
SECTION 9
INSTRUCTION SET

This section describes individual instructions, including a description of instruction
formats and notation and an alphabetical listing of RCPU instructions by mne-
monic.

9.1 Instruction Formats

Instructions are four bytes long and word-aligned, so when instruction addresses
are presented to the processor (as in branch instructions) the two low-order bits are
ignored. Similarly, whenever the processor develops an instruction address, its two
low-order bits are zero.

Bits 0 to 5 always specify the primary opcode. Many instructions also have a sec-
ondary opcode. The remaining bits of the instruction contain one or more fields for
the different instruction formats.

Some instruction fields are reserved or must contain a predefined value as shown
in the individual instruction layouts. If a reserved field does not have all bits set to
zero, or if a field that must contain a particular value does not contain that value,
the instruction form is invalid.

9.1.1 Split Field Notation

Some instruction fields occupy more than one contiguous sequence of bits or oc-
cupy a contiguous sequence of bits used in permuted order. Such a field is called
a split field. In the format diagrams and in the individual instruction layouts, the
name of a split field is shown in small letters, once for each of the contiguous se-
quences. In the pseudocode description of an instruction having a split field and in
some places where individual bits of a split field are identified, the name of the field
in small letters represents the concatenation of the sequences from left to right.
Otherwise, the name of the field is capitalized and represents the concatenation of
the sequences in some order, which need not be left to right, as described for each
affected instruction.

9.1.2 Instruction Fields

Table 9-1 describes the instruction fields used in the various instruction formats.
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-1

Table 9-1 Instruction Formats

Field Bits Description

 AA 30 Absolute address bit

0 The immediate field represents an address relative to the current instruction ad-
dress. The effective address of the branch is either the sum of the LI field sign-ex-
tended to 32 bits and the address of the branch instruction or the sum of the BD field
sign-extended to 32 bits and the address of the branch instruction.

1 The immediate field represents an absolute address. The effective address of the
branch is the LI field sign-extended to 32 bits or the BD field sign-extended to 32 bits.

crbA 11:15 Field used to specify a bit in the CR to be used as a source.

crbB 16:20 Field used to specify a bit in the CR to be used as a source.

BD 16:29 Immediate field specifying a 14-bit signed two's complement branch displacement that is
concatenated on the right with 0b00 and sign-extended to 32 bits.

crfD 6:8 Field used to specify one of the CR fields or one of the FPSCR fields as a destination.

crfS 11:13 Field used to specify one of the CR fields or one of the FPSCR fields as a source.

BI 11:15 Field used to specify a bit in the CR to be used as the condition of a branch conditional
instruction.

BO 6:10 Field used to specify options for the branch conditional instructions. The encoding is
described in 4.6 Flow Control Instructions.

crbD 6:10 Field used to specify a bit in the CR or in the FPSCR as the destination of the result of an
instruction.

CRM 12:19 Field mask used to identify the CR fields that are to be updated by the mtcrf instruction.

d 16:31 Immediate field specifying a 16-bit signed two's complement integer that is sign-extended
to 32 bits.

FM 7:14 Field mask used to identify the FPSCR fields that are to be updated by the mtfsf
instruction.

frA 11:15 Field used to specify an FPR as a source of an operation.

frB 16:20 Field used to specify an FPR as a source of an operation.

frC 21:25 Field used to specify an FPR as a source of an operation.

frS 6:10 Field used to specify an FPR as a source of an operation.

frD 6:10 Field used to specify an FPR as the destination of an operation.

IMM 16:19 Immediate field used as the data to be placed into a field in the FPSCR.

LI 6:29 Immediate field specifying a 24-bit, signed two's complement integer that is concatenated
on the right with 0b00 and sign-extended to 32 bits.

LK 31 Link bit.

0 Does not update the link register.
1 Updates the link register. If the instruction is a branch instruction, the address of the

instruction following the branch instruction is placed into the link register.

MB, M 21:25, 26:30 Fields used in rotate instructions to specify a 32-bit mask consisting of 1-bits from bit
MB+32 through bit ME+32 inclusive, and 0-bits elsewhere, as described in 4.3.4 Integer
Rotate and Shift Instructions.
 MOTOROLA INSTRUCTION SET RCPU

9-2 Revised 1 February 1999 REFERENCE MANUAL

9.1.3 Notation and Conventions

The operation of some instructions is described by a register transfer language
(RTL). See Table 9-2 for a list of RTL notation and conventions used throughout
this chapter.

NB 16:20 Field used to specify the number of bytes to move in an immediate string load or store.

opcode 0:5 Primary opcode field.

OE 21 Used for extended arithmetic to enable setting OV and SO in the XER.

rA 11:15 Field used to specify a GPR to be used as a source or as a destination.

rB 16:20 Field used to specify a GPR to be used as a source.

Rc 31 Record bit

0 Does not update the condition register.
1 Updates the condition register (CR) to reflect the result of the operation.

For integer instructions, CR[0:3] are set to reflect the result as a signed quantity. The
result as an unsigned quantity or a bit string can be deduced from the EQ bit. For
floating-point instructions, CR[4:7] are set to reflect floating-point exception, floating-
point enabled exception, floating-point invalid operation exception, and floating-point
overflow exception.

rS 6:10 Field used to specify a GPR to be used as a source.

rD 6:10 Field used to specify a GPR to be used as a destination.

SH 16:20 Field used to specify a shift amount.

SIMM 16:31 Immediate field used to specify a 16-bit signed integer.

SPR 11:20 Field used to specify a special purpose register for the mtspr and mfspr instructions. The
encoding is described in 4.7.2 Move to/from Special Purpose Register Instructions.

TO 6:10 Field used to specify the conditions on which to trap. The encoding is described in 4.6.7
Trap Instructions.

UIMM 16:31 Immediate field used to specify a 16-bit unsigned integer.

XO 21:30, 22:30,
26:30, or 30

Secondary opcode field.

Table 9-1 Instruction Formats (Continued)

Field Bits Description
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-3

Table 9-2 RTL Notation and Conventions

Notation/Convention Meaning

← Assignment

¬ NOT logical operator

∗ Multiplication

÷ Division (yielding quotient)

+ Two’s-complement addition

- Two’s-complement subtraction, unary minus

=, ≠ Equals and Not Equals relations

<,≤,>,≥ Signed comparison relations

<U,>U Unsigned comparison relations

? Unordered comparison relation

&, | AND, OR logical operators

|| Used to describe the concatenation of two values (i.e., 010 || 111 is the same as 010111)

⊕, ≡ Exclusive-OR, Equivalence logical operators ((a≡b) = (a⊕¬b))

0bnnnn A number expressed in binary format

0xnnnn A number expressed in hexadecimal format

(rA|0) The contents of rA if the rA field has the value 1–31, or the value 0 if the rA field is 0

. (period) As the last character of an instruction mnemonic, a period (.) means that the instruction
updates the condition register field.

CEIL(x) Least integer Š x

DOUBLE(x) Result of converting x form floating-point single format to floating-point double format.

EXTS(x) Result of extending x on the left with sign bits

GPR(x) General Purpose Register x

MASK(x, y) Mask having ones in positions x through y (wrapping if x > y) and 0’s elsewhere

MEM(x, y) Contents of y bytes of memory starting at address x

ROTL[32](x, y) Result of rotating the 64-bit value x||x left y positions, where x is 32 bits long

SINGLE(x) Result of converting x from floating-point double format to floating-point single format.

SPR(x) Special Purpose Register x

x(n) x is raised to the nth power

(n)x The replication of x, n times (i.e., x concatenated to itself n-1 times). (n)0 and (n)1 are
special cases

x[n] n is a bit or field within x, where x is a register

TRAP Invoke the system trap handler
 MOTOROLA INSTRUCTION SET RCPU

9-4 Revised 1 February 1999 REFERENCE MANUAL

Precedence rules for RTL operators are summarized in Table 9-3.

Note that operators higher in Table 9-3 are applied before those lower in the table.
Operators at the same level in the table associate from left to right, from right to left,
or not at all, as shown.

undefined An undefined value. The value may vary from one implementation to another, and from
one execution to another on the same implementation.

characterization Reference to the setting of status bits, in a standard way that is explained in the text

CIA Current instruction address, which is the 32-bit address of the instruction being described
by a sequence of pseudocode. Used by relative branches to set the next instruction
address (NIA). Does not correspond to any architected register.

NIA Next instruction address, which is the 32-bit address of the next instruction to be
executed (the branch destination) after a successful branch. In pseudocode, a successful
branch is indicated by assigning a value to NIA. For instructions which do not branch, the
next instruction address is CIA +4.

if...then...else... Conditional execution, indenting shows range, else is optional

do Do loop, indenting shows range. To and/or by clauses specify incrementing an iteration
variable, and while and/or until clauses give termination conditions, in the usual manner.

leave Leave innermost do loop, or do loop described in leave statement

Table 9-3 Precedence Rules

Operators Associativity

x[n], function evaluation Left to right

(n)x or replication,
x(n) or exponentiation

Right to left

unary -, ¬ Right to left

∗, ÷ Left to right

+,- Left to right

|| Left to right

=,¦,<,ð,>,Š,<U,>U,? Left to right

&,⊕,≡ Left to right

| Left to right

– (range) None

← None

Table 9-2 RTL Notation and Conventions (Continued)

Notation/Convention Meaning
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-5

9.2 RCPU Instruction Set

The remainder of this chapter lists and describes the RCPU instruction set. The in-
structions are listed in alphabetical order by mnemonic. Figure 9-1 shows the for-
mat for each instruction description page.

