Consequently, in the next I-CNT packet transmitted, the taken branch
that was cancelled will be counted as part of the sequential instruction units.

6.4.5 Data Trace

There are four different Public Messages associated with data tracing:

• Data Trace, Data Write

• Data Trace, Data Write with Sync

• Data Trace, Data Read

• Data Trace, Data Read with Sync

Table 6-11 Program Trace Correction Message

Program Trace Correction Message Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

1 ADJUST Variable

A number correcting the number of
instruction units executed since the last
taken branch. This number (unsigned)
should be subtracted by the tool from the
last I-CNT packet transmitted.

0 SRC Device-specific
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 10
Page 64 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Message Occurrence: This message is output by the target processor when it
detects a memory write that matches the debug logic’s data trace attributes.

Table 6-12 Data Trace, Data Write Message

Data Trace, Data Write Message Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

8 DATA Variable The data value written.

1 U-ADDR Variable
The unique portion of the data write
address, which is relative to the previous
Data Trace Message (read or write).

0 MAP Device-specific

A number to indicate the memory map cur-
rently in use by the target processor. For
targets with only a single memory map,
this packet can be omitted.

0 SRC Device-specific
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 5

Table 6-13 Data Trace, Data Write with Sync Message

Data Trace, Data Write with Sync
Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

8 DATA Variable The data value written.

1 F-ADDR Variable
The full address of the memory location
written. Most significant bits that have a
value of 0 may be truncated.

1 CANCEL Variable

Number of previous Data Trace Messages
that should be ignored by the tool. This
packet is generated only by processors
performing speculative execution where a
trace message may be output before it is
known whether the data write actually
occurred.

0 MAP Device-specific

A number to indicate the memory map cur-
rently in use by the target processor. For
targets with only a single memory map,
this packet can be omitted.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 65 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Message Occurrence: This message is an alternative to the Data Trace, Data
Write Message. It is output instead of a Data Trace, Data Write Message
whenever a memory write occurs that matches the debug logic’s data trace
attributes, and when one of the following conditions has occurred:

1. The processor has exited from reset. This synchronization message is
required to allow the unique portion of the data write address of following
Data Trace, Data Write Messages to be correctly interpreted by the tool.

2. When data trace is enabled during normal execution of the embedded
processor.

3. Upon exit from a power-down state. This synchronization message is
required to allow the unique portion of the data write address of following
Data Trace, Data Write Messages to be correctly interpreted by the tool.

4. The Event-In pin has been asserted and a debug control register field
specifies that EVTI pin action is to generate data trace synchronization.

5. An overrun condition had previously occurred in which one or more data
trace occurrences were discarded by the target processor’s debug logic.
To inform the tool that an overrun condition occurred, the target outputs
an Error Message (TCODE = 8) with an ECODE value of 00010 or
00111 immediately prior to the Data Trace, Data Write with Sync
Message.

6. The periodic Data Trace Message counter has expired indicating that
255 without-sync versions of Data Trace Messages have been sent
since the last with-sync version. The value of 255 is a maximum
number—target processors may use a smaller value.

7. A data write is detected following the processor exiting from debug
mode.

0 SRC Device-specific
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 13

Table 6-13 Data Trace, Data Write with Sync Message (Continued)

Data Trace, Data Write with Sync
Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

Page 66 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Message Occurrence: This message is output by the target processor when it
detects a memory read that matches the debug logic’s data trace attributes.

Table 6-14 Data Trace, Data Read Message

Data Trace, Data Read Message Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

8 DATA Variable The data value read.

1 U-ADDR Variable
The unique portion of the data read
address, which is relative to the previous
Data Trace Message (read or write).

0 MAP Device-specific

A number to indicate the memory map cur-
rently in use by the target processor. For
targets with only a single memory map,
this packet can be omitted.

0 SRC Device-specific
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 6

Table 6-15 Data Trace, Data Read with Sync Message

Data Trace, Data Read with Sync
Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

8 DATA Variable The data value read.

1 F-ADDR Variable
The full address of the memory location
read. Most significant bits that have a
value of 0 may be truncated.

1 CANCEL Variable

Number of previous Data Trace Messages
that should be ignored by the tool. This
packet is generated only by processors
performing speculative execution where a
trace message may be output before it is
known whether the data read actually
occurred.

0 MAP Device-specific

A number to indicate the memory map cur-
rently in use by the target processor. For
targets with only a single memory map,
this packet can be omitted.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 67 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Message Occurrence: This message is an alternative to the Data Trace, Data
Read Message. It is output instead of a Data Trace, Data Read Message
whenever a memory read occurs that matches the debug logic’s data trace
attributes, and when one of the following conditions has occurred:

1. The processor has exited from reset. This synchronization message is
required to allow the unique portion of the data write address of following
Data Trace, Data Read Messages to be correctly interpreted by the tool.

2. When data trace is enabled during normal execution of the embedded
processor.

3. Upon exit from a power-down state. This synchronization message is
required to allow the unique portion of the data write address of following
Data Trace, Data Read Messages to be correctly interpreted by the tool.

4. The Event-In pin has been asserted and a debug control register field
specifies that EVTI pin action is to generate data trace synchronization.

5. An overrun condition had previously occurred in which one or more data
trace occurrences were discarded by the target processor’s debug logic.
To inform the tool that an overrun condition occurred, the target outputs
an Error Message (TCODE = 8) with an ECODE value of 00010 or
00111 immediately prior to the Data Trace, Data Read with Sync
Message.

6. The periodic Data Trace Message counter has expired indicating that
255 without-sync versions of Data Trace Messages have been sent
since the last with-sync version. The value of 255 is a maximum
number—target processors may use a smaller value.

7. A data read is detected following the processor exiting from debug
mode.

0 SRC Device-specific
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 6

Table 6-15 Data Trace, Data Read with Sync Message (Continued)

Data Trace, Data Read with Sync
Message

Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

Page 68 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
6.4.6 Data Acquisition

Message Occurrence: This message is sent by a target when the target
processor writes the value of 0x0 to the Data Acquisition Control Register.

6.4.7 Error

Table 6-16 Data Acquisition Message

Data Acquisition Message Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

8 DQDATA Variable One or more packets of data values.

1 IDTAG Device-specific
Data ID tag. This specifies which group of
data is included in the Data Acquisition
Message.

6 TCODE Fixed Value = 7

Table 6-17 Error Message

Error Message Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

5 ECODE Fixed Error code. Refer to Table 6-15.

0 SRC Device-specific
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 8

Table 6-18 Error Codes

Error Code Description

00000 Ownership trace overrun.

00001 Program trace overrun.

00010 Data trace overrun.

00011
Read/write access error (read or write error to user memory map). This
error code applies only to targets that support the Read/Write Access
Messages for NRRs (APPENDIX B).1

00100
Invalid message (message type not implemented). The Error Message is
sent by the target as soon as the invalid message is detected.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 69 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Overrun Errors: For any of the trace overrun categories, an Error Message,
containing an overrun error code, is to inform the tool that the target has discarded
trace occurrences because of insufficient space in its trace output queue. The
Error Message is sent immediately prior to a synchronization message (OTM,
BTM + Sync, DTM + Sync) as soon as space is available in the trace output
queue.

6.4.8 Watchpoint Hit

Message Occurrence: This message is sent by the target whenever a watchpoint
hit occurs. Multiple watchpoint hits can be indicated in the same message. The
debug logic in the target must ensure that Watchpoint Messages can never be

00101

Invalid access opcode (NRR not implemented). This error code applies
only to targets that support the Read/Write Access Messages for NRRs
(APPENDIX B). The Error Message is sent by the target as soon as the
invalid opcode is detected.

00110 Watchpoint overrun.

00111 Program and/or data and/or ownership trace overrun.

01000
Program trace and/or data trace and/or ownership trace and/or watchpoint
overrun.

01001–10111 Reserved.

11000–11111 Vendor defined.

1. For targets that implement device-specific debug control and status registers and use
Public Messages 22–26 to provide read/write access, an error condition is indicated by the
ST field in the Target/Tool Response Message.

Table 6-19 Watchpoint Message

Watchpoint Message Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

2 WPHIT Device-specific

This is an 8-bit field in which each bit posi-
tion corresponds to a different watchpoint
number. Bit positions 0 through 7 corre-
spond to watchpoints 0 through 7. A “1” in
a bit position indicates a watchpoint hit
occurred.

0 SRC Device-specific
Client that is source of message. For tar-
gets with only a single client, this packet
can be omitted.

6 TCODE Fixed Value = 15

Table 6-18 Error Codes (Continued)

Error Code Description

Page 70 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
cancelled once they have been generated. If watchpoint hit occurrences are
discarded because of insufficient space in the trace output queue, the target must
send the tool an Error Message prior to the next Watchpoint Message actually
sent so that the tool knows that one or more watchpoint hit occurrences were
discarded.

6.4.9 Port Replacement

Message Occurrence: This message is sent by the target to set up external port
replacement logic on the target system. For low-speed I/O port bits defined as
outputs, this message is also used to set the state of the pins.

Message Occurrence: This message is sent by the tool upon the occurrence of a
change in the state of one or more input pins.

Table 6-20 Port Replacement—Output Message

Port Replacement—Output Message Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

16 OUT Fixed

Each bit corresponds to one of the 16 low-
speed I/O pins involved with port replace-
ment. When the direction of the pin is an
output, the pin state corresponds to the
value of the bit in this packet. Pins defined
as inputs are unaffected by corresponding
bits in this packet.

16 DIR Fixed

Each bit specifies the direction of one of
the 16 low-speed I/O pins involved with
port replacement.
0 = input
1 = output

6 TCODE Fixed Value = 20

Table 6-21 Port Replacement—Input Message

Port Replacement—Input Message Direction: from tool

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

16 IN Fixed

Each bit corresponds to one of the 16 low-
speed I/O pins involved with port replace-
ment. When the direction of the pin is an
input, this message is used to read the pin
state.

6 TCODE Fixed Value = 21
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 71 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
6.4.10 Read/Write Access of Nexus Recommended Development Registers

For target processors that implement the Nexus recommended development
registers described in APPENDIX B, the following four messages are used by a
tool to access debug control and status registers via the AUX. These four
messages will not normally be used by target processors that implement device-
specific registers.

Message Occurrence: The target sends this message when it has completed the
actions that were specified in a previous Read/Write Access Message from the
tool and is able to accept another command. The tool sends this message when it
is able to accept another message from the target as part of a block read
sequence.

Message Occurrence: The tool sends this message when it wants to read control
or status information from the target. The target responds to this message with a
Read/Write Response Message containing the requested information.

Table 6-22 Target Ready Message

Target Ready Message Direction: from tool, from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

6 TCODE Fixed Value = 16

Table 6-23 Read Register Message

Read Register Message Direction: from tool

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

8 OPCODE Fixed
Refer to APPENDIX B for a list of all
opcodes that the tool can use to request
the target to return specific status or data.

6 TCODE Fixed Value = 17

Page 72 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Message Occurrence: The tool uses this message to control debug resources
within the target and to send data to the target. When the target has processed
the message and is able to accept another Read/Write Access Message from the
tool, it responds with a Target Ready Message.

Message Occurrence: This message is sent in the following circumstances:

• By a target in response to a Read Register Message issued by the tool.
The information packets included in the message depend on the opcode
in the original Read Register Message.

• By a target in response to a Write Register (with RWA opcode, RW field
= Read) Message from the tool. The UDI Message contains a single
data word of the size specified in the Write Register Message.

Table 6-24 Write Register Message

Write Register Message Direction: from tool

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

8 REGVAL Variable

Depending on the opcode selected, the
message may include one or more fixed-
length packets of information downloaded
to the target.

8 OPCODE Fixed

Refer to APPENDIX B for a list of all
opcodes that the tool can use to send
debug control commands and data to the
target.

6 TCODE Fixed Value = 18

Table 6-25 Read/Write Response Message

Read/Write Response Message Direction: from tool, from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

8 REGVAL Variable
Depending on the opcode selected, the
message includes one or more fixed-
length packets of information.

6 TCODE Fixed Value = 19
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 73 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
• By a target in response to each Target Ready Message from the tool
which follows a block read command issued by the tool. The message
contains a single data word of the size specified in the Write Register
Message. The target continues to send messages until all data originally
specified by the Access Count field has been transferred. The tool can
prematurely terminate the data transfer sequence by responding to a
message with a Write Register (with RWA opcode, RW field = Read, SC
= 0) Message instead of with a Target Ready Message.

• By a tool in response to each Target Ready Message issued by the
target, which follows a block write command issued by the tool. The
message contains a single data word of the size specified in the Write
Register Message. The tool continues to send messages until all data
originally specified by the Access Count field has been transferred. The
tool can prematurely terminate the data transfer sequence by sending a
Write Register (with RWA opcode, RW field = Write, SC = 0) Message
instead of with another UDI Message.

6.4.10.1 Read/Write Access of Nexus Recommended Registers (NRRs)—Protocol
Examples

The examples in Figure 6-2, Figure 6-3, Figure 6-4 and Figure 6-5 use the
NRRs concatenated as defined in B.10 Nexus Recommended Registers (NRRs)
Concatenated for Better Transfer Efficiency on Page 144.

Figure 6-2 Tool Requesting Target Debug Status

Figure 6-3 Tool Sending a Debug Command to the Target

 Read Register

Read/Write
Response

The tool can now send any
other message to the target

Target

Tool

Write Register

Target Ready

The tool can now send any
other message to the target

Target

Tool

Page 74 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Figure 6-4 Block Write Command Issued by Tool

Figure 6-5 Block Read Command Issued by Tool

6.4.11 Read/Write Access of Memory-Mapped Locations and Memory Substitution

The following five messages define the protocol which allows a tool to read or
write memory-mapped locations in the target processor’s internal address space
and a target to read or write memory locations in the tool. This type of read/write
access is used in the following circumstances:

• By a tool that implements device-specific development control and
status registers (instead of the NRRs as defined in APPENDIX B).

• By a target that implements memory substitution in which code and/or
data that is normally fetched from target memory is instead fetched from
tool memory. This function is started by a target processor watchpoint hit
and is ended by the tool.

Write Register (includes
block write attributes, RW =

1 and first write data)

Target Ready

The tool continues with this
sequence until the number of

words of data, specified by the
Access Count field, has been

transferred.

Target

Tool
Read/Write

Response (next
write data)

Target Ready

Read/Write
Response (next

write data)

Target Ready
Target

Tool

Write Register (includes
block read attributes,

RW = 0)

The target continues with this
sequence until the number of

words of data, specified by the
Access Count field, has been

transferred.

Target

Tool

Read/Write
Response

(first read data)

Read/Write
Response

(next read data)

Read/Write
Response

(next read data)

Note that the tool should be able to keep up with the transfer rate of the target for block reads. If the tool does not contain this
capability, then block reads should not be requested.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 75 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
• By a target that allocates a fixed portion of its internal memory map to
provide AUX access. Processor reads or writes to this address range
result in Read/Write Messages being issued to access memory that
exists within the tool. As an example, a target’s debug exception handler
program may exist only within the tool and be fetched from the tool each
time a debug exception occurs.

Message Occurrence: This message is output by a tool when it wants to read a
location in the target’s memory-mapped address space and by a target when it
wants to read a location in the tool’s memory space.

Table 6-26 Read Target/Tool Message

Read Target/Tool Message Direction: from tool, from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

1 ADDRESS Variable

Device-specific field specifying the loca-
tion to be read. The size of the address
must match the address space supported
by the target or tool.

3 DSZ Fixed

Data Size
000 = 8-bit
001 = 16-bit
010 = 32-bit
011 = 64-bit
100–101 = Vendor defined
110–111 = Reserved for future data sizes
Note: A target/tool does not need to sup-
port all of the above data sizes.

0 MAP Device-specific

A number to indicate the memory map to
be used in the target/tool. For targets or
tools with only a single memory map, this
packet can be omitted.

6 TCODE Fixed Value = 22

Table 6-27 Write Target/Tool Message

Write Target/Tool Message Direction: from tool, from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

8 DATA Variable Write data value of size DSZ.

1 ADDRESS Variable

Device-specific field specifying the loca-
tion to be written. The size of the address
must match the address space supported
by the target or tool.

Page 76 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Message Occurrence: This message is output by a tool when it wants to write to
a location in the target’s memory-mapped address space, and by a target when it
wants to write to a location in the tool’s memory space.

Message Occurrence: Read Next Target/Tool Data provides the most efficient
method of reading consecutively-addressed data. Both tool and target are
required to increment their internal address pointers according to the size of the
data being transferred.

The tool sends this message when it has processed a prior Target Response
Message and the tool’s receive buffer can accommodate more read data. The
target sends this message when it has processed a prior Tool Response Message
and the target’s receive buffer can accommodate more read data.

There is no limit to the amount of data that can be transferred using consecutive
Read Next Target/Tool Data commands.

3 DSZ Fixed

Data Size
000 = 8-bit
001 = 16-bit
010 = 32-bit
011 = 64-bit
100–101 = Vendor defined
110–111 = Reserved for future data sizes
Note: A target/tool does not need to sup-
port all of the above data sizes.

0 MAP Device-specific

A number to indicate the memory map to
be used in the target/tool. For targets or
tools with only a single memory map, this
packet can be omitted.

6 TCODE Fixed Value = 23

Table 6-28 Read Next Target/Tool Data Message

Read Next Target/Tool Data
Message

Direction: from tool, from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

6 TCODE Fixed Value = 24

Table 6-27 Write Target/Tool Message (Continued)

Write Target/Tool Message Direction: from tool, from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 77 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Message Occurrence: This message is initiated by the tool when it wants to write
to the next consecutively-addressed location in the target, and by the target when
it wants to write to the next consecutively-addressed location in the tool. Both tool
and target are required to increment their internal address pointers according to
the size of the data being transferred.

The tool sends this message when it has processed a prior Target Response
Message and has more data available to send. The target sends this message
when it has processed a prior Tool Response Message and has more data
available to send.

There is no limit to the amount of data that can be transferred using consecutive
Write Next Target/Tool Data commands.

Table 6-29 Write Next Target/Tool Data Message

Write Next Target/Tool Data
Message

Direction: from tool, from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

8 DATA Variable
Write data value of size determined by the
DSZ packet in the most recent Write Tar-
get or Write Tool Message.

6 TCODE Fixed Value = 25

Table 6-30 Target Response Message

Target Response Message Direction: from target

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

8 DATA Variable

Read data, the size of which is determined by the DSZ
packet in the most recent Read Target Message.

This field does not exist if the previous message issued
by the tool was a Write Target Message or if the target is
unable to complete the previously requested read
operation.

2 ST Fixed

Status
00 = The previously requested read or write operation is
able to be processed normally.
01 = The previously requested read or write operation
cannot be completed.
1x = Reserved for future use.

6 TCODE Fixed Value = 26

Page 78 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Message Occurrence: This message is output by the target but the contents
differ depending on whether the most recent read/write command issued by the
tool was contained in a Read Target Message or a Write Target Message.

For read commands, the target sends a Target Response Message (containing
data) as soon as it has retrieved the data requested by a previous Read Target
Message or Read Next Target Data Message from the tool.

For write commands, the target sends a Target Response Message (with no data)
as soon as the target’s receive buffer is able to accept more data from the tool.

If the target is unable to process the function requested by the previous Read
Target Message, Write Target Message, Read Next Target Data Message or Write
Next Target Data Message, it sends a Target Response Message with the ST field
= 01.

Message Occurrence: This message is output by the tool but the contents differ
depending on whether the most recent read/write command issued by the target
was contained in a Read Tool Message or a Write Tool Message.

For read commands, the tool sends a Target Response Message (containing
data) as soon as it has retrieved the data requested by a previous Read Tool
Message or Read Next Tool Data Message from the target.

Table 6-31 Tool Response Message

Tool Response Message Direction: from tool

Minimum
Packet
Size (bits)

Packet Name Packet Type Description

8 DATA Variable

Read data, the size of which is determined
by the DSZ packet in the most recent
Read Tool Message.

This field does not exist if the previous
message issued by the target was a Write
Tool Message or if the tool is unable to
complete the previously requested read
operation.

2 ST Fixed

Status
00 = The previously requested read or
write operation is able to be processed
normally.
01 = The previously requested read or
write operation cannot be completed.
10 = Memory substitution transfer
complete.
11 = Reserved for future use.

6 TCODE Fixed Value = 26
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 79 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
For write commands, the tool sends a Tool Response Message (with no data) as
soon as the tool’s receive buffer is able to accept more data from the target.

If the tool is unable to process the function requested by the previous Read Tool
Message, Write Tool Message, Read Next Tool Data Message or Write Next Tool
Data Message, it sends a Tool Response Message with the ST field = 01.

To support memory substitution, in which code that is normally fetched from target
memory is instead fetched from tool memory, the tool must be able to inform the
target when to stop requesting data, i.e. the tool determines when the substitution
process should end. Memory substitution will typically be initiated by a target
watchpoint hit and will be terminated by the tool. The tool informs the target not to
request more data by setting the ST field = 10 in the response message which
contains the final read data.

Read/Write Access of Memory-Mapped Registers—Protocol Examples

The following read/write protocol examples show how the AUX is used by a tool to
access target memory space, and by a target to access tool memory space.

Tool Accessing Target: Figure 6-6 through Figure 6-11 show the sequences of
messages sent between a tool and a target when the tool wants to read or write
memory-mapped address space in the target. To achieve maximum transfer
performance, Read Next Target Data or Write Next Target Data Messages should
be used wherever possible since these messages have the shortest length.

Figure 6-6 Reading Consecutively-Addressed Target Locations

The protocol permits only one outstanding request from the tool. In the above
example, a Read Next Target Data command can be issued only after a response
is received to the previous tool-initiated command.

Read Target

Target Response
(includes data)

Read Next
Target Data

Target

Tool

Target

Tool Read Next
Target Data

Target Response
(includes data)

Target Response
(includes data)

Page 80 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Figure 6-7 Reading Randomly-Addressed Target Locations

Figure 6-8 Writing Consecutively-Addressed Target Locations

Read Target

Target Response
(includes data)

Target

Tool

Target

Tool

Target Response
(includes data)

Target Response
(includes data)

Read Target

Read Target

Write Target
(includes data)

Target Response

Write Next
Target Data

(includes data)

Target

Tool

Target

Tool

Target Response

Target Response

Write Next
Target Data

(includes data)
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 81 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

Figure 6-9 Writing Randomly-Addressed Target Locations

Figure 6-10 Intermixed Reading/Writing Randomly-Addressed Target Locations

In Figure 6-10, the Write Target command can be issued only after a response is
received to the previous Read Target command.

Write Target
(includes data)

Target ResponseTarget

Tool

Target

Tool

Target Response

Target Response

Write Target
(includes data)

Write Target
(includes data)

Target

Tool

Target

Tool

Target Response

Target Response

Write Target
(includes data)

Write Target
(includes data)

Read Target

Target Response
(includes data)

Read Target

Target Response
(includes data)
Page 82 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Figure 6-11 Trace Messages Intermixed with Read Target Locations

None of the earlier protocol examples showed trace messages being sent by the
target. Trace messages are not acknowledged by the tool and these messages
can be output any time the Auxiliary Output Port is not transmitting other
messages. This example shows how the read/write protocol and trace messages
can co-exist. This example also demonstrates that the AUX is full-duplex, that is,
messages can occur in both directions simultaneously.

One point to note about the co-existence of read/write protocol and trace
message output is that protocol responses from the target should not pass
through the same output queue as trace messages. As soon as a protocol
response has been prepared by the target, it must be transmitted at the first
opportunity, that is, immediately following any trace message currently being
transmitted, regardless of the number of other trace messages queued for output.

Termination: When large blocks of data are being read, the tool requests the next
data word (when its buffer is able to accept more data) by issuing a Read Next
Target Data Message.

A similar process occurs for block writes. The tool send the next data word after it
receives acknowledgment from the target that the target is ready to accept more
data.

The tool is always in control of the transfer process. The target has no prior
knowledge of the amount of data to be transferred; the tool just stops the process
by not sending any more Read Next Target Data or Write Next Target Data
Messages. The target simply increments an address counter each time it receives
a Read Next Target Data or Write Next Target Data Message. This address
counter is automatically changed to a new value whenever another Read Target or
Write Target Message is received.

Read Target

Target Response
(includes data)

Read Next
Target Data

Target

Tool

Target

Tool Read Next
Target Data

Target Response
(includes data)

Target Response
(includes data)

Trace
Message

Trace
Message

Trace
Message

Trace
Message

Trace
Message
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 83 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
During the transfer of a large block of data using Read Next Target Data or Write
Next Target Data Message, the target may determine that it is unable to continue
supplying read data or accepting write data. This could happen if the incrementing
address points to non-existent memory or to a protected memory area. Upon
detecting such a condition, the target issues a Target Response Message with the
status (ST) field = 01 (meaning that the previously requested read or write
operation cannot be completed). The tool stops sending any more Read Next
Target Data or Write Next Target Data Messages and may then perform some
recovery or error notification tasks.

Target Accessing Tool: A target uses the same protocol described in Section
6.4.11 Read/Write Access of Memory-Mapped Locations and Memory
Substitution on Page 75 to access memory space within a tool, except that all
messages occur in the reverse direction. To understand the protocol, simply swap
the Tool and Target names on all the protocol diagrams in Figure 6-6 through
Figure 6-10.

Read Tool and Write Tool Messages include an optional Map packet for use in
situations where multiple memory maps are supported by the tool. These
alternative memory maps may be used to select different address spaces within
the tool such as:

• Target boot image

• Debug exception handler

• Read/write data space

To support memory substitution, in which code that is normally fetched from target
memory is instead fetched from tool memory, the tool must be able to inform the
target when to stop requesting data, i.e. the tool determines when the substitution
process should end. Memory substitution will typically be initiated by a target
watchpoint hit and will be terminated by the tool. The tool informs the target not to
request more data by setting the ST field = 10 in the response message that
contains the final read data.

Read/write access can occur in both directions simultaneously. For example, a
tool may initiate read/write access to the target without affecting any target-to-tool
transfer of data currently in progress. This means that both the tool and the target
must have sufficient receive buffer space to support two messages, a request
from the other device and the response to a request.

Page 84 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Figure 6-12 Simultaneous R/W Accesses by Tool and Target

6.4.12 Memory Substitution

Read/Write Access Messages are used to emulate a bus where instructions and
data may be accessed via the AUX.

Table 6-32 Read/Write Access Messages

Public Message Examples Events That Cause Message Generation

Read Tool The target sends this message to read any memory location in the tool.

Write Tool The target sends this message to write to any memory location in the tool.

Read Next Tool Data The target sends this message to the tool as part of a block read function.

Write Next Tool Data The target sends this message to the tool as part of a block write function.

Tool Response

1. The tool send this message, containing data, in response to a Read Tool
command or a Read Next Tool Data command. The message indicates to the
target that the tool can accept another Memory Substitution Message. The
tool can terminate the memory substitution block read access by including an
ST = 10.
2. The tool sends this message in response to a Write Tool command or a
Write Next Tool Data command. The message indicates to the target that the
tool can accept more data.

Read Target

Target Response
(includes data)

Read Next
Tool Data

Target

Tool

Target

Tool

Target Response
Trace

Message

Read Tool

Tool Response
(includes data)

Trace
Message

Write Target
(includes data)

Tool Response
(includes data)

Trace
Message

Trace
Message

Read Next
Tool Data

Tool Response
(includes data)

Trace
Message

Trace
Message
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 85 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
SECTION 7
Auxiliary Port Signals

Embedded processors complying to class 2, 3 or 4 shall provide the appropriate
pin functions as shown in Table 7-1. Required and optional pin functions are
designated by “R” and “O” respectively. Pins not allowed for an interface are
shaded.

Note that the MCKO functions may be provided via a system clockout pin on the
embedded processor.

Table 7-1 Auxiliary Pin Functions Required per Interface Type

Pin Type

D
ir

ec
ti

o
n

F
u

ll-
d

u
p

le
x

(A
u

xi
lia

ry
 In

/O
u

t)

 F
u

ll-
d

u
p

le
x

w
/IE

E
E

 1
14

9.
1

H
al

f-
d

u
p

le
x

w
/IE

E
E

 1
14

9.
1

MCKI In R

MDI In R

MSEI In R

MCKO Out R R

MDO Out R R

MSEO Out R R

EVTI In R R O

RSTI In R

EVTO Out O O O

Page 86 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
7.1 Pin Functions

The auxiliary pin functions are described in Table 7-2.

Example Ports: For a full-duplex AUX with IEEE 1149.1 pins, a minimum of 3
auxiliary pins are required for compliance, i.e. MDO, MSEO and EVTI, assuming a
system clockout pin can be used for MCKO. The performance classification,
however, would also be minimal, and may only meet the transfer bandwidth
requirements for low-end applications or for lower compliance classifications. The
Nexus standard allows for additional transfer bandwidth with a scalable pin
interface or transfer rate, as illustrated by the examples in Table 7-3.

Table 7-2 Auxiliary Pins

Auxiliary
Pins

Description of Auxiliary Pins

MCKO

Message Clockout (MCKO) is a free-running output clock to development tools for timing
of MDO and MSEO pin functions. MCKO can be independent of embedded processor
system clock (CLOCKOUT). An embedded processor CLOCKOUT pin may be used as a
functional equivalent for MCKO.

MDO[M:0]

Message Data Out (MDO[M:0]) are output pin(s) used for OTM, BTM, DTM, reads, mem-
ory substitution accesses, etc. External latching of MDO shall occur on rising edge of
MCKO (or system clock). Depending upon bandwidth requirements, 1, 2, 4, 8 or more
pins may be implemented.

MSEO[1:0]

Message Start/End Out (MSEO [1:0]) are output pins that indicate when a message on
the MDO pins has started, when a variable-length packet has ended and when the mes-
sage has ended. Only 1 MSEO pin is required but up to 2 pins may be implemented for
more efficient transfers. External latching of MSEO shall occur on the rising edge of
MCKO (or system clock).

MCKI
Message Clockin (MCKI) is a free-running input clock from development tools for timing
of MDI and MSEI pin functions. MCKI can be independent of the embedded processor
system clock.

MDI[N:0]

Message Data In (MDI[N:0]) are input pin(s) used for downloading configuration informa-
tion, writes to user resources, etc. Internal latching of MDI shall occur on the rising edge
of MCKI. Depending upon bandwidth requirements, 1, 2, 4, 8 or more pins may be
implemented.

MSEI[1:0]

Message Start/End In (MSEI [1:0]) are input pins that indicate when a message on the
MDI pins has started, when a variable-length packet has ended and when the message
has ended. Only 1 MSEI pin is required but up to 2 pins may be implemented for more
efficient transfers. Internal latching of MSEI shall occur on the rising edge of MCKI.

EVTI
Event In (EVTI) is an input where, when a high-to-low transition occurs, a processor is
halted (breakpoint) or Program and Data Synchronization Messages are transmitted from
the embedded processor.

RSTI Reset In (RSTI) is for resetting the Nexus port resources.

EVTO

Event Out (EVTO) is an optional output pin to development tools comprising exact timing
for a single breakpoint status indication. Upon a breakpoint occurrence of the pro-
grammed breakpoint source, EVTO is asserted for a minimum of 1 clock period of
MCKO.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 87 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

Multi-Processor: The Nexus standard allows for embedded processor
implementations that comprise multiple clients to utilize a single AUX, depending
upon the transfer bandwidth requirement for the application. The AUX may be
designated for a single client or shared by multiple clients on the embedded
device during runtime. Messages transmitted via the AUX shall contain
information defined by the Nexus standard indicating which client generated the
message.

Single Master for Tool Connection: The Nexus standard does not support
multiple tools connected directly to the Nexus input port. That is, arbitration for
multiple external tools is not supported by the port. To connect multiple tools, the
tools should either manage the arbitration, or a single low-level tool should be
connected with multiple high-level tools interconnected and arbitrated by the
single low-level tool.

Reset Configuration: Embedded processors complying to class 2, 3 or 4 shall
receive reset configuration information via EVTI, according to the Nexus standard,
to completely enable/disable message transmission on the auxiliary output port. If
message transmission is enabled, output messages shall be transmitted normally.
If message transmission is disabled, auxiliary output pins shall be 3-stated and no
messages shall be transmitted. One exception allowed is the AUX clockout pin. If
the system clock is used as the MCKO function, then it is not required to 3-state
the system clock via EVTI reset configuration.

Table 7-3 Example of Auxiliary Output Ports

Number of Pins for each Example

Comments
MDO MSEO MCKO EVTI

Total
Pins

1 1

0

1

3 Base implementation.

2 1 4 2X faster than base implementation.

4 1 6 4X faster than base implementation.

4 2 7 1 clock faster per transfer .

8 2 11 > 8X faster than base implementation.

1 1

1

4

Independent clock allows for faster or slower
transfer rate than with system clock reference.