Figure 9-1 Instruction Description

addx addx
Add Integer Unit

add rD,rA,rB (OE=0 Rc=0)

add. rD,rA,rB (OE=0 Rc=1)

addo rD,rA,rB (OE=1 Rc=0)

addo. rD,rA,rB (OE=1 Rc=1)

rD ← (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: SO, OV (if OE=1)

0 5 6 10 11 15 16 20 21 22 30 31
0x1F D A B OE 0x10A Rc

Instruction Name

Instruction Syntax

Instruction Encoding

RTL Description of
Instruction Operation
Text Description of
Instruction Operation
Registers Altered by Instruction
 MOTOROLA INSTRUCTION SET RCPU

9-6 Revised 1 February 1999 REFERENCE MANUAL

addx addx
Add Integer Unit

add rD,rA,rB (OE=0 Rc=0)
add. rD,rA,rB (OE=0 Rc=1)
addo rD,rA,rB (OE=1 Rc=0)
addo. rD,rA,rB (OE=1 Rc=1)

rD ← (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0x10A Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-7

addcx addcx
Add Carrying Integer Unit

addc rD,rA,rB (OE=0 Rc=0)
addc. rD,rA,rB (OE=0 Rc=1)
addco rD,rA,rB (OE=1 Rc=0)
addco. rD,rA,rB (OE=1 Rc=1)

rD ← (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0xA Rc
 MOTOROLA INSTRUCTION SET RCPU

9-8 Revised 1 February 1999 REFERENCE MANUAL

addex addex
Add Extended Integer Unit

adde rD,rA,rB (OE=0 Rc=0)
adde. rD,rA,rB (OE=0 Rc=1)
addeo rD,rA,rB (OE=1 Rc=0)
addeo. rD,rA,rB (OE=1 Rc=1)

rD ← (rA) + (rB) + XER[CA]

The sum (rA) + (rB) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0x8A Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-9

addi addi
Add Immediate Integer Unit

addi rD,rA,SIMM

if rA=0 then
rD←EXTS(SIMM)

else
rD←(rA)+EXTS(SIMM)

The sum (rA| 0) + SIMM is placed into rD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Table 9-4 Simplified Mnemonics for addi Instruction

Simplified
Mnemonic

Operands Equivalent To

la rD, SIMM(rA) addi rD,rA,SIMM

li rA,value addi rA,0,value

subi rD,rA,value addi rD,rA,-value

0 5 6 10 11 15 16 31

0x0E D A SIMM
 MOTOROLA INSTRUCTION SET RCPU

9-10 Revised 1 February 1999 REFERENCE MANUAL

addic addic
Add Immediate Carrying Integer Unit

addic rD,rA,SIMM

rD ← (rA) + EXTS(SIMM)

The sum (rA) + SIMM is placed into rD.

Other registers altered:

• XER:

Affected: CA

This instruction is defined by the PowerPC UISA.

Table 9-5 Simplified Mnemonics for addic Instruction

Simplified
Mnemonic

Operands Equivalent To

subic rD,rA,value addic rD,rA,-value

0 5 6 10 11 15 16 31

0x0C D A SIMM
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-11

addic. addic.
Add Immediate Carrying and Record Integer Unit

addic. rD,rA,SIMM

rD ← (rA) + EXTS(SIMM)

The sum (rA) + SIMM is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO

• XER:

Affected: CA

This instruction is defined by the PowerPC UISA.

Table 9-6 Simplified Mnemonics for addic. Instruction

Simplified
Mnemonic

Operands Equivalent To

subic. rD,rA,value addic. rD,rA,-value

0 5 6 10 11 15 16 31

0x0D D A SIMM
 MOTOROLA INSTRUCTION SET RCPU

9-12 Revised 1 February 1999 REFERENCE MANUAL

addis addis
Add Immediate Shifted Integer Unit

addis rD,rA,SIMM

if rA=0 then
rD←(SIMM || (16)0)

else
 rD←(rA)+(SIMM || (16)0)

The sum (rA| 0) + (SIMM || 0x0000) is placed into rD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Table 9-7 Simplified Mnemonics for addis Instruction

Simplified
Mnemonic

Operands Equivalent To

lis rA,value addi rA,0,value

subis rD,rA,value addis rD,rA,-value

0 5 6 10 11 15 16 31

0x0F D A SIMM
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-13

addmex addmex
Add to Minus One Extended Integer Unit

addme rD,rA (OE=0 Rc=0)
addme. rD,rA (OE=0 Rc=1)
addmeo rD,rA (OE=1 Rc=0)
addmeo. rD,rA (OE=1 Rc=1)

rD ← (rA) + XER[CA] - 1

The sum (rA)+XER[CA]+0xFFFF FFFFF is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

Reserved

0x1F D A 0 0 0 0 0 OE 0xEA Rc
 MOTOROLA INSTRUCTION SET RCPU

9-14 Revised 1 February 1999 REFERENCE MANUAL

addzex addzex
Add to Zero Extended Integer Unit

addze rD,rA (OE=0 Rc=0)
addze. rD,rA (OE=0 Rc=1)
addzeo rD,rA (OE=1 Rc=0)
addzeo. rD,rA (OE=1 Rc=1)

rD ← (rA) + XER[CA]

The sum (rA)+XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

Reserved

0x1F D A 0 0 0 0 0 OE 0xCA Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-15

andx andx
AND Integer Unit

and rA,rS,rB (Rc=0)
and. rA,rS,rB (Rc=1)

rA ← (rS) & (rB)

The contents of rS is ANDed with the contents of rB and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x1C Rc
 MOTOROLA INSTRUCTION SET RCPU

9-16 Revised 1 February 1999 REFERENCE MANUAL

andcx andcx
AND with Complement Integer Unit

andc rA,rS,rB (Rc=0)
andc. rA,rS,rB (Rc=1)

rA←(rS)& ¬ (rB)

The contents of rS is ANDed with the one’s complement of the contents of rB and the re-
sult is placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 3C Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-17

andi. andi.
AND Immediate Integer Unit

andi. rA,rS,UIMM

rA←(rS) & ((16)0 || UIMM)

The contents of rS are ANDed with 0x0000 || UIMM and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x1C S A UIMM
 MOTOROLA INSTRUCTION SET RCPU

9-18 Revised 1 February 1999 REFERENCE MANUAL

andis. andis.
AND Immediate Shifted Integer Unit

andis. rA,rS,UIMM

rA←(rS)+(UIMM || (16)0)

The contents of rS are ANDed with UIMM || 0x0000 and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x1D S A UIMM
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-19

bx bx
Branch Branch Processing Unit

b target_addr (AA=0 LK=0)
ba target_addr (AA=1 LK=0)
bl target_addr (AA=0 LK=1)
bla target_addr (AA=1 LK=1)

if AA then
NIA←EXTS(LI || 0b00)

else
NIA←CIA+EXTS(LI || 0b00)

if LK, then
 LR←CIA+4

target_addr specifies the branch target address.

If AA=0, then the branch target address is the sum of LI || 0b00 sign-extended and the
address of this instruction.

If AA=1, then the branch target address is the value LI || 0b00 sign-extended.

If LK=1, then the effective address of the instruction following the branch instruction is
placed into the link register.

Other registers affected:

Link Register (LR) (if LK=1)

This instruction is defined by the PowerPC UISA.

0 5 6 29 30 31

0x12 LI AA LK
 MOTOROLA INSTRUCTION SET RCPU

9-20 Revised 1 February 1999 REFERENCE MANUAL

bcx bcx
Branch Conditional Branch Processing Unit

bc BO,BI,target_addr (AA=0 LK=0)
bca BO,BI,target_addr (AA=1 LK=0)
bcl BO,BI,target_addr (AA=0 LK=1)
bcla BO,BI,target_addr (AA=1 LK=1)

if ¬ BO[2], then CTR ← CTR-1
ctr_ok ← BO[2] | ((CTR¦0) ⊕ BO[3])
cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok then

 if AA then
NIA ← EXTS(BD || 0b00)

 else
 NIA ← CIA+EXTS(BD || 0b00)

 if LK, then
 LR ← CIA+4

The BI field specifies the bit in the Condition Register (CR) to be used as the condition of
the branch. The BO field is used as described above.

target_addr specifies the branch target address.

If AA=0, the branch target address is the sum of BD || 0b00 sign-extended and the ad-
dress of this instruction.

If AA=1, the branch target address is the value BD || 0b00 sign-extended.

If LK=1, the effective address of the instruction following the branch instruction is placed
into the link register.

Other registers affected:

Count Register (CTR) (if BO[2]=0)

Link Register (LR) (if LK=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 29 30 31