2 1 5

4 1 7

4 2 8

8 2 12

Page 88 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Embedded processors complying to any compliance class and implementing
LSIO port replacement shall receive reset configuration information via EVTI,
according to the Nexus standard, to enable/disable message transmission on the
auxiliary output port. If message transmission is enabled, output messages will be
transmitted normally with support for Port Replacement Messages according to
the Nexus standard. If message transmission is disabled, auxiliary output pins
shall provide device-specific LSIO capability.

Reset configuration information must be valid on EVTI for at least 4 system clocks
of the embedded processor prior to negation of RSTI or TRST (IEEE 1149.1 reset
pin) or during the IEEE 1149.1 Test Logic Reset state.

The EVTI pin shall comprise a pull-up resistor with the following reset
configuration states.

Security: Device-specific enable/disable mechanisms internal to the embedded
processor may be optionally provided for secure visibility of user resources on the
embedded processor.

Port Replacement Support for MCUs: Port replacement support for MCUs
containing LSIO is an option provided in the Nexus standard for LSIO that can
tolerate the inherent latency of the port replacement mechanism. Up to16 bits of
LSIO port replacement are allowed with the standard Port Replacement
Messages transmitted via the AUX, as shown in Figure 7-1. The standard
messages transmitted between the development tool and embedded processor
provide the necessary information for the development tool to replace the LSIO
port (with additional delay).

Figure 7-1 Port Replacement for MCUs containing LSIO pins

Reset
State

Description

0 Message transmission enabled.

1 Message transmission disabled (default).

Embedded Processor

LSIO/Auxiliary

PCB

LSIO

To LSIO
Devices

Development
Tool

Nexus

Port
Cntl
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 89 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Most messages transmitted in a typical application will comprise development
information. Upon occurrence of an LSIO state change, however, a Port
Replacement Message will be transmitted. Port replacement messages will be
transmitted either by the embedded processor to the tool (messages containing
information for low-speed output pins) or by the tool to the embedded processor
(messages containing information for low-speed input pins). Port Replacement
Messages from the embedded processor will contain two essential packets: one
packet indicating the direction of each LSIO and another indicating the state of all
LSIO. Port Replacement Messages from the tool will contain one essential packet
indicating the state of all LSIO. This information will be used by the embedded
processor and tool to maintain the correct state and direction for all LSIO.

Note that if the development tool is not connected to perform the port replacement
function, a special connector should be connected so that the LSIO signals are
connected to the LSIO devices. For production boards that do not require the port
replacement function, no connector is required if these signals are connected
directly by board traces.

The development tool shall implement the following rules to assure proper port
replacement:

• Prior to receiving the first Port Replacement Message after the
embedded processor port has been reset, all replacement pins on the
tool should default to input.

• Prior to receiving the first Port Replacement Message after the
embedded processor port has been reset, the tool should not generate
Port Replacement Messages to the embedded processor.

• When the processor writes to the LSIO port registers, a Port
Replacement Message will be transmitted to the tool. The tool then
drives the pins configured as outputs to their programmed states.

• Whenever any pin configured as an input changes, the tool transmits a
Port Replacement Message to the embedded processor for update of
the state internally (enabled interrupt may be generated).

Port Replacement Support for MPUs: Port replacement support for MPUs is an
option provided in the Nexus standard. Since MPUs do not contain LSIO pins, a
similar and yet slightly different technique is provided for simultaneously using
both a primary pin function, such as a HSIO external bus port, and a secondary
pin function, such as Nexus development pins. Due to the high-speed nature of
the HSIO external bus port, only the data out portion of the Nexus port can be
simultaneously shared with the primary function. Since the Nexus data out signals
comprise the most stringent bandwidth requirements, however, this solution still
provides a tremendous advantage in reducing the total number of actual
development support pins. Refer to Figure 7-2 for an illustration.

Page 90 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Figure 7-2 Port Replacement for MPUs

Most messages transmitted in a typical application will comprise information
related to the primary function of the HSIO external port. During HSIO information
transfer (e.g. external bus cycle), the Nexus control signals are negated and the
development tool ignores the HSIO information. Upon the occurrence of a
condition that generates Nexus output information (e.g. Data Read Message and
Direct Branch Message), a corresponding Nexus message is transmitted out the
port and captured by the tool. When a Nexus message is transmitted, the HSIO
control signals (e.g. bus control pins) should remain negated.

Embedded
Processor

Nexus Control

PCB

HSIO

To HSIO
Devices

Development
Tool

Nexus (Data Out)
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 91 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
SECTION 8
Auxiliary Port Message Protocol

The protocol for the embedded processor receiving and transmitting messages
via the auxiliary pins shall be accomplished with the MSEI and MSEO pin
functions respectively. A minimum of 1 and a maximum of 2 MSEI pins shall
provide the protocol for the embedded processor receiving messages, and a
minimum of 1 and a maximum of 2 MSEO pins shall provide the protocol for the
embedded processor transmitting messages.

The MSEI/MSEO protocol comprises the following:
• Two “1”s followed by one “0” indicates start of message
• “0” followed by two or more “1”s indicates end of message
• “0” followed by “1” followed by a “0” indicates end of variable length

packet
• “0”s at all other clocks during transmission of a message
• “1”s at all clocks during no message transmission (idle)

The same sequence is followed when using 1 or 2 MSEI/MSEO pins, but when
using 2 MSEI/MSEO pins, it is possible for two sequences to occur on the same
clock.

MSEI/MSEO is used to signal the end of variable-length packets, and not device-
specific or fixed-length packets. MSEI/MSEO are sampled on the rising edge of
MCKI/MCKO.

Figure 8-1 illustrates the state diagram for 1-pin MSEI/MSEO transfers. When
using only 1 MSEI/MSEO pin, the “End Message” state does not contain valid
data on the MDI/MDO pins. Also, it is not possible to have two consecutive “End
Packet” Messages. This implies that the minimum packet size for a variable-length
packet is two times the number of MDI/MDO pins. This ensures that a false end of
message state is not entered by transmitting two consecutive 1’s on the MSEI/
MSEO pin before the actual end of message.

Figure 8-2 illustrates the use of 2-pin MSEO transfers. The 2-pin MSEI/MSEO
option is more robust than the 1-pin option. Termination of the current message
may immediately be followed by the start of the next message on the consecutive
clocks. An extra clock to end the message is not necessary as with the 1-pin
MSEI/MSEO option. The 2-pin option also allows for consecutive “End Packet”
states. This can be an advantage when small, variable-sized packets are
transferred.

Page 92 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Figure 8-1 1-pin MSEI/MSEO Transfers

Idle

Start
Message

Normal
Transfer

End
Message

MSE=1

MSE=1

MSE=0

MSE=0

MSE=1

MSE=1
MSE=0

MSE=0

MSE=0MSE=1

MDI/O: Invalid

MDI/O: Invalid

Not Allowed

End
Packet

MSE represents MSEI or MSEO
MDI/O represents MDI or MDO
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 93 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Figure 8-2 2-Pin MSEI/MSEO Pin Transfers

MSE=11

MSE=00

MSE=00

MSE=01

MSE=01

MSE=00

MSE=00

MSE=00MSE=11

MSE=11

MSE=01

MSE=11

MSE=11

Idle

Start
Message

Normal
Transfer

End
Message

MDI/O: Invalid

End
Packet

MSE represents MSEI or MSEO
MDI/O represents MDI or MDO

MSE=10

Notes:

1—The variable port size for MDO and MSE allows for increased transfer rates per clock.

2—The 1-pin MSE option should be selected when pin count is the most critical factor in the
system and performance is not a priority.

3—The 2-pin MSE option should be chosen when performance is the top priority and pin count
is secondary.

Page 94 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Note that the “End Message” state may also indicate the end of a variable-length
packet as well as the end of the message when using the 2-pin option.

Figure 8-3 illustrates the transfer protocol for the Indirect Branch Message. For
purposes of illustration only 1 MDO pin and 1 MSEO pin are shown. MDO and
MSEO are sampled on the rising edge of MCKO.

Figure 8-3 Timing Diagram for Indirect Branch

Table 8-1 and Table 8-2 illustrate examples of 1-pin and 2-pin MSEO options for
the same Indirect Branch Message.

Note that T0 and S0 are the least significant bits where:
Tx = TCODE number
Sx = Client which is source of message
Ix = Number of instruction units
Ax = Unique portion of the Address

TCODE Branch
Target

MDO

Number of Retired
Instructions

Indirect Branch

(Output)

(Output)

Client
ID

(variable length) (variable length)

MSEO

MCKO (Output)
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 95 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

Table 8-1 Indirect Branch Using the 1-Pin MSEO Option

Clock MDO[3:0] MSEO[0]

3 2 1 0 0 Idle

0 X X X X 1
Idle (or end of
last message)

1 T3 T2 T1 T0 0 Start Message

2 S1 S0 T5 T4 0 Normal Transfer

3 I3 I2 I1 I0 0 Normal Transfer

4 I7 I6 I5 I4 1 End Packet

5 A3 A2 A1 A0 0 Normal Transfer

6 A7 A6 A5 A4 1 End Packet

7 X X X X 1 End Message

8 T3 T2 T1 T0 0 Start Message

Table 8-2 Indirect Branch Using the 2-Pin MSEO Option

Clock MDO[3:0] MSEO[1:0]

3 2 1 0 1 0

0 X X X X 1 1
Idle (or end of
last message)

1 T3 T2 T1 T0 0 0 Start Message

2 S1 S0 T5 T4 0 0 Normal Transfer

3 I3 I2 I1 I0 0 0 Normal Transfer

4 I7 I6 I5 I4 0 1 End Packet

5 A3 A2 A1 A0 0 0 Normal Transfer

6 A7 A6 A5 A4 1 1
End Packet/

Message

7 T3 T2 T1 T0 0 0 Start Message

Page 96 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
8.1 Rules for Messages

Embedded processors complying to classes 2, 3 and 4 shall provide messages
via the AUX in a consistent manner as described below:

• A variable-sized packet within a message must end on a port boundary.

• A variable-sized packet may start within a port boundary only when
following a fixed-length packet. (If two variable-sized packets end and
start on the same clock, it is impossible to know which bit is from the last
packet and which bit is from the next packet.)

• Whenever a variable-length packet is sized such that it does not end on
a port boundary, it is necessary to extend and zero fill the remaining bits
after the highest-order bit so that it can end on a port boundary.

For example, if the MDO port is 4 bits wide, and the unique portion of an
indirect address TCODE is 5 bits, then the remaining 3 bits of MDO must
be packed with 0s.

• Processors that do not have A0 and/or A1 address bits must be
consistent in their representation of address values within all messages.
That is, bits A0/A1 must always be included or excluded from all Public
Messages.

• A data packet within a data message must be 8, 16, 32, or 64 bits in
length.

• To improve message compression, multiple device-specific or fixed-
length packets may start and end on a single clock.

• Each type of device-specific or fixed-length packet must be the same
within all messages. For example, if a vendor implements 3 bits to
identify the source processor, then all Public Messages with a source
processor packet must be 3 bits in length.

• When a device-specific or fixed-length packet follows a variable sized
packet, the device-specific or fixed-length packet must start on the port
boundary.

• MSEI/MSEO protocol must be followed for both input and output
messages.

Clock MDO[3:0] MSEO[1:0]

3 2 1 0 1 0

0 A3 A2 A1 A0 0 0 Normal Transfer

1 0 0 0 A4 0 1 End Packet
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 97 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
SECTION 9
IEEE 1149.1 Message Protocol

Embedded processors complying to class 1, 2, 3 or 4 may optionally implement
messages via the IEEE 1149.1 interface according to this standard.

Two basic categories of messages may be implemented: solicited and unsolicited.
Solicited messages are initiated and transmitted from an external controller to the
embedded processor, e.g. to read an NRR. Unsolicited messages are generated
by the embedded processor and are normally transmitted at random times.
Unsolicited messages are most commonly transmitted via the AUX, however, a
mechanism is described in 9.1 that allows for the retrieval of unsolicited messages
via an IEEE 1149.1 interface.

9.1 IEEE 1149.1 Compatibility

An IEEE 1149.1 port used for this standard shall implement all the mandatory
features of a standard IEEE 1149.1 port, including the “BYPASS” and “IDCODE”
instructions. A 16-state IEEE 1149.1 TAP state machine will be used per the
IEEE-1149.1 standard as illustrated in Figure 9-1.

The 5 required IEEE 1149.1 pins will be as follows:

• Test Data Input (TDI) provides for serial movement of data into the IEEE
1149.1 port.

• Test Data Output (TDO) provides for serial movement of data out of the
IEEE 1149.1 port. All target accesses initiated via the IEEE 1149.1 port
should be transmitted by the target via TDO (not via auxiliary output port).

• Test Clock Input (TCK) provides the clock for the IEEE 1149.1 port.

• Test Mode Select Input (TMS) provides access to the IEEE 1149.1 TAP
state machine.

• Optionally, the Test Reset Input (TRST) provides for asynchronous
initialization of the IEEE 1149.1 controller.

• Optionally, the Ready Output (RDY) is used to accelerate data accesses
through the IEEE 1149.1 port.

Page 98 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

Figure 9-1 16-State IEEE 1149.1 Finite State Machine

TEST LOGIC

RESET

RUN-TEST/IDLE SELECT-DR_SCAN

CAPTURE-DR

SHIFT-DR

EXIT1-DR

PAUSE-DR

EXIT2-DR

UPDATE-DR

SELECT-IR_SCAN

SHIFT-IR

EXIT1-IR

PAUSE-IR

EXIT2-IR

0 0

0

0

1

1

1

0 0

0

0

1

111

1

0

0

1

1

11

0

0

00

0

1 1

11

0

(Nexus Resource
To shifter)

CAPTURE-IR
(JTAG Cmd Reg

To shifter)

(Shifter to Nexus
Resource)

UPDATE-IR
(Shifter to JTAG

Cmd Reg)
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 99 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Assertion of a power-on-reset signal on the embedded processor or the TRST pin
causes the IEEE 1149.1 controller to default to being loaded with the IDCODE
instruction upon exit of TEST-LOGIC-RESET controller state. This allows
immediate entry to the SELECT-DR_SCAN path to retrieve the contents of the
device ID. The LSB of the IDCODE must be a logic 1 so that examination of the
first bit of data shifted out of a component during a data scan sequence
immediately following exit from the TEST-LOGIC-RESET controller state will show
whether a Device Identification (DID) Register is included in the design. The
Nexus API may then retrieve the characteristics of the device to configure the
software interface.

The system logic shall continue its normal operation undisturbed when the IEEE
1149.1 controller is decoding the IDCODE instruction. All NRRs must be
accessible through the IEEE 1149.1 port independent of the state of the target
processor.

Refer to the IEEE 1149.1 specification for further details on electrical and pin
protocol compliance requirements. Additional information on the IEEE 1149.1 pin
interface to connectors may be found in APPENDIX A. The IEEE 1149.1 NRRs
may be found in APPENDIX B.

9.1.1 Optional Ready (RDY) Output Pin

To increase the transfer rate of the IEEE 1149.1 port an additional pin may be
implemented to signal when data is ready to be transferred to and from NRRs.
This may eliminate the need to poll NRRs for status information for
synchronization purposes. This capability becomes especially important when
performing read/write access transfers to different speed target memories.

Without the use of a RDY pin, each time a read/write access transfer is made to a
target memory location, it will be necessary to check if the memory transfer has
completed. The function of the RDY pin will be to assert (asynchronously) to a
logic low for a period of 4 target system clocks then de-assert whenever the read/
write access transfer has completed.

The function of the RDY pin may also be used for unsolicited Public Messaging as
described in 9.6 Reading Unsolicited Messages on Page 105.

Table 9-1 illustrates the IEEE 1149.1 sequence required to read the Device
IDCODE immediately after assertion of the TRST pin, or after 5 TCK clocks with
the TMS pin at a logic 1.

Page 100 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

9.2 Selecting the IEEE 1149.1 Port

Access to NRRs is enabled when the IEEE 1149.1 controller is decoding a device-
specific “NEXUS-ENABLE” instruction entered via the SELECT-IR_SCAN path.
When the IEEE 1149.1 controller passes through the UPDATE-IR state and
decodes the NEXUS-ENABLE instruction, the Nexus controller will be reset to the
NRR select state. The Nexus controller will have three states: idle, register select
state and register data access state. Table 9-2 illustrates the IEEE 1149.1
sequence to select the Nexus controller.

Table 9-1 IEEE 1149.1 Sequence to Read Device IDCODE After TRST Assertion

Step TMS
IEEE 1149.1

State
Nexus State Description

1 1 TEST-LOGIC-
RESET

IDLE
IEEE 1149.1 controller in reset state.

2 0 RUN-TEST-IDLE IDLE IDCODE loaded into IEEE 1149.1 IR.

3 1 SELECT-
DR_SCAN

IDLE

4 0 CAPTURE-DR IDLE Load Device ID into TDI/TDO shifter.

5 0 SHIFT-DR IDLE TDO active and IEEE 1149.1 shifter presents a
1 in LSB.

N–1 TCKs IDLE

6 1 EXIT1-DR IDLE Last bit of Device ID shifted out to TDO.

7 1 UPDATE-DR IDLE

8 0 RUN-TEST-IDLE IDLE IEEE 1149.1 controller ready for Instruction.

Table 9-2 IEEE 1149.1 Sequence to Enable Nexus Block for Communication

Step TMS IEEE 1149.1 State Nexus State Description

1 0 RUN-TEST-IDLE IDLE IEEE 1149.1 controller in reset state.

2 1 SELECT-DR_SCAN IDLE

3 1 SELECT-IR-SCAN IDLE

4 0 CAPTURE-IR IDLE Load last register select command into
TDI/TDO shifter.

5 0 SHIFT-IR IDLE TDO becomes active and the IEEE 1149.1
shifter is ready. Shift N-1 bits of size of
vendor-defined Nexus-Enable Instruction.N–1 TCKs

6 1 EXIT1-IR IDLE Last bit of Device ID shifted out to TDO.

7 1 UPDATE-IR REG_SELECT IEEE 1149.1 controller decoder. Nexus
controller is forced to register select state.

8 0 RUN-TEST-IDLE REG_SELECT Nexus controller enabled and ready to
receive commands.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 101 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
9.3 Selecting an IEEE 1149.1 Register

When the IEEE 1149.1 “NEXUS-ENABLE” instruction is being decoded by the
IEEE 1149.1 controller, the IEEE 1149.1 port allows tool/target communications
via up to 128 IEEE 1149.1 NRRs. Each NRR is referenced by a unique register
address index in the range 0 through 127.

All communication with the Nexus controller is performed via the SELECT-
DR_SCAN path. The Nexus controller will default to a register select state when
enabled. Accessing an NRR requires two passes through the SELECT-DR_SCAN
path, one pass to select the NRR and the second pass to read/write the NRR data.

The first pass through the SELECT-DR_SCAN path is used to enter an 8-bit Nexus
command consisting of a read/write control bit in the LSB followed by a 7-bit NRR
address, as illustrated in Figure 9-2.

Figure 9-2 IEEE 1149.1 Controller Command Input

The second pass through the SELECT-DR_SCAN path is used to read or write
the NRR data by shifting in the data LSB first during the SHIFT-DR state. When
reading an NRR, the register value will be loaded into the IEEE 1149.1 shifter
during the CAPTURE-DR state. When writing to an NRR, the value will be loaded
by the IEEE 1149.1 shifter to the NRR during the UPDATE-DR state. When
reading data from an NRR, there is no requirement to shift out the entire NRR
contents, and shifting may be terminated once the required number of bits have
been acquired. Figure 9-3 illustrates the relationship between an IEEE 1149.1
TAP state machine and a Nexus controller state machine.

Figure 9-3 IEEE 1149.1 TAP State Machine relationship to
Nexus Controller State Machine

7 bit NRR Address R/W
LSBMSB

NRR Register Select

NRR Data Access

Update-DR=1 Update-DR=1Nexus-Enable and

Nexus-Enable=0

NRR IDLE

Nexus-Enable=1Test-Logic-Reset=1

Update-IR=1

Page 102 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Table 9-3 illustrates an IEEE 1149.1 sequence that will write a 32-bit value
to an NRR.

9.4 Read/Write Access via the IEEE 1149.1 Port

The read/write access registers, as described in APPENDIX B, provide a means
for transferring single or multiple data values through the auxiliary or IEEE 1149.1
port. When using the IEEE 1149.1 port, the RWCS and RWA Registers are
initialized for the data transfer. Once initialization is complete, synchronization with
the target must be handled by an external target controller. There will be two
methods available for synchronization of data transfers.

Table 9-3 IEEE 1149.1 Sequence to Write to an NRR

Step TMS
IEEE 1149.1

State
Nexus State Description

1 0 RUN-TEST-IDLE NRR REG_SELECT IEEE 1149.1 controller in idle state.

2 1 SELECT-
DR_SCAN

NRR REG_SELECT

3 0 CAPTURE-DR NRR REG_SELECT IEEE 1149.1 shifter may be loaded with last
value of register being decoded by Nexus
controller or Nexus status information.

4 0 SHIFT-DR NRR REG_SELECT TDO becomes active and NRR address and
write bit is shifted in.

7 TCKs NRR REG_SELECT

5 1 EXIT1-DR NRR REG_SELECT Last bit of NRR shifted into TDI.

6 1 UPDATE-DR NRR REG_SELECT Nexus controller decodes and selects
register.

7 1 SELECT-
DR_SCAN

NRR DATA ACCESS Second pass through SELECT-DR_SCAN.

8 0 CAPTURE-DR NRR DATA ACCESS IEEE 1149.1 shifter may be loaded with last
value of register being decoded by Nexus
controller or Nexus status information.

9 0 SHIFT-DR NRR DATA ACCESS TDO becomes active and outputs current
value of register while new value is shifted in
through TDI.N–1 TCKs NRR DATA ACCESS

10 1 EXIT1-DR NRR DATA ACCESS Last bit of NRR shifted out to TDO.

11 1 UPDATE-DR NRR DATA ACCESS Nexus controller writes value to register.

12 0 RUN-TEST/IDLE NRR REG_SELECT IEEE 1149.1 controller returns to idle state,
or may return to SELECT-DR_SCAN state
for new NRR register select.

Total number of TCK clocks = 49 in this
example.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 103 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
The first method uses an optional pin called Ready for Transmission (RDY). The
RDY signal asserts (asynchronously) to indicate that the Nexus module is read for
read access, or the write access is complete. An external development tool may
then clock the IEEE 1149.1 port and perform the next read/write access. Use of a
RDY pin permits data transfers in [16 + (data width)] TCK clocks, assuming the
IEEE 1149.1 controller starts from and ends in the SELECT-DR_SCAN state.

If a RDY pin is not made available, polling the RWCS Register for an SC bit value
of 0 is required. The polling method requires 65 TCK clocks for transfer of a 32-bit
value.

Table 9-4 IEEE 1149.1 Sequence for Read/Write Access with RDY Pin

Step TMS
IEEE 1149.1

State
Nexus State Description

1 1 SELECT-
DR_SCAN

NRR REG_SELECT Starting point of this example.

2 0 CAPTURE-DR NRR REG_SELECT IEEE 1149.1 shifter may be loaded with last value
of register being decoded by Nexus controller or
Nexus status information.

3 0 SHIFT-DR NRR REG_SELECT TDO becomes active and Nexus R/W Data Reg-
ister is selected for write. Data is then shifted from
TDI.7 TCKs NRR REG_SELECT

4 1 EXIT1-DR NRR REG_SELECT Last bit of Nexus R/W Data Register
shifted from TDI.

5 1 UPDATE-DR NRR REG_SELECT Nexus controller decodes and selects register.

6 1 SELECT-
DR_SCAN

NRR DATA ACCESS Second pass through SELECT-DR_SCAN.

If Read Access, wait for RDY pin assertion.

7 0 CAPTURE-DR NRR DATA ACCESS IEEE 1149.1 shifter may be loaded with last value
of register being decoded by Nexus controller or
Nexus status information.

8 0 SHIFT-DR NRR DATA ACCESS TDO becomes active and outputs current value of
register while new value is shifted in through TDI.

N–1 TCKs NRR DATA ACCESS

9 1 EXIT1-DR NRR DATA ACCESS Last bit of NRR shifted out to TDO.

10 1 UPDATE-DR NRR DATA ACCESS Nexus controller writes value to register.

11 1 SELECT-
DR_SCAN

NRR REG_SELECT IEEE 1149.1 controller returns to SELECT-
DR_SCAN state for new NRR select.

Total number of TCK clocks = 48 in this example.

If the Write Access and Transfer count is greater than 1, wait for RDY pin assertion then go to Step 2, else go to idle state.

Page 104 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
9.5 Reading and Writing Public Messages

Public Messages may be read from or written to the target via the IEEE 1149.1
port. Public Message Writes are solicited messages that are generated by an
external IEEE 1149.1 controller and are input into an Input Public Message
Register (IPMR). The IPMR receives its TCODES and packets via multiple passes
through the SELECT-DR_SCAN.

The IEEE 1149.1 protocol does not permit Public Messages to be generated from
an embedded target microcontroller. Therefore, an Output Public Message
Register (OPMR) must be made available for transmission of Public Messages
from the embedded target microcontroller to an external IEEE 1149.1 controller.
The IPMR and OPMR Registers may reside in the vendor-defined address range,
as illustrated in APPENDIX B.

The external IEEE 1149.1 controller dictates the length of each packet for an Input
Public Message and may terminate shifting in the SHIFT-DR state at any time. An
end of message terminator is not required by an external IEEE 1149.1 controller
to the Nexus controller when performing Input Public Message Writes.

Output Public Message Reads are unsolicited messages which are generated by
the target processor and are read from the OPMR. These unsolicited messages
may contain variable length packets of data. Two methods may be used for
determining when an Output Public Message is available, when to terminate
retrieving a variable length packet and when an Output Public Message is ended.

9.6 Reading Unsolicited Messages

It is also possible to detect when an unsolicited message is available in the
OPMR. This method will require the selection of the OPMR followed by a read of
the LSB of the OPMR to receive an Output Message Pending (OMP) status bit. If
the OMP is a logic 0 the external IEEE 1149.1 controller may terminate OPMR
shifting. If the OMP is logic 0 the Nexus controller will not advance to the register
data access state, but instead will stay in the register select state.

An unsolicited output Public Message is ready for retrieval when the OMP is a
logic 1 and the Nexus controller will advance to the register data access state.
Resolution of variable length packets is determined by the bit width of the Output
Message Register. The width of the Output Message Register will be vendor
defined, where the vendor may optimize the register size depending upon the size
of packets transmitted. Figure 9-4 illustrates the IEEE 1149.1 TAP state machine
for accessing the Public Message Registers as well as other NRRs.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 105 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

Figure 9-4 IEEE 1149.1 Controller State Diagram for Public Messaging

Note that each bubble, except for NRR Select, represents a complete pass
through SELECT-DR_SCAN.

NRR Select

Write
Packet N

Write
TCODE

Write
Packet 2

Read
TCODE/OMP

OMP=1 OMP=0

Read
Packet N

Read
Packet 2

Read
Register

Write
Register

IPMR
Write

IPMR
Read

OPMR
Write

OPMR
Read

Nexus Reg.
Write

Nexus Reg.
Read

Page 106 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
SECTION 10
Miscellaneous Topics

10.1 Multiple Address Threads

On embedded processors that implement data and program trace, there will be an
address thread for each type of trace: the data address thread for both data read
and Data Write Messages, and the instruction address thread for all Program
Trace Messages. Messages containing a data address packet will be encoded
and compressed using the data address most recently transmitted, thus creating
a data address thread. Likewise, messages containing an instruction address
packet will be encoded and compressed using the instruction address most
recently transmitted, thus creating an instruction address thread.

There may be low cost implementations that only require 1 thread for both
program and data trace. While this is not recommended and highly discouraged, it
is reluctantly allowed. This is discouraged because of the increased bandwidth
required and the severe feature set limitations it places on development tools. The
bandwidth required is increased because locality of reference is lost when
switching back and forth between instruction address space and data address
space. For tools, storage enabling of message types is inhibited and modular
design of packet encoding and decoding is prevented, thus limiting execution
speed, etc. High-end cores should not even consider a 1-thread approach.

With 1 address thread, the next address (data or instruction) will be generated
from the last message (Data Trace or Program Trace respectively).

10.2 Repeat Instructions and Hardware Loops

Some architectures may have explicit or implied flow control instructions. For
example, many DSPs have hardware loops and repeat instructions. While it is
possible to provide Vendor Defined Messages to handle such flow control
instructions, they may also be handled as elegantly by using Public Messages.

10.2.1 Visibility for Repeat Instructions

In calculating the number of sequential instruction units executed for displaying
direct or indirect branch messages, a repeat instruction (where the repeated
instruction is non-interruptible) and the instruction to be repeated may be counted
as one instruction each time it is executed. The sequential instruction count
provided then would effectively “unroll” the repeat instructions.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 107 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
If repeat instructions are interrupted, however, then a vendor-defined “repeat”
message may be preferred. A “repeat” message may contain:

• The number of sequential instruction units executed since last taken
branch and

• The number of the times instruction(s) are repeated.

The development tool must then compute the program trace, and correctly display
when there is an exception and a return to finish the repeat count. If the device
supports degenerate cases of repeat (such as repeating repeat instructions),
more special considerations may be required to accurately deal with these cases.

10.2.2 Visibility for Hardware Loops

Visibility of hardware loops can be provided by transferring Indirect Branch
Messages at or near the bottom of each hardware loop (when instruction fetching
resumes at the top of the loop). Although Indirect Branch Messages are one of the
longer message lengths, hardware loop messages will likely be compact since the
target address does not change between each repetition of the loop. Thus the size
of the message may be similar to a direct branch message.

While it is possible to generate Vendor Defined Messages that mark the entry into
a hardware loop and the exit from a hardware loop, this method may add to both
the complexity for generating these messages on the embedded device, as well
as to the development tool in attempting to reconstruct the trace.

Some architectures provide implicit ways of exiting hardware loops, as well as
other factors that may add to the complexity of providing visibility for hardware
loops. These potential issues should be considered by the vendor during
implementation.

10.3 Simultaneous Development of Multiple Embedded Processors

To facilitate development of multiple embedded processors interconnected by an
existing serial communication bus standard, control and status information
defined in this standard may be required to be accessible in the programmer’s
model. If this is required, precautions should be taken to ensure that:

• Development resources are used only for development, and not for
application purposes.

• Security should be provided for proprietary applications to restrict
access to the application program.

Page 108 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
APPENDIX A
Connector and Electrical Specifications

A.1 Connection Options

Table A-1 lists the connector options and the signals in each option.

Table A-1 Signal Summary

Pin Name

C
o

n
n

ec
to

r
A

C
o

n
n

ec
to

r
B

O
pt

io
n

1
-

IE
E

E
 1

14
9.

1

C
o

n
n

ec
to

r
B

O
pt

io
n

2
-

A
ux

ili
ar

y
P

or
t

C
o

n
n

ec
to

r
B

O
pt

io
n

3
-

C
om

bi
ne

d

C
o

n
n

ec
to

r
C

Comments

MCKI — — 1 — 1

Auxiliary Port

MDI — — 2 — 4

MSEI — — 1 — 1

MCKO — — 1 1 1

MDO — — 4 2 8

MSEO — — 1 1 2

EVTO 1 1 1 1 1

EVTI 1 1 1 1 1

RSTI — — 1 — 1

PORT — — — — 16 Port Replacement

IEEE 1149.1 Pins 5 5 — 5 — IEEE 1149.1

RDY 1 1 — 1 — —

VREF 1 1 1 1 1

System SignalsRESET 1 1 1 1 1

CLOCKOUT 1 1 — — —

Vendor Defined 1 1 1 1 2 —

UBATT — — — — 2 —

GROUND 8 13 13 13 38 —

TOTAL SIGNALS 12 12 16 15 42 —

TOTAL PINS 20 30 30 30 80 —
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 109 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

A.1.1 Signal Descriptions

Signal description used throughout this appendix is as follows:

OUT = output from the target to the development tool
IN = input to the target from the development tool

Refer to 7.1 Pin Functions on Page 87 for a description of the following signals:

MDO, MSEO, MCKO, MDI, MSEI, MCKI, RSTI, EVTI, EVTO

Refer to the IEEE 1149.1 standard for a description of the following signals:

TDO, TDI, TCK, TMS, TRST

CLOCKOUT

This is the system clock from the target processor. CLOCKOUT helps
development tools to determine the proper rate for TCK. CLOCKOUT can also
be used to indicate target activity and used for MCKO where it matches the
needs of the interface.

RESET

This signal will cause the target to enter its reset state. The tool and target
should use open-drain output drivers for this pin.

Vendor Defined

This signal may be used as needed by the target developer. Tool vendors
should design their tools such that this signal can be configured as an input or
output. This signal should be at a low enough slew rate as to not cause cross
talk on adjacent pins.

VREF

This signal is used to establish the signaling levels of the debug interface of
the target system. Any current drawn from this pin should be limited to that
needed for voltage translation and/or signal interpolation and is not intended
to supply logic functions or power. VREF is not necessarily at the target
processor VDD level.