0x10 BO BI BD AA LK
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-21

Table 9-8 Simplified Mnemonics for
bc, bca, bcl, and bcla Instructions

Operation Simplified Mnemonic1 Equivalent To

Decrement CTR, branch if CTR non-zero bdnz target bc 16,0,target

Decrement CTR, branch absolute if CTR non-zero bdnza target bca 16,0,target

Decrement CTR, branch and update LR if CTR non-
zero

bdnzl target bcl 16,0,target

Decrement CTR, branch absolute and update LR if
CTR non-zero

bdnzla target bcla 16,0,target

Decrement CTR, branch if false and CTR non-zero bdnzf BI,target bc 0,BI,target

Decrement CTR, branch absolute if false and CTR
non-zero

bdnzfa BI,target bca 0,BI,target

Decrement CTR, branch and update LR if false and
CTR non-zero

bdnzfl BI,target bcl 0,BI,target

Decrement CTR, branch absolute and update LR if
false and CGRnon-zero

bdnzfla BI,target bcla 0,BI,target

Decrement CTR, branch if true and CTR non-zero bdnzt BI,target bc 8,BI,target

Decrement CTR, branch absolute if true and CTR
non-zero

bdnzta BI,target bca 8,BI,target

Decrement CTR, branch and update LR if true and
CTR non-zero

bdnztl BI,target bcl 8,BI,target

Decrement CTR, branch absolute and update LR if
true and CTR non-zero

bdnztla BI,target bcla 8,BI,target

Decrement CTR, branch if CTR zero bdz target bc 18,0,target

Decrement CTR, branch absolute if CTR zero bdza target bca 18,0,target

Decrement CTR, branch and update LR if CTR zero bdzl target bcl 18,0,target

Decrement CTR, branch absolute and update LR if
CTR zero

bdzla target bcla 18,0,target

Decrement CTR, branch if false and CTR zero bdzf BI,target bc 2,BI,target

Decrement CTR, branch absolute if false and CTR
zero

bdzfa BI,target bca 2,BI,target

Decrement CTR, branch and update LR if false and
CTR zero

bdzfl BI,target bcl 2,BI,target

Decrement CTR, branch absolute and update LR if
false and CTR zero

bdzfla BI,target bcla 2,BI,target

Decrement CTR, branch if true and CTR zero bdzt BI,target bc 10,BI,target

Decrement CTR, branch absolute if true and CTR
zero

bdzta BI,target bca 10,BI,target

Decrement CTR, ranch and update LR if true and
CTR zero

bdztl BI,target bcl 10,BI,target
 MOTOROLA INSTRUCTION SET RCPU

9-22 Revised 1 February 1999 REFERENCE MANUAL

Decrement CTR, branch absolute and update LR if
true and CTR zero

bdztla BI,target bcla 10,BI,target

Branch if equal beq crX,target bc 12, 4*crX+2,target

Branch absolute if equal beqa crX,target bca 12, 4*crX+2,target

Branch and update LR if equal beql crX,target bcl 12, 4*crX+2,target

Branch absolute and update LR if equal beqla crX,target bcla 12, 4*crX+2,target

Branch if false bf BI,target bc 4,BI,target

Branch if false bfa BI,target bca 4,BI,target

Branch and update LR if false bfl BI,target bcl 4,BI,target

Branch absolute and update LR if false bfla BI,target bcla 4,BI,target

Branch if greater than or equal to bge crX,target bc 4,4*crX,target

Branch absolute if greater than or equal to bgea crX,target bca 4,4*crX,target

Branch and update LR if greater than or equal to bgel crX,target bcl 4,4*crX,target

Branch absolute and update LR if greater than or
equal to

bgela crX,target bcla 4,4*crX,target

Branch if greater than bgt crX,target bc 12,4*crX+1,target

Branch absolute if greater than bgta crX,target bca 12,4*crX+1,target

Branch and update LR if greater than bgtl crX,target bcl 12,4*crX+1,target

Branch absolute and update LR if greater than bgtla crX,target bcla 12,4*crX+1,target

Branch if less than or equal to ble crX,target bc 4,4*crX+1,target

Branch absolute if less than or equal to blea crX,target bca 4,4*crX+1,target

Branch and update LR if less than or equal to blel crX,target bcl 4,4*crX+1,target

Branch absolute and update LR if less than or equal
to

blela crX,target bcla 4,4*crX+1,target

Branch if less than blt crX,target bc 12,4*crX,target

Branch absolute if less than blta crX,target bca 12,4*crX,target

Branch and update LR if less than bltl crX,target bcl 12,4*crX,target

Branch absolute and update LR if less than bltla crX,target bcla 12,4*crX,target

Branch if not equal to bne crX,target bc 4,4*crX+2,target

Branch absolute if not equal to bnea crX,target bca 4,4*crX+2,target

Branch and update LR if not equal to bnel crX,target bcl 4,4*crX+2,target

Branch absolute and update LR if not equal to bnela crX,target bcla 4,4*crX+2,target

Branch if not greater than bng crX,target bc 4,4*crX+1,target

Table 9-8 Simplified Mnemonics for
bc, bca, bcl, and bcla Instructions (Continued)

Operation Simplified Mnemonic1 Equivalent To
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-23

Refer to APPENDIX E SIMPLIFIED MNEMONICS for more information on simplified
mnemonics.

Branch absolute if not greater than bnga crX,target bca 4,4*crX+1,target

Branch and update LR if not greater than bngl crX,target bcl 4,4*crX+1,target

Branch absolute and update LR if not greater than bngla crX,target bcla 4,4*crX+1,target

Branch if not less than bnl crX,target bc 4,4*crX,target

Branch absolute if not less than bnla crX,target bca 4,4*crX,target

Branch and update LR if not less than bnll crX,target bcl 4,4*crX,target

Branch absolute and update LR if not less than bnlla crX,target bcla 4,4*crX,target

Branch if not summary overflow bns crX,target bc 4,4*crX+3,target

Branch absolute if not summary overflow bnsa crX,target bca 4,4*crX+3,target

Branch and update LR if not summary overflow bnsl crX,target bcl 4,4*crX+3,target

Branch absolute and update LR if not summary
overflow

bnsla crX,target bcla 4,4*crX+3,target

Branch if not unordered bnu crX,target bc 4,4*crX+3,target

Branch absolute if not unordered bnua crX,target bca 4,4*crX+3,target

Branch and update LR if not unorderd bnul crX,target bcl 4,4*crX+3,target

Branch absolute and update LR if not unordered bnula crX,target bcla 4,4*crX+3,target

Branch if summary overflow bso crX,target bc 12,4*crX+3,target

Branch absolute if summary overflow bsoa crX,target bca 12,4*crX+3,target

Branch and update LR if summary overflow bsol crX,target bcl 12,4*crX+3,target

Branch absolute and update LR if summary
overflow

bsola crX,target bcla 12,4*crX+3,target

Branch if true bt BI,target bc 12,BI,target

Branch absolute if true bta BI,target bca 12,BI,target

Branch and update LR if true btl BI,target bcl 12,BI,target

Branch absolute and update LR if true btla BI,target bcla 12,BI,target

Branch if unordered bun crX,target bc 12,4*crX+3,target

Branch absolute if unordered buna crX,target bca 12,4*crX+3,target

Branch and update LR if unordered bunl crX,target bcl 12,4*crX+3,target

Branch and update LR if unordered bunla crX,target bcla 12,4*crX+3,target

NOTES:
1. If crX is not included in the operand list (for operations that use a cr field), cr0 is assumed.

Table 9-8 Simplified Mnemonics for
bc, bca, bcl, and bcla Instructions (Continued)

Operation Simplified Mnemonic1 Equivalent To
 MOTOROLA INSTRUCTION SET RCPU

9-24 Revised 1 February 1999 REFERENCE MANUAL

bcctrx bcctrx
Branch Conditional to Count Register Branch Processing Unit

bcctr BO,BI (LK=0)
bcctrl BO,BI (LK=1)

cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if cond_ok then

 NIA ← CTR[0:29] || 0b00
 if LK then

 LR ← CIA+4

The BI field specifies the bit in the condition register to be used as the condition of the
branch. The BO field is used as described above, and the branch target address is
CTR[0:29] || 0b00.

If LK=1, the effective address of the instruction following the branch instruction is placed
into the link register.

If the “decrement and test CTR” option is specified (BO[2]=0), the instruction form is in-
valid.

Other registers affected:

Link Register (LR) (if LK=1)

This instruction is defined by the PowerPC UISA.

Table 9-9 provides simplified mnemonics for the bcctr and bcctrl instructions. Refer to
APPENDIX E SIMPLIFIED MNEMONICS for more information on simplified mnemonics.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 BO BI 0 0 0 0 0 0x210 LK
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-25

Table 9-9 Simplified Mnemonics for
bcctr and bcctrl Instructions

Operation Simplified Mnemonic1

NOTES:
1. If crX is not included in the operand list (for operations that use a cr field), cr0 is assumed.

Equivalent To

Branch to CTR bctr bcctr 20,0

Branch to CTR and update LR bctrl bcctrl 20,0

Branch if equal to CTR beqctr crX bcctr 12, 4*crX+2

Branch if equal to CTR, update LR beqctrl crX bcctrl 12, 4*crX+2

Branch if false to CTR bfctr BI bcctr 4,BI

Branch if false to CTR, update LR bfctrl BI bcctrl 4,BI

Branch to CTR if greater than or equal to bgectr crX bcctr 4,4*crX

Branch to CTR if greater than or equal to, update LR bgectrl crX bcctrl 4,4*crX

Branch to CTR if greater than bgtctr crX bcctr 12,4*crX+1

Branch to CTR if greater than, update LR bgtctrl crX bcctrl 12,4*crX+1

Branch to CTR if less than or equal to blectr crX bcctr 4,4*crX+1

Branch to CTR if less than or equal to, update LR blectrl crX bcctrl 4,4*crX+1

Branch to CTR if less than bltctr crX bcctr 12,4*crX

Branch to CTR if less than, update LR bltctrl crX bcctrl 12,4*crX

Branch to CTR if not equal to bnectr crX bcctr 4,4*crX+2

Branch to CTR if not equal to, update LR bnectrl crX bcctrl 4,4*crX+2

Branch to CTR if not greater than bngctr crX bcctr 4,4*crX+1

Branch to CTR if not greater than, update LR bngctrl crX bcctrl 4,4*crX+1

Branch to CTR if not less than bnlctr crX bcctr 4,4*crX

Branch to CTR if not less than, update LR bnlctrl crX bcctrl 4,4*crX

Branch to CTR if not summary overflow bnsctr crX bcctr 4,4*crX+3

Branch to CTR if not summary overflow, update LR bnsctrl crX bcctrl 4,4*crX+3

Branch to CTR if not unordered bnuctr crX bcctrl 4,4*crX+3

Branch to CTR if not unordered, update LR bnuctrl crX bcctrl 4,4*crX+3

Branch to CTR if summary overflow bsoctr crX bcctr 12,4*crX+3

Branch to CTR if summary overflow, update LR bsoctrl crX bcctrl 12,4*crX+3

Branch to CTR if true btctr BI bcctr 12,BI

Branch to CTR if true, update LR btctrl BI bcctrl 12,BI

Branch to CTR if unordered bunctr crX bcctr 12,4*crX+3

Branch to CTR if unordered, update LR bunctrl crX bcctrl 12,4*crX+3
 MOTOROLA INSTRUCTION SET RCPU

9-26 Revised 1 February 1999 REFERENCE MANUAL

bclrx bclrx
Branch Conditional to Link Register Branch Processing Unit

bclr BO,BI (LK=0)
bclrl BO,BI (LK=1)

if ¬ BO[2] then
CTR ← CTR-1

ctr_ok ← BO[2] | ((CTR¦0) ⊕ BO[3])
cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok then

 NIA ← LR[0:29] || 0b00
 if LK then

 LR ← CIA+4

The BI field specifies the bit in the condition register to be used as the condition of the
branch. The BO field is used as described above, and the branch target address is
LR[0:29] || 0b00.

If LK=1 then the effective address of the instruction following the branch instruction is
placed into the link register.

Other registers affected:

Count Register (CTR) (if BO[2]=0)

Link Register (LR) (if LK=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 BO BI 0 0 0 0 0 0x10 LK
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-27

Table 9-10 Simplified Mnemonics for
bclr and bclrl Instructions

Operation Simplified Mnemonic1 Equivalent To

Decrement CTR, branch to LR if false and CTR non-
zero

bdnzflr BI bclr 0,BI

Decrement CTR, branch to LR if false and CTR non-
zero, update LR

bdnzflrl BI bclrl 0,BI

Decrement CTR, branch to LR if CTR non-zero bdnzlr bclr 16,0

Decrement CTR, branch to LR if CTR non-zero,
update LR

bdnzlrl bclrl 16,0

Decrement CTR, branch to LR if true and CTR non-
zero

bdnztlr BI bclr 8,BI

Decrement CTR, branch to LR if true and CTR non-
zero, update LR

bdnztlrl BI bclrl 8,BI

Decrement CTR, branch to LR if false and CTR zero bdzflr BI bclr 2,BI

Decrement CTR, branch to LR if false and CTR
zero, update LR

bdzflrl BI bclrl 2,BI

Decrement CTR, branch to LR if CTR zero bdzlr bclr 18,0

Decrement CTR, branch to LR if CTR zero, update
LR

bdzlrl bclrl 18,0

Decrement CTR, branch to LR if true and CTR zero bdztlr BI bclr 10,BI

Decrement CTR, branch to LR if true and CTR zero,
update LR

bdztlrl BI bclrl 10,BI

Branch to LR if equal beqlr crX bclr 12, 4*crX+2

Branch to LR if equal, update LR beqlrl crX bclrl 12, 4*crX+2

Branch to LR if false bflr BI bclr 4,BI

Branch to LR if false, update LR bflrl BI bclrl 4,BI

Branch to LR if greater than or equal to bgelr crX bclr 4,4*crX

Branch to LR if greater than or equal to, update LR bgelrl crX bclrl 4,4*crX

Branch to LR if greater than bgtlr crX bclr 12,4*crX+1

Branch to LR if greater than, update LR bgtlrl crX bclrl 12,4*crX+1

Branch to LR if less than or equal to blelr crX bclr 4,4*crX+1

Branch to LR if less than or equal to, update LR blelrl crX bclrl 4,4*crX+1

Branch to LR blr bclr 20,0

Branch to LR, update LR blrl bclrl 20,0

Branch to LR if less than bltlr crX bclr 12,4*crX

Branch to LR if less than, update LR bltlrl crX bclrl 12,4*crX
 MOTOROLA INSTRUCTION SET RCPU

9-28 Revised 1 February 1999 REFERENCE MANUAL

Refer to APPENDIX E SIMPLIFIED MNEMONICS for more information on simplified
mnemonics.

Branch to LR if not equal to bnelr crX bclr 4,4*crX+2

Branch to LR if not equal to, update LR bnelrl crX bclrl 4,4*crX+2

Branch to LR if not greater than bnglr crX bclr 4,4*crX+1

Branch to LR if not greater than, update LR bnglrl crX bclrl 4,4*crX+1

Branch to LR if not less than bnllr crX bclr 4,4*crX

Branch to LR if not less than, update LR bnllrl crX bclrl 4,4*crX

Branch to LR if not summary overflow bnslr crX bclr 4,4*crX+3

Branch to LR if not summary overflow, update LR bnslrl crX bclrl 4,4*crX+3

Branch to LR if not unordered bnulr crX bclr 4,4*crX+3

Branch to LR if not unordered, update LR bnulrl crX bclrl 4,4*crX+3

Branch to LR if summary overflow bsolr crX bclr 12,4*crX+3

Branch to LR if summary overflow, update LR bsolrl crX bclrl 12,4*crX+3

Branch to LR if true btlr BI bclr 12,BI

Branch to LR if true, update LR btlrl BI bclrl 12,BI

Branch to LR if unordered bunlr crX bclr 12,4*crX+3

Branch to LR if unordered, update LR bunlrl crX bclrl 12,4*crX+3

NOTES:
1. If crX is not included in the operand list (for operations that use a cr field), cr0 is assumed.

Table 9-10 Simplified Mnemonics for
bclr and bclrl Instructions (Continued)

Operation Simplified Mnemonic1 Equivalent To
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-29

cmp cmp
Compare Integer Unit

cmp crfD,L,rA,rB

a ← (rA)
b ← (rB)
if a < b then

c ← 0b100
else

if a > b then
c ← 0b010

else
c ← 0b001

CR[4∗crfD:4∗crfD+3] ← c || XER[SO]

The contents of rA are compared with the contents of rB, treating the operands as signed
integers. The result of the comparison is placed into CR Field crfD.

The L operand controls whether rA and rB are treated as 32-bit operands (L=0) or 64-bit
operands (L=1). For 32-bit PowerPC implementations such as the RCPU, if L=1, the in-
struction form is invalid.

Other registers altered:

• Condition Register (CR Field specified by operand crfD):

Affected: LT, GT, EQ, SO

This instruction is defined by the PowerPC UISA.

Table 9-11 Simplified Mnemonics for cmp Instruction

Operation Simplified Mnemonic Equivalent To

Compare word cmpw crfD, rA,rB
cmp crfD, rA,rB

cmp crfD, 0, rA,rB

Compare word, place
result in CR0

cmpw rA,rB
cmp rA,rB

cmp 0, 0, rA,rB

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 0 0 0 0 0 0 0 0 0 0 00x1F crfD 0 L A
 MOTOROLA INSTRUCTION SET RCPU

9-30 Revised 1 February 1999 REFERENCE MANUAL

cmpi cmpi
Compare Immediate Integer Unit

cmpi crfD,L,rA,SIMM

a ← (rA)
if a < EXTS(SIMM) then

c ← 0b100
else

if a > EXTS(SIMM) then
c ← 0b010

else
 c ← 0b001

CR[4∗crfD:4∗crfD+3] ← c || XER[SO]

The contents of rA are compared with the sign-extended value of the SIMM field, treating
the operands as signed integers. The result of the comparison is placed into CR Field
crfD.

The L operand controls whether rA and rB are treated as 32-bit operands (L=0) or 64-bit
operands (L=1). For 32-bit PowerPC implementations such as the RCPU, if L=1, the in-
struction form is invalid.

Other registers altered:

• Condition Register (CR Field specified by operand crfD):

Affected: LT, GT, EQ, SO

This instruction is defined by the PowerPC UISA.

Table 9-12 Simplified Mnemonics for cmpi Instruction

Operation Simplified Mnemonic Equivalent To

Compare word immediate cmpwi crf,rA,value
cmpi crfD, rA,value

cmpi crfD, 0, rA,value

Compare word immediate,
place result in CR0

cmpwi rA,value
cmpi rA,value

cmpi 0, 0, rA,value

0 5 6 8 9 10 11 15 16 31

Reserved

SIMM0x0B crfD 0 L A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-31

cmpl cmpl
Compare Logical Integer Unit

cmpl crfD,L,rA,rB

a ← (rA)
b ← (rB)
if a < U b then

c ← 0b100
else

if a >U b then
c ← 0b010

else
c ← 0b001

CR[4∗crfD:4∗crfD+3] ← c || XER[SO]

The contents of rA are compared with the contents of rB, treating the operands as un-
signed integers. The result of the comparison is placed into CR Field crfD.

The L operand controls whether rA and rB are treated as 32-bit operands (L=0) or 64-bit
operands (L=1). For 32-bit PowerPC implementations such as the RCPU, if L=1, the in-
struction form is invalid.

Other registers altered:

• Condition Register (CR Field specified by operand crfD):

Affected: LT, GT, EQ, SO

This instruction is defined by the PowerPC UISA.

Table 9-13 Simplified Mnemonics for cmpl Instruction

Operation Simplified Mnemonic Equivalent To

Compare word logical cmplw crfD, rA,rB
cmpl crfD, rA,rB

cmpl crfD, 0, rA,rB

Compare word logical,
place result in CR0

cmplw rA,rB
cmpl rA,rB

cmpl 0, 0, rA,rB

0 5 6 8 9 10 11 15 16 20 21 31

Reserved

0x1F crfD 0 L A B 0x20 0
 MOTOROLA INSTRUCTION SET RCPU

9-32 Revised 1 February 1999 REFERENCE MANUAL

cmpli cmpli
Compare Logical Immediate Integer Unit

cmpli crfD,L,rA,UIMM

a ← (rA)
b ← (rB)
if a <U (0x0000 || UIMM) then

c ← 0b100
else

if a >U (0x0000 || UIMM) then
c ← 0b010

else
 c ← 0b001

CR[4∗crfD:4∗crfD+3] ← c || XER[SO]

The contents of rA are compared with 0x0000 || UIMM, treating the operands as unsigned
integers. The result of the comparison is placed into CR Field crfD.

The L operand controls whether rA and rB are treated as 32-bit operands (L=0) or 64-bit
operands (L=1). For 32-bit PowerPC implementations such as the RCPU, if L=1, the in-
struction form is invalid.

Other registers altered:

• Condition Register (CR Field specified by operand crfD):

Affected: LT, GT, EQ, SO

This instruction is defined by the PowerPC UISA.