PORT[15:0]

Port replacement is a concept in which up to 16 low-speed I/O pins of the
target processor can also be used to carry AUX signals. The development tool
connects to the original I/O devices on the target system via the PORT pins.
The development tool performs the input/output functions on behalf of the
target when the tool receives Port Replacement Messages from the target
processor.
Page 110 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
The PORT[15:0] pins replace the signals directly across from them as shown
in the connector C pin-out in Table A-10.

UBATT

Vender defined power supply pins. Not to be used as logic signals.

A.2 Connector A (IEEE 1149.1 Interface)

This connector is used for IEEE 1149.1 protocol only.

Connector A consists of IEEE 1149.1 signals which are TMS, TRST, TDI, TDO,
and TCK. CLOCKOUT, RESET, RDY, EVTO and EVTI are added for enhanced
performance and flexibility.

A.2.1 Signal Layout

Table A-2 lists connector A signals.

A.2.2 Implementation Considerations

Because of its location on pin 2, VREF is used as a virtual ground for RESET on
pin 1. Therefore, VREF should have decoupling capacitors at both ends of the
cable connected to ground.

Table A-2 Connector A

Signal Name I/O Pin Pin I/O Signal Name

RESET IN 1 2 O VREF

EVTI* IN 3 4 — GND

TRST* IN 5 6 — GND

TMS IN 7 8 — GND

TDI IN 9 10 — GND

TCK IN 11 12 — GND

TDO OUT 13 14 — GND

CLOCKOUT* OUT 15 16 — GND

EVTO* OUT 17 18 — GND

RDY* OUT 19 20 I/O Vendor defined*

* Optional signals
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 111 of 150

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

It is recommended that the signals in Table A-3 be connected to pull-ups on the
target to prevent floating signals when the tool is not connected or powered-on.

It is recommended that the following signals in Table A-4 be connected to pull-ups
on the tool to prevent floating signals when the target is not connected or
powered-on.

The target may need a jumper in the CLOCKOUT path near its source to prevent
excessive radiated noise on the signal. This target design consideration eliminates
the CLOCKOUT path between the CPU and the debug connector when debug
operations are not being performed.

WARNING
Any optional signals not used by the target must be left
unconnected at the target debug connector.

A.2.3 Mechanical Specifications

On the target system, the AMP, System 50, 20-pin, board mounted connector is
recommended. The part number (P/N) is 104549-2. This a vertical, surface mount
type header with a shroud and two mounting holes (see Detail A in Figure A-1g).

Other styles of System 50 board mounted connectors are available, such as thru-
hole and horizontal mounting. Only those header connectors that mate with the
AMP Ribbon Cable Connector System (P/N 111196-4) should be used.

Table A-3 Signals for Pull-Ups on the Target

Signals Pull-up

TMS, TCK, TDI, TRST, RESET, EVTI 10K Ω

Table A-4 Signals for Pull-Ups on the Tool

Signals Pull-up

CLOCKOUT, EVTO, RDY 10K Ω

g. Permission to reprint Figure A-1 and Figure A-2 was granted by AMP Incorporated, Harrisburg, PA.

Page 112 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Figure A-1 AMP, System 50 Header (Surface Mount)

A.2.3.1 The PC Board (PCB) Connector Layout

AMP specifies the surface mount PCB layout shown in Figure A-2.

Figure A-2 Surface Mount Layout

0.435
[11.05]

0.105
[2.67]

0.145
[3.68]

0.057
[1.45]
2 places

0.284
[7.21]

0.344
[8.74]

0.050
[1.27]Typ.

0.100
[2.54]

0.050
[1.27]

Typ.

0.045
[1.14]

0.055
[1.40]

(Localized
gold plate

area)

0.031
[0.79]

0.015
[0.38]

R Typ.

0.042 Dia. Typ.
[1.07] (Plated-
thru Hole)

0.060 Dia. Typ.
[1.52] (Pad)

0.138
[3.51]

0.224
[5.69]

0.112
[2.84]

0.029
[0.74]

Typ.

0.075
[1.91]

0.362
[9.19]
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 113 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Table A-5 shows the board layout for the PCB connector (numbers in square
brackets are in millimeters).

Development tools may use the AMP Ribbon Cable Connector System (AMP-
LATCH) part number 111196-4. Tool vendors are responsible for assembling their
own cables.

If a different 20-pin connector is desired, the chosen connector must conform to
the same 0.050 in. pitch pin spacing and 0.100 in. row spacing as in the AMP
connector (see Table A-1).

A.3 Connector B

This connector can be used in one of three configurations:

1. IEEE 1149.1 mode—IEEE 1149.1 only

2. AUX configuration—auxiliary port with 4 data-out pins and 2 data-in pins

3. Combined configuration—IEEE 1149.1 and auxiliary output with 2 data-
out pins

The combined configuration may be utilized in those applications where the
additional bandwidth of the AUX is needed but JTAG is still required. It is also
suitable for those applications where there are constraints on the available board
space or pin-out limitations on the target. The most common use of this
configuration is for static debugging using JTAG with program trace on the AUX
during runtime.

The AUX control registers and AUX input functions are accessed through the
JTAG port. Direct memory read accesses may use JTAG or the auxiliary output
port.

Table A-5 Connector A Dimensions

Dimensions

Dim. A 0.630 in. [16.00 mm]

Dim. B 0.450 in. [11.43 mm]

Dim. C 0.150 in. [3.80 mm]

Dim. D 0.150 in. [3.80 mm]

Page 114 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
A.3.1 Signal Layout

Table A-6 identifies the pin-out for Connector B, listing the three configurations.

A.3.2 Implementation Considerations

Because of its location on pin 2, VREF is used as a virtual ground for RESET on
pin 1. Therefore, VREF should have decoupling capacitors at both ends of the
cable connected to ground.

It is recommended that the signals in Table A-7 be connected to pull-ups on the
target to prevent floating signals when the tool is not connected or powered-on.

Table A-6 Connector B

Signal Name Signal Name Signal Name I/O Pin Pin I/O Signal Name

1) IEEE
1149.1

2) Auxiliary 3) Combined

RESET RESET RESET IN 1 2 O VREF

EVTI* EVTI EVTI IN 3 4 — GND

TRST* RSTI TRST* IN 5 6 — GND

TMS RESERVED TMS IN 7 8 — GND

RESERVED MDI1* RESERVED IN 9 10 — GND

TDI MDI0 TDI IN 11 12 — GND

TCK MCKI TCK IN 13 14 — GND

RESERVED MSEI RESERVED IN 15 16 — GND

TDO MDO3* TDO OUT 17 18 — GND

RDY* MDO2* RDY* OUT 19 20 — GND

RESERVED MDO1* MDO1* OUT 21 22 — GND

RESERVED MDO0 MDO0 OUT 23 24 — GND

CLOCKOUT* MCKO MCKO OUT 25 26 — GND

RESERVED MSEO MSEO OUT 27 28 — GND

EVTO* EVTO* EVTO* OUT 29 30 I/O
Vendor
defined*

* Optional signals

Table A-7 Signals Connected To Pull-Ups On the Target

Signals Pull-up

RESET, EVTI, RSTI, MSEI, TRST, TMS, TDI MDI0,
MDI1, MCKI

10K Ω
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 115 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
It is recommended that the signals in Table A-8 be connected to pull-ups on the
tool to prevent floating signals when the target is not connected or powered-on.

WARNING
Any optional signals not used by the target must be left
unconnected at the target debug connector.

A.3.3 Mechanical Specifications

On the target system, the AMP System 50, 30-pin, board mounted connector
should be used (P/N 104549-5). This is a vertical, surface mount type header with
a shroud and two mounting holes.

Other styles of System 50 board mounted connectors are available, such as thru-
hole and horizontal mounting. Only those header connectors that mate with AMP
Ribbon Cable Connector System (P/N 111196-7) should be used.

A.3.3.1 The PCB Connector Layout

Refer to Figure A-2 for dimensions identified in Table A-9.

Development tools may use the AMP Ribbon Cable Connector System (AMP-
LATCH) part number 111196-7. Tool vendors are responsible for assembling their
own cables.

If a different 30-pin connector is desired, the chosen connector must conform to
the same 0.050 in. pitch pin spacing and 0.100 in. row spacing as the AMP
connector.

Table A-8 Signals To Be Connected To Pull-Ups On the Tool

Signals Pull-up

MDO[3:0], MCKO, MSEO, EVTO, RDY, TDO 10K Ω

Table A-9 Connector B Dimensions

Dimensions

Dim. A 0.880 in. [22.35 mm]

Dim. B 0.700 in. [17.78 mm]

Dim. C 0.275 in. [6.99 mm]

Dim. D 0.275 in. [6.99 mm]

Page 116 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
A.4 Connector C (Auxiliary Port and Port Replacement)

Connector C is intended for target processors that support a wide AUX and/or for
applications that can use port replacement.

Since the environmental and electrical requirements for this application vary, a
custom target-to-tool cable assembly is required for each application while the
board-to-board target connector remains the same.

A.4.1 Signal Layout

Table A-10 represents the pin-out for the active signals on Connector C.

Table A-10 Connector C

Signal Name
(1)

I/O
(2)

Pin
(3)

Pin
(4)

Pin
(5)

Pin
(6)

I/O
(7)

Signal Name
(8)

RESET IN 1 2-UBATT* 3 4 OUT VREF

EVTI* IN 5 6 7 8 OUT EVTO*

RSTI IN 9 10 11 12 I/O Vendor defined*

MDI3* IN 13 14 15 16 I/O Vendor defined*

MDI2* IN 17 18 19 20 I/O PORT15*

MDI1* IN 21 22 23 24 I/O PORT14*

MDI0 IN 25 26 27 28 I/O PORT13*

MCKI IN 29 30 31 32 I/O PORT12*

MSEI IN 33 34 35 36 I/O PORT11*

MDO7* OUT 37 38 39 40 I/O PORT10*

MDO6* OUT 41 42 43 44 I/O PORT9*

MDO5* OUT 45 46 47 48 I/O PORT8*

MDO4* OUT 49 50 51 52 I/O PORT7*

MDO3* OUT 53 54 55 56 I/O PORT6*

MDO2* OUT 57 58 59 60 I/O PORT5*

MDO1* OUT 61 62 63 64 I/O PORT4*

MDO0 OUT 65 66 67 68 I/O PORT3*

MCKO OUT 69 70 71 72 I/O PORT2*

MSEO1* OUT 73 74 75 76 I/O PORT1*

MSEO0 OUT 77 78 79-UBATT* 80 I/O PORT0*

* Optional signals
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 117 of 150

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

The pins in columns 4 and 5 (excluding pins 2 and 79) are connected to ground.
This essentially provides a ground return per signal.

A.4.2 Implementation Considerations

It is recommended that the signals in Table A-11 be connected to pull-ups on the
target to prevent floating signals when the tool is not connected or powered-on.

It is recommended that the signals in Table A-12 be connected to pull-ups on the
tool to prevent floating signals when the target is not connected or powered-on.

WARNING
Any optional signals not used by the target must be left
unconnected at the target debug connector.

A.4.3 Mechanical Specifications

On the target system, a Samtec MOLC series (0.050x0.050) header should be
used. This connector offers surface mount (see Figure A-3h), through hole (see
Figure A-4) or mixed technology PCB mounting. This header mates with the
FOLC series.

WARNING
The MOLC/FOLC series connectors are not keyed, so it is
imperative that the target have pin 1 properly marked. The cable
assembly and tools must also have pin 1 clearly identified.

Since these are board-to-board connectors, the tool vendor is responsible for
assembling a cable based on customer requirements.

Table A-11 Signals To Be Connected To Pull-Ups On the Target

Signals Pull-up

RESET, EVTI, RSTI, MSEI, MDI[3:0], MCKI 10K Ω

Table A-12 Signals To Be Connected To Pull-Ups On the Tool

Signals Pull-up

MDO[7:0], MCKO, MSEO[1:0], EVTO, PORT[15:0] 10K Ω

h. Permission to reprint Figure A-3, Figure A-4, Figure A-5 and Figure A-6 was granted by Samtec Inc.,
New Albany, IN.

Page 118 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

Figure A-3 Surface Mount Header

Figure A-4 Thru-Hole Header

A.4.3.1 The PCB Connector Layout

Figure A-5 illustrates the layout for a surface mount connector. Figure A-6
illustrates the layout for a thru-hole connector.

Figure A-5 Surface Mount PCB Layout
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 119 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Figure A-6 Thru-hole PCB Layout

If a different 80-pin connector is desired, the chosen connector must conform to
the same 0.050 in. pitch pin spacing, 0.050 in. row spacing, and 4x20 format as
the Samtec connector.

A.5 DC Electrical Characteristics

Table A-13 lists the electrical characteristics for the signals used in the Nexus
interface.

All DC characteristics apply to the IEEE 1149.1 and AUX interfaces.

Output voltage levels need to be sufficient to satisfy the associated input
requirements with a suitable margin.

The tool must sense the voltage on the VREF pin before attempting to drive outputs.

Absolute maximum tool output voltage is VREF + 20%.

The tool must not draw more than 1 mA of current from the VREF. It is a good idea
to put a current-limiting resistor in series with the VREF, but the value should be
minimal so as not to degrade the value of the VREF at the tool.

Table A-13 DC Electrical Characteristics

Characteristic VREF Voltage Min Max Unit

Input Low Voltage VREF 2.8 V to
5 V

–0.3 0.8 V

Input High Voltage 2.0 1.2 (VREF) V

Input Low Voltage VREF below
2.8 V

–0.3 0.3 (VREF) V

Input High Voltage 0.7 (VREF) 1.2 (VREF) V

VREF Output Current — — 1 mA

0.047 [1.19] DIA

1.065 [27.05]

0.950 [24.13]

3 EQ SPACES @ 0.0500 [1.27]

0.0250 [0.64] DIA

Page 120 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
A.6 AC Electrical Characteristics—General

Input rise and fall times are measured at 20–80% values.

All setup and hold times are measured from the 50% point of the respective clock
edge and the 50% point of the logic signal.

All measurements are made assuming a minimum capacitive loading of 25 pF.

A.7 AC Electrical Characteristics—IEEE 1149.1 Interface

Table A-14 lists the timing constraints for the IEEE 1149.1 interface.

Figure A-7gives a pictorial representation of critical timing in Table A-14.

Figure A-7 IEEE 1149.1 Timing Diagram

Table A-14 AC Electrical Characteristics—IEEE 1149.1

Number Characteristic Min Max Unit

1 TCK Cycle Time (Tc) 30 —- ns

2 TCK Duty Cycle 40 60 %

3
Rise and Fall Times

(20–80%)
0 3 ns

4
TRST Setup Time to TCK

Falling Edge
(0.30)Tc — ns

5 TRST Assert Time (0.30)Tc — ns

6 TMS, TDI Data Setup Time (0.20)Tc — ns

7 TMS, TDI Data Hold Time (0.10)Tc — ns

8 TCK Low to TDO Data Valid (–0.10)Tc (0.20)Tc ns

9 EVTO Pulse Width (1.0) System Clock — ns

10 EVTI Pulse Width (4.0)Tc — ns

TCK

TDI, TMS Input Data Valid

Output Data ValidTDO, RDY

6 7

8

Copyright © 1999 IEEE-ISTO. All rights reserved. Page 121 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
A.8 AC Electrical Characteristics—Auxiliary Port

Table A-15 lists the timing constraints for the AUX interface. Figure A-8 illustrates
the critical timing for the clock to data on the input. Figure A-9 illustrates the
critical timing for the clock to data on the output.

Figure A-8 Auxiliary Port Data Input Timing Diagram

Figure A-9 Auxiliary Port Data Output Timing Diagram

Table A-15 AC Electrical Characteristics—Auxiliary Port

Number Characteristic Min Max Unit

1 MCKO Cycle Time (Tco) 5 — ns

2 MCKO Duty Cycle 40 60 %

3 Output Rise and Fall Times 0 3 ns

4 MCKO low to MDO Data Valid (–0.10)Tco (0.20) Tco ns

5 MCKI Cycle Time (Tci) 5 — ns

6 MCKI Duty Cycle 40 60 %

7 Input Rise and Fall Times 0 3 ns

8 MDI Setup Time (0.20)Tci — ns

9 MDI Hold TIme (0.10)Tci — ns

10 RSTI Pulse Width (4.0) Tco — ns

11 MCKO low to EVTO Valid (–0.10)Tco (0.20) Tco ns

12 EVTI Pulse Width (4.0) Tco -— ns

13
EVTI to RSTI Setup

(at reset only)
(4.0) System Clock — ns

14
EVTI to RSTI Hold

(at reset only)
(4.0) System Clock — ns

MCKI

MDI Input Data Valid

8 9

MCKO

Output Data ValidMDO, EVTO

4
11

Page 122 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
MDO and EVTO data is held valid until the next MCKO low transition.

When RSTI is asserted, EVTI is used to enable or disable the AUX (see
Figure A-10 and Figure A-11). Because MCKO probably is not active at this
point, the timing must be based on the system clock. Since the system clock is
not realized on the connector, its value must be known by the tool.

Figure A-10 Enable Auxiliary From RSTI

Figure A-11 Disable Auxiliary From RSTI

A.9 Terminations

Because of the high-speed natures of the IEEE 1149.1 and auxiliary ports, it is
recommended that the target and tool both employ a point-to-point series
termination scheme (see Figure A-12 and Figure A-13).

Zout = Output impedance of the driver
Ztarget = Impedance of traces on the target printed circuit board
Zcable = Characteristic impedance of cable
Ztool = Impedance of traces on the tool printed circuit board
Rt = Source terminators

RSTI

EVTI

13 14

RSTI

EVTI

13 14
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 123 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Figure A-12 Target Output Source Termination

Figure A-13 Tool Output Source Termination

Output
buffer

In

Input latch

Rt
Ztarget Zcable Ztool

Zout

Zout + Rt = Ztarget = Zcable = Ztool

Output
buffer

In

Input latch

Rt
ZtoolZcableZtarget

Zout

Zout + Rt = Ztool = Zcable = Ztarget

Page 124 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™

-

1999

The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

APPENDIX B
Recommendations for Access to Control and Status Registers

Silicon vendors must implement the API requirements for tool software
compatibility as described in SECTION 5. In addition, embedded processors
complying to class 2, 3 or 4 are required to implement the AUX message protocol
and the required Public Messages as described in SECTION 5 and SECTION 8.
There are no requirements in the Nexus standard, however, regarding conformity
of development registers which are accessed by tools for control and status.

This appendix contains only recommendations (not requirements) for silicon
vendors in implementing development registers that are accessed by tools for
control and status.

NOTE
Development tool vendors should not design tools based upon the
contents of this appendix. Obtain the silicon vendor’s API and product
specification for development tool design.

The Nexus standard supports development for up to 32 clientsi on an embedded
processor. Each client on embedded processors complying to class 1 may provide
development tool access to control and status according to these
recommendations via the IEEE 1149.1 interface. Each client on embedded
processors complying to class 2, 3 or 4 may provide development tool access to
control and status according to these recommendations via either the AUX or the
IEEE 1149.1 interface.

Embedded processors may provide development control and status registers
according to Table B-1, Table B-2 and Table B-3. Table B-1 illustrates the
“NEXUS-ENABLE” instruction. Writing an appropriate value to the “NEXUS-
ENABLE” instruction, as defined by the silicon vendor, will enable access to NRRs
illustrated in Table B-3. Additionally, the Device ID information identifies key
attributes to the development tool concerning the embedded processor.

In Table B-2 the Client Select control selects one of the clients on the embedded
processor for access. Once the client is selected, control and status accesses are
directed to the selected client. An alternate client can be selected at any time
during operation.

i. Refer to 1.1 Terms and Definitions on Page 2.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 125 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

The NRR indices as shown in Table B-3 shall be identical for accesses via the
IEEE 1149.1 interface and the AUX. The fields associated with each opcode
accessed via the IEEE 1149.1 interface shall be identical in size and function to
the packets accessed for each opcode via the AUX. The Public Messages in
SECTION 6 prescribe the method for accessing recommended control and status
registers.

Table B-3 also defines control and status access as indicated per clients of class
2, 3 or 4 complying embedded processors. Device-specific register space is also
provided so that vendor-defined development functions may be implemented. For
embedded processors complying to class 2, 3 or 4, the device-specific registers
may comprise the transfer registers for interfacing with a processor, e.g. Program
Counter and Processor Status.

Table B-1 IEEE 1149.1 Register Map

Control/
Status

Compliance
Class

Access
Opcode

Read/
Write

IEEE 1149.1
Public Opcodes

—
Device-
specific

—

Device ID
Register1

1. The ID Register is defined by the IEEE 1149.1 standard.

All
Device-
specific

R

NEXUS-
ENABLE2

(SECTION 9)

2. Only needed for IEEE 1149.1 port (and not AUX).

All
Device-
specific

R/W

Table B-2 Nexus Clients

Control/
Status

Compliance
Class

Access
Opcode

Read/
Write

Device ID All 0 R

Client Select 41

1. If embedded processor contains multiple clients, then
Client Select is required.

1 R/W

Shared by all
Nexus Clients — 2–63 —

Reserved — 64–127 —

Device-specific — 128–255 —

Page 126 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Table B-3 Recommended Registers for Nexus Clients

Nexus Recommended Register (NRR)
Compliance

Class
Register Index

Read/
Write

Device ID (DID) (auxiliary only) All 0 R

Client Select Control (CSC) 2, 3, 41

1. Needed if there are multiple clients on an embedded processor.

1 R/W

Development Control 2, 3, 4 2 R/W

Reserved for Development Control — 3 —

Development Status (DS) 4 4 R

Reserved for Development Status — 5 —

User Base Address (UBA) 2, 3, 4 6 R2

2. May also be read/write access for development tool configuration of UBA.

Read/Write Access Control/Status (RWCS) 3, 4 7 R/W

Reserved for Read/Write Access Control/Status — 8 —

Read/Write Access Address (RWA) 3, 4 9 R/W

Read/Write Access Data (RWD) 3, 4 10 R/W

Watchpoint Trigger (WT) 4 11 R/W

Reserved for Watchpoint Trigger — 12 —

Data Trace Control (DTC) 3, 4 13 R/W

Data Trace Start Address (DTSA) (2) 3, 4 14–15 —

Data Trace Start Address (Reserved - 2) — 16–17 —

Data Trace End Address (DTEA) (2) 3, 4 18–19 —

Data Trace End Address (Reserved - 2) — 20–21 —

Breakpoint/Watchpoint Control (BWC) (2) 4 22–23 R/W

Breakpoint/Watchpoint Control (Reserved - 6) — 24–29 —

Breakpoint/Watchpoint Address (BWA) (2) 4 30–31 R/W

Breakpoint/Watchpoint Address (Reserved - 6) — 32–37 —

Breakpoint/Watchpoint Data (BWD) (2) 4 38–39 R/W

Breakpoint/Watchpoint Data (Reserved - 6) — 40–45 —

Reserved for future Nexus functionality — 46–> 54 —

Re-mapped NRRs (see B.10 Nexus Recom-
mended Registers (NRRs) Concatenated for
Better Transfer Efficiency on Page 144)

— 55–> 63 —

Vendor defined — 64–> 127 —

Reserved for future Nexus functionality3

3. IEEE 1149.1 is not capable of Access Future Reserved.

— 128–> 255 —
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 127 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Reset: All control and status information shall be reset by one of the following:

• IEEE 1149.1 Test Logic Reset state or assertion of TRST

• Assertion of RSTI

No control or status information shall be reset for system reset on the embedded
processor.

Access with the IEEE 1149.1 Interface: The IEEE 1149.1 state machine is
shown in Figure 9-1. The value shown adjacent to each arc represents the value
of the TMS signal sampled on the rising edge of the TCK signal.

Access to NRRs is enabled by loading a single instruction (“NEXUS-ENABLE”)
into the IEEE 1149.1 IR. Once the IEEE 1149.1 “NEXUS-ENABLE” instruction
has been loaded, the IEEE 1149.1 port allows tool/target communications with all
NRRs according to the register index in Table B-3.

Reading/writing of an NRR then requires two (2) passes through the Data-Scan
path of the IEEE 1149.1 state machine.

1. The first pass through the DR selects the NRR to be accessed by
providing an index (see Table B-3), and the direction (read/write). This is
achieved by loading an 8-bit value into the IEEE 1149.1 DR. This
register has the following format:

Read/Write (R/W):

0 = Read

1 = Write

Nexus Recommended Register (NRR) Address:
Selected from values in Table B-3

2. The second pass through the DR then shifts the data in or out of the
IEEE 1149.1 port, LSB first.

a. During a read access, data is latched from the selected NRR when
the IEEE 1149.1 state machine passes through the “Capture-DR”
state.

b. During a write access, data is latched into the selected NRR when
the IEEE 1149.1 state machine passes through the “Update-DR”
state.

7 bit NRR Address R/W
LSBMSB

Page 128 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Access with the Auxiliary Port: The control and status registers are accessed
via the four Public Messages—Target Ready, Read Register (tool requests
information), Write Register (tool provides information) and Read/Write Response
(from tool or target).

To write control or status the following sequence would be required:

• If a prior Target Ready Message was transmitted by the target, then the
tool transmits a Write Register Message, which contains write attributes
and a register value to be written.

• The tool waits for the Target Ready Message before initiating the next
access.

To read control or status the following sequence would be required:

• If a prior Target Ready Message was transmitted by the target, then the
tool transmits a Read Register Message, which contains read attributes.

• When the target reads data, it transmits a Read/Write Response
Message containing read data. The target is now ready for the next
access.

Control and Status Information: This section describes the fields comprising
each control and status register. The control registers in this section are organized
such that the most used bits are located in the most significant bits of the registers.
This allows for short write sequences from the tool to write only a few bit fields.

For many of the control and status opcodes defined in this section there are bits
reserved as vendor defined. Device-specific development features and operations
may be included in these designated bits. For tools not implementing these
vendor-defined development features, the fields should not be written or set to a
value of 0. The setting of 0 is designated as the default state.

B.1 Device ID (DID) Register

Accessing DID provides key attributes to the development tool concerning the
embedded processor. This information assists the development tool in
determining configuration and features of the device. For classes 2, 3 and 4
embedded processors, this information is also transmitted via the auxiliary output
port upon exit of AUX reset.

For embedded processors with a full AUX, the DID shown here should be
implemented in compliance to the register organization and bit field definitions as
specified in the IEEE 1149.1. For embedded processors with an IEEE 1149.1
interface used for this standard, the DID Register defined by the 1149.1 standard
must be implemented. In this case, the DID Register defined in this sub-section is
not necessary.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 129 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
The fields include embedded processor information containing the manufacturer
ID, product number and revision number. In general, the revision number must be
changed (i.e. incremented) whenever the embedded processor has a mask
revision that will disrupt the tools in any manner (see Table B-4).

B.2 Client Select Control (CSC) Register

CSC contains a single 5-bit field which, when written to, selects the client to be
accessed via the IEEE 1149.1 interface or the AUX. The encodings of CSC are
device-specific. The setting of CS selects which client is accessed for access
opcodes 1–127.

This register is recommended if there are multiple clients on the embedded
processor (see Table B-5).

B.3 Development Control Register

The Development Control Register is used for basic development control of a
client. DBE enables debug mode and DBR allows for a software mechanism to
enter debug mode. If debug mode is enabled then asserting DBR, power-on reset
or an exception may cause the processor to halt and enter debug mode. Enabling
debug mode is necessary to use features such as single stepping and
breakpoints.

Table B-4 DID Register

Bit
Number

Field
Name

Description

31–28 RN Revision Number

27–12 PN Product Number

11–1 MID Manufacturer ID

0 — Reserved

Table B-5 CSC Register

Bit
Number

Field
Name

Description

7–5 — Reserved

4–0 CS Client select

Page 130 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
The TM field enables BTM, DTM and OTM. One or all types of trace may be
enabled by TM, or via a watchpoint occurrence (refer to B.7 Watchpoint Trigger
(WT) Register).

If EIC = 00 and program and/or data trace are enabled, a high-to-low transition on
EVTI will cause program and/or data trace synchronization respectively. If EIC = 01,
a high-to-low transition on EVTI will cause a breakpoint to occur. If EIC = 10, no
operation will occur regardless of the state on EVTI.

The MS and SS bit fields determine how the processor will operate when DBR is
negated. If MS = SS = 0 then normal operation will commence when DBR is
negated. If MS = 0 and SS = 1, then a single step will occur when DBR is negated
with internal memory access. If MS = 1 and SS = 0, then operation will commence
when DBR is negated with instruction/data access via the AUX. If MS = SS = 1,
then a single step will occur when DBR is negated with instruction/data access via
the AUX.

When MS = 1, the state of the SO bits determines which combination of
instruction and data accesses are substituted so that memory accesses are made
via the AUX or IEEE 1149.1 interface. If MS = 0, memory substitution is not
enabled and memory accesses are made to the target memory system.

OVC is used to determine control for overrun of BTM and DTM. Overruns can be
handled by displaying an Overrun Message to development tools, delaying the
processor to avoid BTM overruns, delaying the processor to avoid DTM overruns
or delaying the processor to avoid both BTM and DTM overruns.

CBI is an optional control bit that, when enabled, gates a global, wired-OR
breakpoint signal to the client. When the global breakpoint signal is asserted and
the CBI is asserted, it causes a breakpoint to occur on the client. Each client
should also wire-OR its breakpoint status output to this global breakpoint signal.
When CBI is negated, the client will only break for breakpoint conditions internal
to the client.

For embedded processors complying to class 2 or 3, the only development control
field required is TM. For this case all other fields except the vendor-defined field
shall be reserved and contain the same number of bits (see Table B-6).
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 131 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
Table B-6 Development Control Register

Bit
Number

Field
Name

Description

31–24 — Vendor defined

23–15 — Reserved

14 CBI
CBI - Client Breakpoint Input (optional)
0 = Break for internal breakpoints only
1 = Break for other clients’ breakpoints also

13 DBE
DBE - Debug Enable (class 4)
0 = Debug mode disabled
1 = Debug mode enabled

12 DBR
DBR - Debug Request (class 4)
0 = Exit Debug mode
1 = Request debug mode

11 MS
MS - Memory Substitution (class 4)
0 = Use instructions and data in target memory
1 = Access instruction/data through AUX

10–9 SO

SO - Substitution Operands (class 4)
00 = Instructions and Data
01 = Instructions only
10 = Data only
11 = Reserved

8 SS
SS - Step Enable (class 4)
0 = Single step disabled
1 = Single step enabled

7–5 OVC

OVC - Overrun Control (class 4)
000 = Generate overrun messages
001 = Delay processor for BTM overruns
010 = Delay processor for DTM and OTM overruns
011 = Delay processor for BTM, DTM and OTM overruns
100–111 = Reserved

4–3 EIC

EIC - EVTI Control (class 2, 3, 4)
00 = EVTI for program and data trace synchronization
01 = EVTI for breakpoint generation
10 = No operation
11 = Reserved

2–0 TM

TM - Trace Mode (class 2, 3, 4)
000 = No Trace
1XX = BTM Enabled
X1X = DTM Enabled
XX1 = OTM Enabled

Page 132 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
B.4 Development Status (DS) Register

When debug mode is entered the condition is detected by reading the DBS bit in
DS, or by observing the Debug Status Message on the auxiliary pins. The SSS will
also be set if debug mode is entered after a single step. The HWB and SWB also
indicate if a hardware breakpoint (e.g. address comparator) or a software
breakpoint (e.g. breakpoint instruction) caused the processor to halt and enter
debug mode. The BPn bits indicate which breakpoint occurred.

Other conditions that may impact development support are detecting when the
processor is in a Low Power mode or a non-recoverable hardware error has
occurred. STP and HWE may be implemented to indicate these conditions.

The DS Register is read-only. All status bits are dynamic and do not require
clearing.

This register is recommended for embedded processors complying to class 4. The
contents of the DS Register are transmitted out the auxiliary pins upon a change
in state of any bit (see Table B-7).

Table B-7 DS Register

Bit
Number

Field
Name

Description

31–24 — Vendor defined

23–17 — Reserved

15–8 BP7-0
BPn - Breakpoint Status
0 = No breakpoint
1 = Breakpoint occurred

7–6 — Reserved

5 DBS
DBS - Debug Status
0 = Processor not halted
1 = Processor halted in Debug mode

4 STP
STP - Stop Status
0 = Processor not stopped
1 = Processor stopped in Low Power mode

3 HWE
HWE - HW Error
0 = No HW error
1 = Non-recoverable HW error occurred

2 HWB
HWB - HW Bkpt Status
0 = No HW breakpoint
1 = HW breakpoint

1 SWB
SWB - SW Bkpt Status
0 = No SW breakpoint
1 = SW breakpoint

0 SSS
SSS - Single Step Status
0 = Processor not halted
1 = Processor halted in Debug mode after single step
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 133 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
B.5 User Base Address (UBA) Register

UBA provides visibility for the development tool to determine what the setting is for
the device-specific user base address. UBA is the memory map base address for
user access to specific resources of the Nexus development port. If needed, UBA
may be writable by the development tool to configure the memory map base
address for user access.