Table 9-14 Simplified Mnemonics for cmpli Instruction

Operation Simplified Mnemonic Equivalent To

Compare word logical
immediate

cmplwi crfD,rA,value
cmpli crfD,rA,value

cmpli crfD,0,rA,value

Compare word logical
immediate, place result
in CR0

cmplwi rA,value
cmpli rA,value

cmpli 0,0,rA,value

0 5 6 8 9 10 11 15 16 31

Reserved

UIMM0x0A crfD 0 L A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-33

cntlzwx cntlzwx
Count Leading Zeros Word Integer Unit

cntlzw rA,rS (Rc=0)
cntlzw. rA,rS (Rc=1)

n ← 0
do while n < 32

if rS[n]=1 then leave
n ← n+1

rA ← n

A count of the number of consecutive zero bits starting at bit 0 of rS is placed into rA. This
number ranges from 0 to 32, inclusive.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

For count leading zeros instructions, if Rc=1 then LT is cleared to zero in the CR0 field.

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x1F S A 0 0 0 0 0 0x1A Rc
 MOTOROLA INSTRUCTION SET RCPU

9-34 Revised 1 February 1999 REFERENCE MANUAL

crand crand
Condition Register AND Branch Processor Unit

crand crbD,crbA,crbB

CR[crbD] ← CR[crbA] & CR[crbB]

The bit in the condition register specified by crbA is ANDed with the bit in the condition
register specified by crbB. The result is placed into the condition register bit specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 crbD crbA crbB 0x101 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-35

crandc crandc
Condition Register AND with Complement Branch Processor Unit

crandc crbD,crbA,crbB

CR[crbD] ← CR[crbA] & ¬ CR[crbB]

The bit in the condition register specified by crbA is ANDed with the complement of the
bit in the condition register specified by crbB and the result is placed into the condition
register bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 crbD crbA crbB 0x81 0
 MOTOROLA INSTRUCTION SET RCPU

9-36 Revised 1 February 1999 REFERENCE MANUAL

creqv creqv
Condition Register Equivalent Branch Processor Unit

creqv crbD,crbA,crbB

CR[crbD] ← CR[crbA] ≡ CR[crbB]

The bit in the condition register specified by crbA is XORed with the bit in the condition
register specified by crbB and the complemented result is placed into the condition reg-
ister bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

This instruction is defined by the PowerPC UISA.

Table 9-15 Simplified Mnemonics for creqv Instruction

Operation Simplified Mnemonic Equivalent To

Condition register set crset crbD creqv crbD,crbD,crbD

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 crbD crbA crbB 0x121 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-37

crnand crnand
Condition Register NAND Branch Processor Unit

crnand crbD,crbA,crbB

CR[crbD] ← ¬ (CR[crbA] & CR[crbB])

The bit in the condition register specified by crbA is ANDed with the bit in the condition
register specified by crbB and the complemented result is placed into the condition reg-
ister bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 crbD crbA crbB 0xE1 0
 MOTOROLA INSTRUCTION SET RCPU

9-38 Revised 1 February 1999 REFERENCE MANUAL

crnor crnor
Condition Register NOR Branch Processor Unit

crnor crbD,crbA,crbB

CR[crbD] ← ¬ (CR[crbA] | CR[crbB])

The bit in the condition register specified by crbA is ORed with the bit in the condition reg-
ister specified by crbB and the complemented result is placed into the condition register
bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

This instruction is defined by the PowerPC UISA.

Table 9-16 Simplified Mnemonics for crnor Instruction

Operation Simplified Mnemonic Equivalent To

Condition register NOT crnot crbD, crbA crnor crbD,crbA,crbA

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 crbD crbA crbB 0x21 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-39

cror cror
Condition Register OR Branch Processor Unit

cror crbD,crbA,crbB

CR[crbD] ← CR[crbA] | CR[crbB]

The bit in the condition register specified by crbA is ORed with the bit in the condition reg-
ister specified by crbB. The result is placed into the condition register bit specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

This instruction is defined by the PowerPC UISA.

Table 9-17 Simplified Mnemonics for cror Instruction

Operation Simplified Mnemonic Equivalent To

Condition register move crmove crbD, crbA cror crbD,crbA,crbA

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 crbD crbA crbB 0x1C1 0
 MOTOROLA INSTRUCTION SET RCPU

9-40 Revised 1 February 1999 REFERENCE MANUAL

crorc crorc
Condition Register OR with Complement Branch Processor Unit

crorc crbD,crbA,crbB

CR[crbD] ← CR[crbA] | ¬ CR[crbB]

The bit in the condition register specified by crbA is ORed with the complement of the con-
dition register bit specified by crbB and the result is placed into the condition register bit
specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 crbD crbA crbB 0x1A1 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-41

crxor crxor
Condition Register XOR Branch Processor Unit

crxor crbD,crbA,crbB

CR[crbD] ← CR[crbA] ⊕ CR[crbB]

The bit in the condition register specified by crbA is XORed with the bit in the condition
register specified by crbB and the result is placed into the condition register bit specified
by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by crbD

This instruction is defined by the PowerPC UISA.

Table 9-18 Simplified Mnemonics for crxor Instruction

Operation Simplified Mnemonic Equivalent To

Condition register clear crclr crbD crxor crbD,crbD,crbD

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 crbD crbA crbB 0xC1 0
 MOTOROLA INSTRUCTION SET RCPU

9-42 Revised 1 February 1999 REFERENCE MANUAL

divwx divwx
Divide Word Integer Unit

divw rD,rA,rB (OE=0 Rc=0)
divw. rD,rA,rB (OE=0 Rc=1)
divwo rD,rA,rB (OE=1 Rc=0)
divwo. rD,rA,rB (OE=1 Rc=1)

dividend ←(rA)
divisor ←(rB)
rD ← dividend ÷ divisor

Register rA is the 32-bit dividend. Register rB is the 32-bit divisor. A 32-bit quotient is
formed and placed into rD. The remainder is not supplied as a result.

Both operands are interpreted as signed integers. The quotient is the unique signed inte-
ger that satisfies the following:

dividend=(quotient times divisor)+r

where

0 ≤ r < |divisor|

if the dividend is non-negative, and

-|divisor| < r ≤ 0

if the dividend is negative.

If an attempt is made to perform any of the divisions

0x8000 0000 / -1

<anything> / 0

then the following conditons result:

• The contents of rD are undefined.

• If Rc = 1, the contents of the LT, GT, and EQ bits of the CR0 field are undefined.

• If OE = 1, then OV is set to 1.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0x1EB Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-43

• XER:

Affected: SO, OV (if OE=1)

The 32-bit signed remainder of dividing rA by rB can be computed as follows, except in
the case that rA= 0x8000 0000 and rB=-1:

divw rD,rA,rB # rD=quotient

mull rD,rD,rB # rD=quotient∗divisor

subf rD,rD,rA # rD=remainder

This instruction is defined by the PowerPC UISA.
 MOTOROLA INSTRUCTION SET RCPU

9-44 Revised 1 February 1999 REFERENCE MANUAL

divwux divwux
Divide Word Unsigned Integer Unit

divwu rD,rA,rB (OE=0 Rc=0)
divwu. rD,rA,rB (OE=0 Rc=1)
divwuo rD,rA,rB (OE=1 Rc=0)
divwuo. rD,rA,rB (OE=1 Rc=1)

dividend ← (rA)
divisor ← (rB)
rD ← dividend ÷ divisor

The dividend is the contents of rA. The divisor is the contents of rB. A 32-bit quotient is
formed and placed into rD. The remainder is not supplied as a result.

Both operands are interpreted as unsigned integers, except that if Rc = 1 the first three
bits of the CR0 field are set by signed comparison of the result to zero. The quotient is the
unique unsigned integer that satisfies the following:

dividend=(quotient ∗ divisor)+r

where

0 ≤ r < divisor.

If an attempt is made to divide by zero, then the following conditons result:

• The contents of rD are undefined.

• If Rc = 1, the contents of the LT, GT, and EQ bits of the CR0 field are undefined.

• If OE = 1, then OV is set to 1.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: SO, OV (if OE=1)

The 32-bit unsigned remainder of dividing rA by rB can be computed as follows:

divwu rD,rA,rB # rD=quotient

mull rD,rD,rB # rD=quotient∗divisor

subf rD,rD,rA # rD=remainder

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0x1CB Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-45

eieio eieio
Enforce In-Order Execution of I/O Load/Store Unit

The eieio instruction provides an ordering function for the effects of load and store instruc-
tions executed by a given processor. Executing an eieio instruction ensures that all mem-
ory accesses previously initiated by the given processor are complete with respect to main
memory before any memory accesses subsequently initiated by the given processor ac-
cess main memory.

The eieio instruction orders loads from cache-inhibited memory.

Other registers altered:

• None

The eieio instruction is intended for use only in performing memory-mapped I/O opera-
tions and to prevent load/store combining operations in main memory. It can be thought
of as placing a barrier into the stream of memory accesses issued by a processor, such
that any given memory access appears to be on the same side of the barrier to both the
processor and the I/O device.

The eieio instruction may complete before previously initiated memory accesses have
been performed with respect to other processors and mechanisms.

This instruction is defined by the PowerPC VEA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x1F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x356 0
 MOTOROLA INSTRUCTION SET RCPU

9-46 Revised 1 February 1999 REFERENCE MANUAL

eqvx eqvx
Equivalent Integer Unit

eqv rA,rS,rB (Rc=0)
eqv. rA,rS,rB (Rc=1)

rA ← ((rS) ≡ (rB))

The contents of rS are XORed with the contents of rB and the complemented result is
placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 21 22 30 31

0x1F S A B 0x11C Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-47

extsbx extsbx
Extend Sign Byte Integer Unit

extsb rA,rS (Rc=0)
extsb. rA,rS (Rc=1)

S ← rS[24]
rA[24:31] ← rS[24:31]
rA[0:23] ← (24)S

The contents of rS[24:31] are placed into rA[24:31]. Bit 24 of rS is placed into rA[0:23].