User access to the Nexus development port is required for OTM and DQM, and
reserved for other uses. The size of UBA is vendor defined (see Table B-8).

The memory map for user access of development features is shown in Table B-9,
where offset is the base word size of the embedded processor.

The UBA register is recommended for embedded processors complying to
class 2, 3 or 4.

Ownership Trace Register (OTR): OTR shall be provided only for general-
purpose processor clients of embedded processors complying to classes 2, 3 and
4. OTR provides a register to which an operating system can write an ID for the
current task/process. The size of OTR is vendor defined.

DQM: DQMs are achieved by user writes to appropriate locations in the memory
map shown in Table B-9. The write information is queued up for messaging via
the auxiliary pins. The location in the DQM portion of the UBA Register map that is
written to determine the data ID tag for the message, with the exception of the
Data Acquisition Control, which is used for DQM queue control.

Table B-8 UBA Register

Bit
Number

Packet
Name

Description

Vendor
defined

UBA Device-specific user base address.

Table B-9 Memory Map for User Accesses

Memory Map Location Description

(UBA) + 2 x Offset Reserved for future use.

(UBA) + 1 x Offset Reserved for future use.

(UBA) Ownership Trace Register.

(UBA) – 1 x Offset Data Acquisition Control .

(UBA) – N x Offset Location for DQMs where N is data ID.

Page 134 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
DQM Data written to a location in the UBA Register map are queued up until a
value of 0x0 is written to Data Acquisition Control, at which point the ID tag and
data values are transferred on the auxiliary pins (refer to Data Messaging CODE
in 4.2.10 Data Acquisition on Page 26). A DQM transfer is also started if the
message queue fills up, or if another location in the DQM Register map is written
prior to when 0x0 is written to Data Acquisition Control. In the event of the queue
filling up prior to 0x0 being written to the address pointed to by UBA, subsequent
writes to locations in the DQM portion of the register map will be stalled until
queue space becomes available.

For simplicity of HW implementation, DQM IDs will be 2 or greater.

B.6 Read/Write Access Registers

The Read/Write Access feature provides DMA-like access to internal memory-
mapped resources when the client is halted or during runtime. Three registers are
used for the Read/Write Access feature:

• Read/Write Access Control/Status (RWCS)

• Read/Write Access Address (RWA)

• Read/Write Access Data (RWD)

The tool will write to a user memory map location by first updating the RWA and
RWD Registers with the user address and data to be written, and then by
updating the RWCS Register with the write access attributes. The tool will read
from a user memory map location by first updating the RWA Register with the user
address to be read, and then by updating the RWCS Register with the read
access attributes.

These registers are recommended for embedded processors complying to class 3
or 4.

More detailed information on using the Read/Write Access feature is included in
the following paragraph.

Access with the IEEE 1149.1 Interface: The IEEE 1149.1 state machine is
shown in Figure 9-1. The value shown adjacent to each arc represents the value
of the TMS signal sampled on the rising edge of the TCK signal.

1. For a block read the following sequence would be required:

a. Initialize the Read/Write Access Address Register (RWA) through
the IEEE 1149.1 access method outlined previously using the NRR
index of 9 (see Table B-3).
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 135 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
b. Initialize the Read/Write Access Control/Status Register (RWCS)
through the IEEE 1149.1 access method outlined previously using
the NRR index of 7 (see Table B-3).

c. The read data will then be transferred to the RWD Register. When
completed (without error), the Nexus block decrements the number
in the CNT field and sets the DV bit. This indicates that the device is
ready for the next access.

d. The data can then be read from the Read/Write Access Data
Register (RWD) through the IEEE 1149.1 access method outlined
previously using the NRR index of 10 (see Table B-3).

e. Once the RWD value has been read, the RWA will then be
incremented to the next word of size SZ and Step 1c will be
repeated. When the CNT field reaches a value of 0, the AC bit is
cleared indicating the end of the read access.

2. For a block write the following sequence would be required:

a. Initialize the Read/Write Access Address (RWA) Register through
the IEEE 1149.1 access method outlined previously using the NRR
index of 9 (see Table B-3).

b. Initialize the Read/Write Access Data (RWD) Register through the
IEEE 1149.1 access method outlined previously using the NRR
index of 10 (see Table B-3).

c. Initialize the Read/Write Access Control/Status (RWCS) Register
through the IEEE 1149.1 access method outlined previously using
the NRR index of 7 (see Table B-3).

d. The Nexus block will then transfer the data value from the RWD
Register to the memory-mapped address in the Read/Write Access
Address (RWA) Register. When completed (without error), the
Nexus block decrements the number in the CNT field and clears the
DV bit. This indicates that the device is ready for the next access.

e. Repeat Step 2b until the CNT field has a value of 0. When this
occurs, the AC bit will be cleared indicating the end of the write
access.

Access with the Auxiliary Port: Refer to 6.4.10.1 Read/Write Access of Nexus
Recommended Registers (NRRs)—Protocol Examples on Page 74.

Page 136 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
B.6.1 Read/Write Access Control/Status (RWCS) Register

The SZ, RW, PR, MAP and CNT fields are written to by the tool to set up access
attributes. The AC field is asserted by the tool to initiate an access or is negated
by the tool to cancel an access in progress. The AC field is negated by the
embedded processor upon completion of the access requested by the tool.

SZ and RW determine the access size and whether it is a read or write. The PR
bits are intended to allow for implementations that perform a variety of access
priorities, from a lowest-intrusive access (0b00) to a highest-intrusive access
(0b11). The exact meaning of the encodings are vendor defined.

The MAP bits are intended to allow for multiple memory maps to be accessed. The
primary processor memory map should be designated as the default (MAP = 000).
Secondary memory maps, such as special-purpose processor memory maps,
which are implemented in some processor architectures may also require access.

To request a block move, CNT is set by the tool to a value greater than 0. The
address range for a block move is from RWA to RWA + CNT. The CNT field should
not be decremented by the embedded processor during an in-progress block
move. Upon completion of a block move the embedded processor should negate
the AC field and set the CNT field to a value of 0.

If the RWCS Register is written to while any single or block access is in progress,
the target will terminate the access, including any remaining block accesses,
within one access cycle of the target. In this case, the access in progress when
the RWCS Register is written is not guaranteed to complete (see Table B-10).

If an error is generated during a block access, the block access will be terminated
(see Table B-11).

Table B-10 Read/Write Access Status Bit Encoding

DV ERR Read Action Write Action

0 0 Read Access has not completed Write Access completed without error

0 1 Read Access error has occurred Write Access error has occurred

1 0 Read Access completed without error Write Access has not completed

1 1 Not Allowed Not allowed
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 137 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

B.6.2 Read/Write Access Address (RWA) Register

The RWA Register is used by the tool to program the address of user memory-
mapped resource to be accessed, or the lowest address (i.e. lowest unsigned
value) for a block move (CNT > 0). The address range for a block move is from
RWA to RWA + CNT.

The size of RWA is vendor defined (see Table B-12).

Table B-11 Read/Write Block Access

Bit
Number

Field
Name

Description

31 AC
AC - Access Control
0 = End Access
1 = Start access

30 RW
RW - Read/Write
0 = Read access
1 = Write access

29–27 SZ

SZ - Word Size
000 = 8-bit
001 = 16-bit
010 = 32-bit
011 = 64-bit
1xx = Reserved

26–24 MAP
MAP - Map Select
000 = Primary memory map
001–111 = Other memory maps

23–22 PR
PR - Priority
bb = Access priority

21–16 — Reserved

15–2 CNT
CNT - Access Count
hhhh = Number of accesses of word size SZ

1 ERR Last access generated an error

0 DV Data Valid in RWD

Table B-12 RWA Register

Bit
Number

Packet
Name

Description

Vendor
defined

RWA User memory-mapped address to be accessed.

Page 138 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
B.6.3 Read/Write Access Data (RWD) Register

The RWD Register is used to contain the data to be written for the next block write
access, and the read data for completed read accesses.

The size of RWD is vendor defined (see Table B-13).

For read and write accesses the register may contain different sizes of data. The
following is the organization for three different sizes of data.

B.7 Watchpoint Trigger (WT) Register

The WT Register allows the watchpoints defined in the breakpoint/watchpoint
registers (refer to B.9 Breakpoint/Watchpoint Registers on Page 142) to be
assigned to trigger actions. PTS and PTE select watchpoints to enable and
disable program trace, effectively producing an address and/or data related
“window” for triggering program trace. DTS and DTE select watchpoints to enable
and disable data trace, effectively producing an address and/or data related
“window” for triggering data trace. Program and/or data trace is triggered via the
WT setting if the TM field (refer to B.3 Development Control Register on Page
130) has not already enabled program and/or data trace.

MSS selects a watchpoint to trigger memory substitution. (See Table B-14.) Refer
to B.3 Development Control Register on Page 130 for additional fields related to
memory substitution.

The WT register is recommended for embedded processors complying to class 4.

Table B-13 RWD Register

Bit
Number

Packet
Name

Description

Vendor
defined

RWD
Data read from a user memory-mapped location or to
be written to a user memory-mapped location.

LSB

8 bit Reserved - Read as Zeros LS Byte

16 bit Reserved - Read as Zeros MS Byte LS Byte

32 bit MS Byte LS Byte
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 139 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

B.8 Data Trace Registers

The data trace registers allow DTM to be restricted to reads, writes or both for a
programmable user address range. Three registers are used for selecting the data
trace attributes:

• Data Trace Control (DTC)

• Data Trace Start Address (DTSA)

• Data Trace End Address (DTEA)

These registers are recommended for embedded processors complying to class 3
or 4.

B.8.1 Data Trace Control (DTC) Register

RWTn selects for each data trace channel (up to 6 data trace channels) if no trace
messages are generated, or if reads, writes or both generate Data Trace
Messages. If RWTn selects data trace for reads and/or writes, all selected
accesses within the address range specified by DTSA to DTEA, end points
inclusive, will generate Data Trace Messages (see Table B-15).

Table B-14 WT Register

Bit
Number

Field
Name

Description

31–29 PTS
PTS - Program Trace Start
000 = Trigger disabled
001 = 111 Use watchpoint 1–7

28–26 PTE
PTE - Program Trace End
000 = Trigger disabled
001 = 111 Use watchpoint 1–7

25–23 DTS
DTS - Data Trace Start
000 = Trigger disabled
001 = 111 Use watchpoint 1–7

22–20 DTE
DTE - Data Trace End
000 = Trigger disabled
001 = 111 Use watchpoint 1–7

19–17 MSS
MSS - Memory Substitution Start
000 = Trigger disabled
001 = 111 Use watchpoint 1–7

16–8 — Reserved

7–0 — Vendor defined

Page 140 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

B.8.2 Data Trace Start and End Address Registers (DTSA and DTEA)

The DTSA and DTEA Registers are used by the tool to program the start and end
addresses for a data trace channel. If RWTn selects data trace for reads and/or
writes, all selected accesses within the address range specified by DTSA to
DTEA, end points inclusive, will generate Data Trace Messages.

The size of the DTSA and DTEA Registers are device specific (see Table B-16
and Table B-17).

Table B-15 DTC Register

Bit
Number

Field
Name

Description

31–30 RWT0

RWT0 - Read/Write Trace 0
00 = No Data Trace Messages generated
x1 = Enable data read trace
1x = Enable data write trace

29–28 RWT1

RWT1 - Read/Write Trace 1
00 = No Data Trace Messages generated
x1 = Enable data read trace
1x = Enable data write trace

27–26 RWT2

RWT2 - Read/Write Trace 2
00 = No Data Trace Messages generated
x1 = Enable data read trace
1x = Enable data write trace

25–24 RWT3

RWT3 - Read/Write Trace 3
00 = No Data Trace Messages generated
x1 = Enable data read trace
1x = Enable data write trace

23–22 RWT4

RWT4 - Read/Write Trace 4
00 = No Data Trace Messages generated
x1 = Enable data read trace
1x = Enable data write trace

21–20 RWT5

RWT5 - Read/Write Trace 5
00 = No Data Trace Messages generated
x1 = Enable data read trace
1x = Enable data write trace

19–8 — Reserved

7–0 — Vendor defined

Table B-16 DTSA Register

Bit
Number

Packet
Name

Description

Vendor
defined

DTSA Start address for data trace visibility.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 141 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
B.9 Breakpoint/Watchpoint Registers

The breakpoint/watchpoint registers provide control for breakpoint and watchpoint
logic. Three registers are used for controlling the breakpoints/watchpoints:

• Breakpoint/Watchpoint Control (BWC)

• Breakpoint/Watchpoint Address (BWA)

• Breakpoint/Watchpoint Data (BWD)

These registers are recommended for embedded processors complying to class 4.

B.9.1 Breakpoint/Watchpoint Control Register (BWC)

For all breakpoints to be enabled, DBE must be set to enable debug mode (refer
to B.3 Development Control Register on Page 130). When debug mode is
enabled, individual breakpoints can be enabled with BWE. Watchpoints are
enabled with BWE regardless of the state of DBE.

BRW selects if a read, write or any access will cause a breakpoint. BME selects
the data mask enable to be on a particular byte, half-word (2-byte) or word (4-
byte) lane. Since the breakpoint data size unit is device specific, BSU is read-only
to indicate to the tool if the data size unit is 1 byte, 2 bytes or 4 bytes. For example
with 32-bit machines, the 4 most significant bits of BME may be reserved and the
least significant bits may be used to enable masking of byte lanes (assuming BSU
= 00). BWO selects the breakpoint operand as instruction or data, if the BWA and/
or the BWD Registers are used for the breakpoint condition.

EOC selects if the breakpoint status indication is output on the EVTO pin (see
Table B-18).

Watchpoints can be assigned actions listed in Table B-14.

If logical conditions of breakpoint or watchpoint detections are needed, or if
counting N watchpoints is needed for development, the vendor-defined field can
be defined to provide these or other features.

Table B-17 DTEA Register

Bit
Number

Packet
Name

Description

Vendor
defined

DTEA End address for data trace visibility.

Page 142 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface

B.9.2 Breakpoint/Watchpoint Address (BWA)

BWA is used to compare against address operands (address of instruction or
data). The size of the BWA is vendor defined (see Table B-19).

Table B-18 BWC Register

Bit
Number

Field
Name

Description

31–30 BWE

BWE - Breakpoint/Watchpoint Enable
00 = Disabled
01 = Breakpoint enabled
10 = Reserved
11 = Watchpoint enabled

29–28 BRW

BRW - Breakpoint/Watchpoint Read/Write Select
00 = Break on read access
01 = Break on write access
10 = Break on any access
11 = Reserved

27–20 BME

BME - Breakpoint/Watchpoint Data Mask Enable
1XXXXXXXX = Mask MS data size unit

XXXXXXXX1 = Mask LS data size unit

19–18 BSU

BSU - Breakpoint/Watchpoint Data Size Unit (read only)
00 = Data size unit is 1 byte
01 = Data size unit is 2 bytes
10 = Data size unit is 4 bytes
11 = Reserved

17–15 BWO

BWO - Breakpoint/Watchpoint Operand
1XX = Compare with BWA value
X1X = Compare with BWD value
XX0 = Compare for instruction types
XX1 = Compare for data types

14 EOC

EOC - EVTO Control (optional)
0 = Breakpoint/watchpoint status indication not output

on EVTO
1 = Breakpoint/watchpoint status indication is output on

EVTO

13–8 — Reserved

7–0 — Vendor defined

Table B-19 Breakpoint/Watchpoint Address

Bit
Number

Packet
Name

Description

Vendor
defined

BWA
Address of instruction or data for breakpoint or watch-
point generation.

…

Copyright © 1999 IEEE-ISTO. All rights reserved. Page 143 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
B.9.3 Breakpoint/Watchpoint Data (BWD)

BWD is used to compare against data operands (instruction opcode or data
value). The size of the BWD is vendor defined (see Table B-20).

B.10 Nexus Recommended Registers (NRRs) Concatenated for Better Transfer
Efficiency

The NRRs may be concatenated as shown in Table B-21 for better efficiency of
transfers between the target and tool. For example, performing writes to configure
the RWCS, RWA and RWD Registers to write a value to a user memory-mapped
location requires only one Write Register Message instead of three (one for each
register).

For the Write Register Message or Read/Write Response Message, the REGVAL
packet will contain the right-most register (LSB first), followed by the center
register (LSB first), followed by the left-most register of Table B-21.

Table B-20 Breakpoint/Watchpoint Data

Bit
Number

Packet
Name

Description

Vendor
defined

BWD
Instruction opcode or data value for breakpoint or
watchpoint generation.

Table B-21 Nexus Recommended Registers (NRRs) Concatenated

Nexus Concatenated Registers Register Index
Read/
Write

RWCS || RWA || RWD 55 R/W

BWC0 || BWA0 || BWD0 56 R/W

BWC1 || BWA1 || BWD1 57 R/W

BWC2 || BWA2 || BWD2 58 R/W

BWC3 || BWA3 || BWD3 59 R/W

BWC4 || BWA4 || BWD4 60 R/W

BWC5 || BWA5 || BWD5 61 R/W

BWC6 || BWA6 || BWD6 62 R/W

BWC7 || BWA7 || BWD7 63 R/W

Page 144 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
APPENDIX C
Data Acquisition in Tuning for Applications

For applications such as automotive powertrain, disk drive control and wireless,
visibility of selected program variables (called calibration variables) must be
provided to enable accurate tuning of selected program constants (called
calibration constants). When calibration variables are stored in internal RAM, the
data must be acquired from the embedded processor during runtime. Additionally,
when calibration constants are stored in internal ROM, these constants must be
tuned during runtime to determine the optimal values.

C.1 Data Acquisition or Measurement of Calibration Variables

Two options are explained in the following paragraphs to meet these data
acquisition needs. The first utilizes DTM and the second utilizes the read/write
access feature. Lastly, support in the Nexus standard for program tuning is
explained.

DTM Option: A technique to accomplish data acquisition would be to set up a data
trace window for all internal embedded processor memory-mapped locations which
require acquisition. Depending upon the application, this window may include non-
calibration data. Coherency (demarcating old data from new data) would be
provided with a specific embedded processor data write sequence or a watchpoint
occurrence and message. Care should be taken to assure that the data trace
bandwidth requirements do not exceed the performance capability of the AUX.

Alternately, the embedded processor could queue up calibration variables for
acquisition by the development tool by writing them to contiguous locations in a
data trace window, e.g. contiguous locations in system RAM. Dedicated locations
in the data trace window would be used to distinguish each group of calibration
variables. Coherency would be provided with a specific embedded processor data
write sequence or a watchpoint occurrence and message. Again, care should be
taken to assure that the data trace bandwidth requirements do not exceed the
performance capability of the AUX.

Read/Write Access Option: A technique to accomplish data acquisition would
be to designate contiguous locations in a system RAM for all calibration variables.
Calibration variables would be copied by the embedded processor from the
source to these RAM locations prior to acquisition by the tool. A specific
embedded processor data write sequence or a watchpoint occurrence and
message would be used to signal the tool to acquire the calibration variables. The
tool would acquire the calibration variables using the read/write access feature.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 145 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
C.2 Tuning of Calibration Constants

The Nexus standard provides features to support program execution tuning, also
referred to as calibration constant tuning. This is required when tuning electro-
mechanical systems for a variety of loads, such as for automotive powertrain and
disk drive applications.

The Nexus standard provides download capability for calibration constants to be
tuned during runtime using a vendor-defined tuning block internal to the
embedded processor. The read/write access feature provides access to vendor-
defined blocks, either via the IEEE 1149.1 interface or the auxiliary pin interface,
when the processor is halted or running. The auxiliary pin interface may be
preferred for better performance capability, e.g. if simultaneous tuning and rapid
prototyping are required.

Prior art solutions used as the vendor-defined tuning block include a bondout
version of the embedded processor that allows an external RAM to overlay
calibration constants in the internal ROM. The overlay RAM is accessible by the
development tool. To provide coherency of modifications from the development
tool, the overlay may comprise two identical RAMs, which are alternately enabled
for overlay. The disabled RAM would be available to the tool for the latest tuning
information, and would then be swapped in. For this prior art, all accesses could
be managed by the development tool via the AUX.

Page 146 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
APPENDIX D
Topics for Discussion

This appendix contains some ideas that have been discussed within the
consortium. Your feedback would also be appreciated. The consortium web site at
http://www.ieee-isto.org/Nexus5001/ can be used to provide feedback.

D.1 Minor Classification Changes/Ownership Trace Alternative Use

Successful adoption of this standard will be in part tied to the additional cost of
implementing a chosen classification of Nexus on a vendor’s embedded
processor. Of all the Nexus features, the Data Trace feature may require the most
additional silicon cost. Due to this, the Data Trace feature may not be acceptable
for all applications. To help cover the need for basic data visibility if the Data Trace
feature is not implemented, it has been suggested that the OTM feature be
allowed to also support data visibility.

As defined in this specification, an OTM is generated by a client writing to a
device-specific address the current process or task ID. It is suggested that writes
of other types of operands also be allowed, such as the value for data parameters.
To identify which data parameter is displayed by an OTM, the PROCESS packet
(see SECTION 6) should include both an internal (or reduced) address for the
data parameter and the value of the data parameter. To indicate if the OTM
contains a process/task ID or a data parameter address and value, the upper
portion of the PROCESS packet (as decoded by the embedded processor’s API)
should be zero or the lower portion should be the process/task ID.

Since the packet length for PROCESS is device specific, any packet length may
be implemented.

Finally, if data trace is truly considered for only higher-scale embedded
processors, it should be moved from class 3 to class 4.

D.2 Reduced Pin Count Option

Some applications require a special, extremely low pin count for the Nexus
interface. This may be due to the small target board size or to environmental
reasons. The ideal case would be two high-speed signals—one for input and one
for output.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 147 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
A suggestion has been made to evaluate if a reduced 4-pin Nexus interface may
be supported. This interface would support the basic Nexus protocol but with
fewer pins.

D.3 Multiple Nexus Compliant Embedded Processors on a Single Target Board

Some more discussion is required to ensure that this can readily be accomplished
with the current definition of the Nexus AUX.

The designated approaches are as follows:

• Provide a separate board connector and tool for each embedded
processor. This is not ideal since multiple tools are required.

• Provide a shared board connector and tool for all embedded processors,
but with a separate EVTI connector signal for each embedded
processor. The EVTI signals can be used to enable the Nexus interface
on a single embedded processor, while the Nexus interfaces on the
remaining embedded processors are disabled. A single tool can be
used, however, only a single embedded processor can be debugged at
one time (while all others are also running). There are currently no
connector recommendations for this application.

Feedback is solicited to determine if these are the required use models for
development with multiple embedded processors, and if there are any problems
that may not have been considered.

Support for multiple clients on a single embedded processor is addressed by this
standard. A single client may be selected for receiving messages to the
embedded processor. The source client generating output messages may also be
identified via a packet in applicable Public Messages.

D.4 High-Frequency Auxiliary Port

For AUX implementations which exceed 200 MHz, a reduced DC voltage
specification will likely be required. Electrical specifications have been
investigated and connector pin(s), in addition to those shown in Table A-1, may be
needed for reference voltage.

D.5 Additional Functionality for Event-In Pin

Add the ability to configure EVTI to optionally force the client into Debug Mode,
Start BTM, start DTM, etc. This allows for a tool to use an external system event,
such as an analog signal value change, to force the configured clients into Debug
Mode or Start Trace Messages, etc.

Page 148 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
D.6 Add an Exception Status Packet to Indirect Branch Messages

With the current definition, there is no difference between an Indirect Branch
Message transmitted because of a branch instruction and a change of flow
caused by an exception event. It is proposed that a 1-bit packet be added to the
Indirect Branch Messages to indicate whether or not the message was the result
of an exception.

Currently when reconstructing opcode flow, the logic analyzer tool checks whether
or not a branch opcode exists at the location where an Indirect Branch Message
was transmitted. If not, an out-of-sync message is tagged on that location. This is
done because of historical problems encountered when program files are revised
and reloaded into the target system and the tool is not informed of the new
program. Information in the program files displayed can thus be subtly different
from what was actually executed by the processor, often causing customers to
waste precious time chasing non-existent problems. With this 1-bit packet, the tool
could still reliably inform the customer of a program file synchronization problem.

D.7 Additional use of RDY pin

There have been suggestions to allow for the RDY pin to function similarly to the
MSEO pin. Using this suggestion, the IEEE 1149.1 interface may be used as a
low-bandwidth substitute for the AUX.

When the Output Public Message Register has been selected and the RDY pin is
asserted, the development tool provides the IEEE 1149.1 clock, and then the RDY
pin behaves as per the MSEO protocol. The development tool shifts out the
message via the IEEE 1149.1 TDO pin, as determined by the message shifted out
and the MSEO protocol.

Once the development tool starts reading the Output Public Message Register,
the RDY pin will provide packet end indication of variable length packets and
message end indications. Thus the external tool will be able to determine the
message length to shift out and the size of the variable length fields.

After the Output Public Message Register has been shifted out, the IEEE 1149.1
state machine need not be transitioned to IDLE, but can be stationed at SELECT-
DR_SCAN until the next message ready indication is signaled on the RDY pin.
This way, IEEE 1149.1 related overhead may be minimized to a few cycles.
Copyright © 1999 IEEE-ISTO. All rights reserved. Page 149 of 150

IEEE-ISTO 5001™-1999 The Nexus 5001 Forum™ Standard for a Global Embedded Processor Debug Interface
APPENDIX E
References

IEEE Std 1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan
Architecture (Includes IEEE Std 1149.1a-1993).

The Evolution of Powertrain Microcontrollers and its Impact on Development
Processes and Tools, Motorola/Hewlett Packard white paper.

Page 150 of 150 Copyright © 1999 IEEE-ISTO. All rights reserved.

	Title
	About the IEEE-ISTO
	About the Nexus 5001 Forum
	IEEE Vehicular Technology Society Recognition
	Preface
	CONTENTS
	SECTION 1 Introduction
	1.1�� Terms and Definitions
	1.2�� Conventions

	SECTION 2 Basic Development Needs for Embedded Processors
	2.1�� Required Development Features for Embedded Processors
	2.2�� Additional Needs for Automotive Powertrain and Disk Drive Development

	SECTION 3 Compliance and Performance Classifications
	3.1�� Compliance Classification
	3.1.1�� Compliance Sub-Class for Application-Specific Development Needs

	3.2�� Performance Classification
	3.2.1�� Interpreting Performance Classification

	3.3�� Other Terminology within the Nexus Standard

	SECTION 4 Development Interface and Features
	4.1�� Development Interface
	4.1.1�� IEEE 1149.1 Interface
	4.1.2�� Nexus Auxiliary Pin Interface

	4.2�� Development Features
	4.2.1�� Application Programming Interface (API)
	4.2.2�� Development Control and Status
	4.2.3�� Read/Write Access
	4.2.4�� Ownership Trace
	4.2.5�� Program Trace
	4.2.6�� Data Trace
	4.2.7�� Memory Substitution
	4.2.8�� Breakpoints/Watchpoints
	4.2.9�� Port Replacement and Sharing
	4.2.10�� Data Acquisition

	SECTION 5 Application Programming Interface (API)
	5.1�� Introduction
	5.2�� Overview
	5.3�� Vendor Extensions
	5.4�� Target-Specific Issues
	5.5�� Deliverables
	5.6�� Concepts and Data Types
	5.6.1�� Naming Conventions
	5.6.2�� Header Files
	5.6.3�� Status/Error Values

	5.7�� Target Abstraction Layer (TAL)
	5.7.1�� Opening a Connection—nx_Open
	5.7.2�� Closing a Connection—nx_Close
	5.7.3�� Controlling a Connection—nx_Control
	5.7.4�� Writing Target Memory—nx_WriteMem
	5.7.5�� Reading Target Memory—nx_ReadMem
	5.7.6�� Setting an event—nx_SetEvent
	5.7.7�� Clearing an Event—nx_ClearEvent
	5.7.8�� Reading an Event—nx_GetEvent

	5.8�� Emulator HAL
	5.8.1�� Opening a Connection—nxhal_Open
	5.8.2�� Closing a Connection—nxhal_Close
	5.8.3�� Writing to a Nexus IEEE 1149.1 Register—nxhal_WriteNRR
	5.8.4�� Reading a Nexus IEEE 1149.1 Register—nxhal_ReadNRR
	5.8.5�� Reading an Event—nxhal_GetEvent

	SECTION 6 Public Messages
	6.1�� Compliance Requirements for Public Messages
	6.2�� Definitions and Terminology
	6.3�� Complete List of Nexus Public Messages
	6.4�� Detailed Description of Public Messages
	6.4.1�� Debug Status
	6.4.2�� Device Identity
	6.4.3�� Ownership Trace
	6.4.4�� Program Trace
	6.4.5�� Data Trace
	6.4.6�� Data Acquisition
	6.4.7�� Error
	6.4.8�� Watchpoint Hit
	6.4.9�� Port Replacement
	6.4.10�� Read/Write Access of Nexus Recommended Development Registers
	6.4.11�� Read/Write Access of Memory-Mapped Locations and Memory Substitution
	6.4.12�� Memory Substitution

	SECTION 7 Auxiliary Port Signals
	7.1�� Pin Functions

	SECTION 8 Auxiliary Port Message Protocol
	8.1�� Rules for Messages

	SECTION 9 IEEE 1149.1 Message Protocol
	9.1�� IEEE 1149.1 Compatibility
	9.1.1�� Optional Ready (RDY) Output Pin

	9.2�� Selecting the IEEE 1149.1 Port
	9.3�� Selecting an IEEE 1149.1 Register
	9.4�� Read/Write Access via the IEEE 1149.1 Port
	9.5�� Reading and Writing Public Messages
	9.6�� Reading Unsolicited Messages

	SECTION 10 Miscellaneous Topics
	10.1�� Multiple Address Threads
	10.2�� Repeat Instructions and Hardware Loops
	10.2.1�� Visibility for Repeat Instructions
	10.2.2�� Visibility for Hardware Loops

	10.3�� Simultaneous Development of Multiple Embedded Processors

	APPENDIX A Connector and Electrical Specifications
	A.1�� Connection Options
	A.1.1�� Signal Descriptions

	A.2�� Connector A (IEEE 1149.1 Interface)
	A.2.1�� Signal Layout
	A.2.2�� Implementation Considerations
	A.2.3�� Mechanical Specifications

	A.3�� Connector B
	A.3.1�� Signal Layout
	A.3.2�� Implementation Considerations
	A.3.3�� Mechanical Specifications

	A.4�� Connector C (Auxiliary Port and Port Replacement)
	A.4.1�� Signal Layout
	A.4.2�� Implementation Considerations
	A.4.3�� Mechanical Specifications

	A.5�� DC Electrical Characteristics
	A.6�� AC Electrical Characteristics—General
	A.7�� AC Electrical Characteristics—IEEE 1149.1 Interface
	A.8�� AC Electrical Characteristics—Auxiliary Port
	A.9�� Terminations

	APPENDIX B Recommendations for Access to Control and Status Registers
	B.1�� Device ID (DID) Register
	B.2�� Client Select Control (CSC) Register
	B.3�� Development Control Register
	B.4�� Development Status (DS) Register
	B.5�� User Base Address (UBA) Register
	B.6�� Read/Write Access Registers
	B.6.1�� Read/Write Access Control/Status (RWCS) Register
	B.6.2�� Read/Write Access Address (RWA) Register
	B.6.3�� Read/Write Access Data (RWD) Register

	B.7�� Watchpoint Trigger (WT) Register
	B.8�� Data Trace Registers
	B.8.1�� Data Trace Control (DTC) Register
	B.8.2�� Data Trace Start and End Address Registers (DTSA and DTEA)

	B.9�� Breakpoint/Watchpoint Registers
	B.9.1�� Breakpoint/Watchpoint Control Register (BWC)
	B.9.2�� Breakpoint/Watchpoint Address (BWA)
	B.9.3�� Breakpoint/Watchpoint Data (BWD)

	B.10�� Nexus Recommended Registers (NRRs) Concatenated for Better Transfer Efficiency

	APPENDIX C Data Acquisition in Tuning for Applications
	C.1�� Data Acquisition or Measurement of Calibration Variables
	C.2�� Tuning of Calibration Constants

	APPENDIX D Topics for Discussion
	D.1�� Minor Classification Changes/Ownership Trace Alternative Use
	D.2�� Reduced Pin Count Option
	D.3�� Multiple Nexus Compliant Embedded Processors on a Single Target Board
	D.4�� High-Frequency Auxiliary Port
	D.5�� Additional Functionality for Event-In Pin
	D.6�� Add an Exception Status Packet to Indirect Branch Messages
	D.7�� Additional use of RDY pin

	APPENDIX E References