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 3031

Reserved

0x1F S A 0 0 0 0 0 0x3BA Rc
 MOTOROLA INSTRUCTION SET RCPU

9-48 Revised 1 February 1999 REFERENCE MANUAL

extshx extshx
Extend Sign Half Word Integer Unit

extsh rA,rS (Rc=0)
extsh. rA,rS (Rc=1)

S ← rS[16]
rA[16:31]← rS[16:31]
rA[0:15] ← (16)S

The contents of rS[16:31] are placed into rA[16:31]. Bit 16 of rS is placed into rA[0:15].

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x1F S A 0 0 0 0 0 0x39A Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-49

fabsx fabsx
Floating-Point Absolute Value Floating-Point Unit

fabs frD,frB (Rc=0)
fabs. frD,frB (Rc=1)

The contents of frB with bit 0 cleared to zero are placed into frD.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x3F D 0 0 0 0 0 B 0x108 Rc
 MOTOROLA INSTRUCTION SET RCPU

9-50 Revised 1 February 1999 REFERENCE MANUAL

faddx faddx
Floating-Point Add Floating-Point Unit

fadd frD,frA,frB (Rc=0)
fadd. frD,frA,frB (Rc=1)

The floating-point operand in frA is added to the floating-point operand in frB. If the most
significant bit of the resultant significand is not a one, the result is normalized. The result
is rounded to the target precision under control of the floating-point rounding control field
RN of the FPSCR and placed into frD.

Floating-point addition is based on exponent comparison and addition of the two signifi-
cands. The exponents of the two operands are compared, and the significand accompa-
nying the smaller exponent is shifted right, with its exponent increased by one for each bit
shifted, until the two exponents are equal. The two significands are then added or sub-
tracted as appropriate, depending on the signs of the operands, to form a n intermediate
sum. All 53 bits in the significand as well as all three guard bits (G, R, and X) enter into
the computation.

If a carry occurs, the sum's significand is shifted right one bit position and the exponent is
increased by one. FPSCR[FPRF] is set to the class and sign of the result, except for in-
valid operation exceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX,VXSNAN, VXISI

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0x3F D A B 0 0 0 0 0 0x15 Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-51

faddsx faddsx
Floating-Point Add (Single-Precision) Floating-Point Unit

fadds frD,frA,frB (Rc=0)
fadds. frD,frA,frB (Rc=1)

The floating-point operand in frA is added to the floating-point operand in frB. If the most
significant bit of the resultant significand is not a one, the result is normalized. The result
is rounded to the target precision under control of the floating-point rounding control field
RN of the FPSCR and placed into frD.

Floating-point addition is based on exponent comparison and addition of the two signifi-
cands. The exponents of the two operands are compared, and the significand accompa-
nying the smaller exponent is shifted right, with its exponent increased by one for each bit
shifted, until the two exponents are equal. The two significands are then added or sub-
tracted as appropriate, depending on the signs of the operands, t o form an intermediate
sum. All 53 bits in the significand as well as all three guard bits (G, R, and X) enter into
the computation.

If a carry occurs, the sum’s significand is shifted right one bit position and the exponent is
increased by one. FPSCR[FPRF] is set to the class and sign of the result, except for in-
valid operation exceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0x3B D A B 0 0 0 0 0 0x15 Rc
 MOTOROLA INSTRUCTION SET RCPU

9-52 Revised 1 February 1999 REFERENCE MANUAL

fcmpo fcmpo
Floating-Point Compare Ordered Floating-Point Unit

fcmpo crfD,frA,frB

if (frA) is a NaN or (frB) is a NaN
then c←0b001

else if (frA)<(frB) then c ←0b1000
else if (frA)>(frB) then c←0b0100
else c←0b0010
FPSCR[FPCC]←c
CR[4*crfD: 4*crfD+3]←c
if (frA) is an SNaN or (frB) is an SNaN

then FPSCR[VXSNAN]←1
if VE=0 then FPSCR[VXVC]←1

else if (frA) is a QNaN or (frB) is a QNaN
then FPSCR[VXVC]←1

The floating-point operand in frA is compared to the floating-point operand in frB. The re-
sult of the compare is placed into CR Field crfD and FPSCR[FPCC].

If at least one of the operands is a NaN, either quiet or signaling, then CR Field crfD and
FPSCR[FPCC] are set to reflect unordered. If at least one of the operands is a signaling
NaN, then FPSCR[VXSNAN] is set, and if invalid operation is disabled (FPSCR[VE]=0)
then FPSCR[VXVC] is set. If neither operand is a signaling NaN, but at least one is a
QNaN, then FPSCR[VXVC] is set.

Other registers altered:

• Condition Register (CR Field specified by operand crfD):

Affected: FX, FEX, VX, OX

• Floating-Point Status and Control Register:

Affected: FPCC, FX, VXSNAN, VXVC

This instruction is defined by the PowerPC UISA.

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 0x20 00x3F crfD 0 0 A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-53

fcmpu fcmpu
Floating-Point Compare Unordered Floating-Point Unit

fcmpu crfD,frA,frB

if (frA) is a NaN or (frB) is a NaN
then c←0b001

else if (frA)<(frB) then c ←0b1000
else if (frA)>(frB) then c←0b0100
else c←0b0010
FPSCR[FPCC]←c
CR[4*crfD: 4*crfD+3]←c
if (frA) is an SNaN or (frB) is an SNaN

then FPSCR[VXSNAN]←1

The floating-point operand in register frA is compared to the floating-point operand in reg-
ister frB. The result of the compare is placed into CR Field crfD and into FPSCR[FPCC].

If at least one of the operands is a NaN, either quiet or signaling, then CR Field crfD and
FPSCR[FPCC] are set to reflect unordered. If at least one of the operands is a signaling
NaN, then FPSCR[VXSNAN] is set.

Other registers altered:

• Condition Register (CR Field specified by operand crfD):

Affected: FX, FEX, VX, OX

• Floating-Point Status and Control Register:

Affected: FPCC, FX, VXSNAN

This instruction is defined by the PowerPC UISA.

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 0 0 0 0 0 0 0 0 0 0 00x3F crfD 0 0 A
 MOTOROLA INSTRUCTION SET RCPU

9-54 Revised 1 February 1999 REFERENCE MANUAL

fctiwx fctiwx
Floating-Point Convert to Integer Word Floating-Point Unit

fctiw frD,frB (Rc=0)
fctiw. frD,frB (Rc=1)

The floating-point operand in register frB is converted to a 32-bit signed integer, using the
rounding mode specified by FPSCR[RN], and placed in of frD[32:63]. frD[0:31] are unde-
fined.

If the contents of frB is greater than 231-1, frD[32:63] are set to 0x7FFF FFFF.

If the contents of frB is less than -231, frD[32:63] are set to 0x8000 0000.

The conversion is described fully in APPENDIX C FLOATING-POINT MODELS AND
CONVERSIONS.

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FP-
SCR[FR] is set if the result is incremented when rounded. FPSCR[FI] is set if the result is
inexact.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x0E Rc0x3F D 0 0 0 0 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-55

fctiwzx fctiwzx
Floating-Point Convert to Integer Word with Round toward Zero Floating-Point Unit

fctiwz frD,frB (Rc=0)
fctiwz. frD,frB (Rc=1)

The floating-point operand in register frB is converted to a 32-bit signed integer, using the
rounding mode round toward zero, and placed in bits 32:63 of frD. frD[0:31] are unde-
fined.

If the operand in frB is greater than 231-1, frD[32:63] are set to 0x7FFF FFFF.

If the operand in frB is less than -2 31, frD[32:63] are set to 0x8000 0000.

The conversion is described fully in APPENDIX C FLOATING-POINT MODELS AND
CONVERSIONS.

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FP-
SCR[FR] is set if the result is incremented when rounded. FPSCR[FI] is set if the result is
inexact.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0X0F Rc0X3F D 0 0 0 0 0
 MOTOROLA INSTRUCTION SET RCPU

9-56 Revised 1 February 1999 REFERENCE MANUAL

fdivx fdivx
Floating-Point Divide Floating-Point Unit

fdiv frD,frA,frB (Rc=0)
fdiv. frD,frA,frB (Rc=1)

The floating-point operand in register frA is divided by the floating-point operand in regis-
ter frB. No remainder is preserved.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

Floating-point division is based on exponent subtraction and division of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1 and zero divide exceptions when FPSCR[ZE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, ZX, XX, VXSNAN, VXIDI, VXZDZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 0x12 Rc0x3F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-57

fdivsx fdivsx
Floating-Point Divide Single-Precision Floating-Point Unit

fdivs frD,frA,frB (Rc=0)
fdivs. frD,frA,frB (Rc=1)

The floating-point operand in register frA is divided by the floating-point operand in regis-
ter frB. No remainder is preserved.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

Floating-point division is based on exponent subtraction and division of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1 and zero divide exceptions when FPSCR[ZE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, ZX, XX, VXSNAN, VXIDI, VXZDZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 0x12 Rc0x3B D A
 MOTOROLA INSTRUCTION SET RCPU

9-58 Revised 1 February 1999 REFERENCE MANUAL

fmaddx fmaddx
Floating-Point Multiply-Add Floating-Point Unit

fmadd frD,frA,frC,frB (Rc=0)
fmadd. frD,frA,frC,frB (Rc=1)

The following operation is performed:

frD ← [(frA)∗(frC)]+(frB)

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC. The floating-point operand in register frB is added to this intermediate result.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 0x1D Rc0x3F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-59

fmaddsx fmaddsx
Floating-Point Multiply-Add Single-Precision Floating-Point Unit

fmadds frD,frA,frC,frB (Rc=0)
fmadds. frD,frA,frC,frB (Rc=1)

The following operation is performed:

frD ← [(frA)∗(frC)]+(frB)

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC. The floating-point operand in register frB is added to this intermediate result.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 0x1D Rc0x3B D A
 MOTOROLA INSTRUCTION SET RCPU

9-60 Revised 1 February 1999 REFERENCE MANUAL

fmrx fmrx
Floating-Point Move Register Floating-Point Unit

fmr frD,frB (Rc=0)
fmr. frD,frB (Rc=1)

The contents of register frB are placed into frD.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x48 Rc0x3F D 0 0 0 0 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-61

fmsubx fmsubx
Floating-Point Multiply-Subtract Floating-Point Unit

fmsub frD,frA,frC,frB (Rc=0)
fmsub. frD,frA,frC,frB (Rc=1)

The following operation is performed:

frD ← [(frA)∗(frC)] - (frB)

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC. The floating-point operand in register frB is subtracted from this intermediate re-
sult.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 0x1C Rc0x3F D A
 MOTOROLA INSTRUCTION SET RCPU

9-62 Revised 1 February 1999 REFERENCE MANUAL

fmsubsx fmsubsx
Floating-Point Multiply-Subtract (Single-Precision) Floating-Point Unit

fmsubs frD,frA,frC,frB (Rc=0)
fmsubs. frD,frA,frC,frB (Rc=1)

The following operation is performed:

frD ← [(frA)∗(frC)] - (frB)

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC. The floating-point operand in register frB is subtracted from this intermediate re-
sult.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 0x1C Rc0x3B D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-63

fmulx fmulx
Floating-Point Multiply Floating-Point Unit

fmul frD,frA,frC (Rc=0)
fmul. frD,frA,frC (Rc=1)

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

Floating-point multiplication is based on exponent addition and multiplication of the signif-
icands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0 0 0 0 0 C 0x19 Rc0x3F D A
 MOTOROLA INSTRUCTION SET RCPU

9-64 Revised 1 February 1999 REFERENCE MANUAL

fmulsx fmulsx
Floating-Point Multiply Single-Precision Floating-Point Unit

fmuls frD,frA,frC (Rc=0)
fmuls. frD,frA,frC (Rc=1)

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC.

If an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

Floating-point multiplication is based on exponent addition and multiplication of the signif-
icands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0 0 0 0 0 C 0x19 Rc0x3B D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-65

fnabsx fnabsx
Floating-Point Negative Absolute Value Floating-Point Unit

fnabs frD,frB (Rc=0)
fnabs. frD,frB (Rc=1)

The contents of register frB, with bit 0 set to one, are placed into frD.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0x88 Rc0x3F D 0 0 0 0 0
 MOTOROLA INSTRUCTION SET RCPU

9-66 Revised 1 February 1999 REFERENCE MANUAL

fnegx fnegx
Floating-Point Negate Floating-Point Unit

fneg frD,frB (Rc=0)
fneg. frD,frB (Rc=1)

The contents of register frB, with bit 0 inverted, are placed into frD.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x28 Rc0x3F D 0 0 0 0 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-67

fnmaddx fnmaddx
Floating-Point Negative Multiply-Add Floating-Point Unit

fnmadd frD,frA,frC,frB (Rc=0)
fnmadd. frD,frA,frC,frB (Rc=1)

The following operation is performed:

frD ← -([(frA)∗(frC)]+(frB))

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC. The floating-point operand in register frB is added to this intermediate result. If
an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR, then negated and placed into frD.

This instruction produces the same result as would be obtained by using the floating-point
multiply-add instruction and then negating the result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception
have a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation excep-
tions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 0x1F Rc0x3F D A
 MOTOROLA INSTRUCTION SET RCPU

9-68 Revised 1 February 1999 REFERENCE MANUAL

fnmaddsx fnmaddsx
Floating-Point Negative Multiply-Add Single-Precision Floating-Point Unit

fnmadds frD,frA,frC,frB (Rc=0)
fnmadds. frD,frA,frC,frB (Rc=1)

The following operation is performed:

frD ← -([(frA)∗(frC)]+(frB))

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC. The floating-point operand in register frB is added to this intermediate result. If
an operand is a denormalized number then it is prenormalized before the operation is
started. If the most significant bit of the resultant significand is not a one the result is nor-
malized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR, then negated and placed into frD.

This instruction produces the same result as would be obtained by using the floating-point
multiply-add instruction and then negating the result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception
have a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation excep-
tions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 0x1F Rc0x3B D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-69

fnmsubx fnmsubx
Floating-Point Negative Multiply-Subtract Floating-Point Unit

fnmsub frD,frA,frC,frB (Rc=0)
fnmsub. frD,frA,frC,frB (Rc=1)

The following operation is performed:

frD ← -([(frA)∗(frC)] - (frB))

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC. The floating-point operand in register frB is subtracted from this intermediate re-
sult.

If an operand is a denormalized number, it is prenormalized before the operation is start-
ed. If the most significant bit of the resultant significand is not one, the result is normalized.
The result is rounded to the target precision under control of the floating-point rounding
control field RN of the FPSCR, then negated and placed into frD.

This instruction produces the same result obtained by negating the result of a floating mul-
tiply-subtract instruction with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception
have a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field)

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 0x1E Rc0x3F D A
 MOTOROLA INSTRUCTION SET RCPU

9-70 Revised 1 February 1999 REFERENCE MANUAL

fnmsubsx fnmsubsx
Floating-Point Negative Multiply-Subtract Single-Precision Floating-Point Unit

fnmsubs frD,frA,frC,frB (Rc=0)
fnmsubs. frD,frA,frC,frB (Rc=1)

The following operation is performed:

frD ← -([(frA)∗(frC)] - (frB))

The floating-point operand in register frA is multiplied by the floating-point operand in reg-
ister frC. The floating-point operand in register frB is subtracted from this intermediate re-
sult.

If an operand is a denormalized number, it is prenormalized before the operation is start-
ed. If the most significant bit of the resultant significand is not one, the result is normalized.
The result is rounded to the target precision under control of the floating-point rounding
control field RN of the FPSCR, then negated and placed into frD.

This instruction produces the same result obtained by negating the result of a floating mul-
tiply-subtract instruction with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception
have a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field)

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 0x1E Rc0x3B D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-71

frspx frspx
Floating-Point Round to Single-Precision Floating-Point Unit

frsp frD,frB (Rc=0)
frsp. frD,frB (Rc=1)

If it is already in single-precision range, the floating-point operand in register frB is placed
into frD. Otherwise the floating-point operand in register frB is rounded to single-precision
using the rounding mode specified by FPSCR[RN] and placed into frD.

The rounding is described fully in APPENDIX C FLOATING-POINT MODELS AND CON-
VERSIONS.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x0C Rc0x3F D 0 0 0 0 0
 MOTOROLA INSTRUCTION SET RCPU

9-72 Revised 1 February 1999 REFERENCE MANUAL

fsubx fsubx
Floating-Point Subtract Floating-Point Unit

fsub frD,frA,frB (Rc=0)
fsub. frD,frA,frB (Rc=1)

The floating-point operand in register frB is subtracted from the floating-point operand in
register frA. If the most significant bit of the resultant significand is not a one the result is
normalized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

The execution of the floating-point subtract instruction is identical to that of floating-point
add, except that the contents of frB participates in the operation with its sign bit (bit 0) in-
verted.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 0x14 Rc0x3F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-73

fsubsx fsubsx
Floating-Point Subtract Single-Precision Floating-Point Unit

fsubs frD,frA,frB (Rc=0)
fsubs. frD,frA,frB (Rc=1)

The floating-point operand in register frB is subtracted from the floating-point operand in
register frA. If the most significant bit of the resultant significand is not a one the result is
normalized. The result is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into frD.

The execution of the floating-point subtract instruction is identical to that of floating-point
add, except that the contents of frB participates in the operation with its sign bit (bit 0) in-
verted.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation ex-
ceptions when FPSCR[VE]=1.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 0x14 Rc0x3B D A
 MOTOROLA INSTRUCTION SET RCPU

9-74 Revised 1 February 1999 REFERENCE MANUAL

icbi icbi
Instruction Cache Block Invalidate Load/Store Unit

icbi rA,rB

EA is the sum (rA|0)+(rB).

If a block containing the byte addressed by EA is in the instruction cache of this processor,
the block is made invalid in the processor. Subsequent references cause the block to be
refetched.

NOTE

According to the PowerPC architecture, if the addressed block is in
coherency-required mode, the block is made invalid in all affected
processors. In the RCPU, however, all instruction memory is consid-
ered to be in coherency-not-required mode.

Other registers altered:

• None

This instruction is defined by the PowerPC VEA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x3D6 00x1F 0 0 0 0 0 A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-75

isync isync
Instruction Synchronize Branch Processor Unit

isync

Fetch of an isync instruction causes fetch serialization: instruction fetch is halted until all
instructions currently in the processor (i.e., all issued instructions as well as the pre-
fetched instructions waiting to be issued) have completed execution. This instruction
causes subsequent instructions to execute in the context established by the previous in-
structions.

This instruction has no effect on other processors or on their caches.

Other registers altered:

• None

This instruction is defined by the PowerPC VEA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x90 0
 MOTOROLA INSTRUCTION SET RCPU

9-76 Revised 1 February 1999 REFERENCE MANUAL

lbz lbz
Load Byte and Zero Load/Store Unit

lbz rD,d(rA)

if rA=0 then b ← 0
else b ← (rA)
EA ← b+EXTS(d)
rD ← (24)0 || MEM(EA, 1)

The effective address is the sum (rA|0) + d. The byte in memory addressed by EA is load-
ed into rD[24:31]. Bits rD[0:23] are cleared to zero.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x22 D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-77

lbzu lbzu
Load Byte and Zero with Update Load/Store Unit

lbzu rD,d(rA)

EA ← (rA)+EXTS(d)
rD←(24)0 || MEM(EA, 1)
rA←EA

EA is the sum (rA|0) + d. The byte in memory addressed by EA is loaded into rD[24:31].
Bits rD[0:23] are cleared to zero.

EA is placed into rA.

If rA=0 or rA=rD, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x23 D A
 MOTOROLA INSTRUCTION SET RCPU

9-78 Revised 1 February 1999 REFERENCE MANUAL

lbzux lbzux
Load Byte and Zero with Update Indexed Load/Store Unit

lbzux rD,rA,rB

EA ← (rA)+(rB)
rD ← (24)0 || MEM(EA, 1)
rA ← EA

EA is the sum (rA|0) + (rB). The byte addressed by EA is loaded into rD[24:31]. Bits
rD[0:23] are cleared to zero.

EA is placed into rA.

If rA=0 or rA=rD, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x77 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-79

lbzx lbzx
Load Byte and Zero Indexed Load/Store Unit

lbzx rD,rA,rB

if rA=0 then b ← 0
else b ← (rA)
EA ← b+(rB)
rD ← (24)0 || MEM(EA, 1)

EA is the sum (rA|0) + (rB). The byte in memory addressed by EA is loaded into rD[24:31].

Bits rD[0:23] are cleared to zero.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x57 00x1F D A
 MOTOROLA INSTRUCTION SET RCPU

9-80 Revised 1 February 1999 REFERENCE MANUAL

lfd lfd
Load Floating-Point Double-Precision Load/Store Unit

lfd frD,d(rA)

if rA=0 then b ← 0
else b ← (rA)
EA ← b+EXTS(d)
frD ← MEM(EA, 8)

EA is the sum (rA|0) + d.

The double word in memory addressed by EA is placed into frD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x32 D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-81

lfdu lfdu
Load Floating-Point Double-Precision with Update Load/Store Unit

lfdu frD,d(rA)

EA ← (rA)+EXTS(d)
frD ← MEM(EA, 8)
rA ← EA

EA is the sum (rA|0) + d.

The double word in memory addressed by EA is placed into frD.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x33 D A
 MOTOROLA INSTRUCTION SET RCPU

9-82 Revised 1 February 1999 REFERENCE MANUAL

lfdux lfdux
Load Floating-Point Double-Precision with Update Indexed Load/Store Unit

lfdux frD,rA,rB

EA ← (rA)+(rB)
frD ← MEM(EA, 8)
rA ← EA

EA is the sum (rA|0) + (rB).

The double word in memory addressed by EA is placed into frD.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x277 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-83

lfdx lfdx
Load Floating-Point Double-Precision Indexed Load/Store Unit

lfdx frD,rA,rB

if rA=0 then b ← 0
else b ← (rA)
EA ← b+(rB)
frD ← MEM(EA, 8)

EA is the sum (rA|0) + (rB).

The double word in memory addressed by EA is placed into frD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x257 00x1F D A
 MOTOROLA INSTRUCTION SET RCPU

9-84 Revised 1 February 1999 REFERENCE MANUAL

lfs lfs
Load Floating-Point Single-Precision Integer Unit

lfs frD,d(rA)

if rA=0 then b ← 0
else b ← (rA)
EA ← b+EXTS(d)
frD ← DOUBLE(MEM(EA, 4))

EA is the sum (rA|0) + d.

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision (see 4.5.8.1 Double-
Precision Conversion for Floating-Point Load Instructions) and placed into frD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x30 D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-85

lfsu lfsu
Load Floating-Point Single-Precision with Update Integer Unit

lfsu frD,d(rA)

EA ← (rA)+EXTS(d)
frD ← DOUBLE(MEM(EA, 4))
rA ← EA

EA is the sum (rA|0) + d.

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision (see 4.5.8.1 Double-
Precision Conversion for Floating-Point Load Instructions) and placed into frD.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x31 D A
 MOTOROLA INSTRUCTION SET RCPU

9-86 Revised 1 February 1999 REFERENCE MANUAL

lfsux lfsux
Load Floating-Point Single-Precision with Update Indexed Load/Store Unit

lfsux frD,rA,rB

EA ← (rA)+(rB)
frD ← DOUBLE(MEM(EA, 4))
rA ← EA

EA is the sum (rA|0) + (rB).

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision (see 4.5.8.1 Double-
Precision Conversion for Floating-Point Load Instructions) and placed into frD.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x237 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-87

lfsx lfsx
Load Floating-Point Single-Precision Indexed Load/Store Unit

lfsx frD,rA,rB

if rA=0 then b ← 0
else b ← (rA)
EA ← b+(rB)
frD ← DOUBLE(MEM(EA, 4))

EA is the sum (rA|0) + (rB).

The word in memory addressed by EA is interpreted as a floating-point single-precision
operand. This word is converted to floating-point double-precision (see 4.5.8.1 Double-
Precision Conversion for Floating-Point Load Instructions) and placed into frD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x217 00x1F D A
 MOTOROLA INSTRUCTION SET RCPU

9-88 Revised 1 February 1999 REFERENCE MANUAL

lha lha
Load Half Word Algebraic Load/Store Unit

lha rD,d(rA)

if rA=0 then b ← 0
else b ← (rA)
EA ← b+EXTS(d)
rD ← EXTS(MEM(EA, 2))

EA is the sum (rA|0) + d. The half word in memory addressed by EA is loaded into
rD[16:31]. Bits rD[0:15] are filled with a copy of bit 0 of the loaded half word.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x2A D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-89

lhau lhau
Load Half Word Algebraic with Update Load/Store Unit

lhau rD,d(rA)

EA ← (rA)+EXTS(d)
rD ← EXTS(MEM(EA, 2))
rA ← EA

EA is the sum (rA|0) + d. The half word in memory addressed by EA is loaded into
rD[16:31].

Bits rD[0:15] are filled with a copy of bit 0 of the loaded half word.

EA is placed into rA.

If rA=0 or rA=rD, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x2B D A
 MOTOROLA INSTRUCTION SET RCPU

9-90 Revised 1 February 1999 REFERENCE MANUAL

lhaux lhaux
Load Half Word Algebraic with Update Indexed Load/Store Unit

lhaux rD,rA,rB

EA ← (rA)+(rB)
rD ← EXTS(MEM(EA, 2))
rA ← EA

EA is the sum (rA|0) + (rB). The half word in memory addressed by EA is loaded into
rD[16:31]. Bits rD[0:15] are filled with a copy of bit 0 of the loaded half word.

EA is placed into rA.

If rA=0 or rA=rD, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x177 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-91

lhax lhax
Load Half Word Algebraic Indexed Load/Store Unit

lhax rD,rA,rB

if rA=0 then b ← 0
else b ← (rA)
EA ← b+(rB)
rD ← EXTS(MEM(EA, 2))

EA is the sum (rA|0) + (rB). The half word in memory addressed by EA is loaded into
rD[16:31]. Bits rD[0:15] are filled with a copy of bit 0 of the loaded half word.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x157 00x1F D A
 MOTOROLA INSTRUCTION SET RCPU

9-92 Revised 1 February 1999 REFERENCE MANUAL

lhbrx lhbrx
Load Half Word Byte-Reverse Indexed Load/Store Unit

lhbrx rD,rA,rB

if rA=0 then b ← 0
else b ← (rA)
EA ← b+(rB)
rD ← (16)0 || MEM(EA+1, 1) || MEM(EA,1)

EA is the sum (rA|0) + (rB). Bits 0:7 of the half word in memory addressed by EA are load-
ed into rD[24:31]. Bits 8:15 of the half word in memory addressed by EA are loaded into
rD[16:23]. Bits rD[0:15] are cleared to zero.

Some PowerPC implementations may run the lhbrx instructions with greater latency than
other types of load instructions. This is not the case in the RCPU. This instruction operates
with the same latency as other load instructions.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x316 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-93

lhz lhz
Load Half Word and Zero Load/Store Unit

lhz rD,d(rA)

if rA=0 then b←0
else b ← (rA)
EA ← b+EXTS(d)
rD ← (16)0 || MEM(EA, 2)

EA is the sum (rA|0) + d. The half word in memory addressed by EA is loaded into
rD[16:31]. Bits rD[0:15] are cleared to zero.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x28 D A
 MOTOROLA INSTRUCTION SET RCPU

9-94 Revised 1 February 1999 REFERENCE MANUAL

lhzu lhzu
Load Half Word and Zero with Update Load/Store Unit

lhzu rD,d(rA)

EA ← (rA)+EXTS(d)
rD ← (16)0 || MEM(EA, 2)
rA ← EA

EA is the sum (rA|0) + d. The half word in memory addressed by EA is loaded into
rD[16:31]. Bits rD[0:15] are cleared to zero.

EA is placed into rA.

If rA=0 or rA=rD, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x29 D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-95

lhzux lhzux
Load Half Word and Zero with Update Indexed Load/Store Unit

lhzux rD,rA,rB

EA ← (rA)+(rB)
rD←(16)0 || MEM(EA, 2)
rA←EA

EA is the sum (rA|0) + (rB). The half word in memory addressed by EA is loaded into
rD[16:31]. Bits rD[0:15] are cleared to zero.

EA is placed into rA.

If rA=0 or rA=rD, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x137 00x1F D A
 MOTOROLA INSTRUCTION SET RCPU

9-96 Revised 1 February 1999 REFERENCE MANUAL

lhzx lhzx
Load Half Word and Zero Indexed Load/Store Unit

lhzx rD,rA,rB

if rA=0 then b←0
else b←(rA)
EA←b+(rB)
rD←(16)0 || MEM(EA, 2)

The effective address is the sum (rA|0) + (rB). The half word in memory addressed by EA
is loaded into rD[16:31]. Bits rD[0:15] are cleared to zero.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x117 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-97

lmw lmw
Load Multiple Word Load/Store Unit

lmw rD,d(rA)

if rA=0 then b←0
else b←(rA)
EA←b+EXTS(d)
r←rD
do while r ð 31

GPR(r)← MEM(EA, 4)
r←r+1
EA←EA+4

EA is the sum (rA|0) + d.

n=(32-rD).

n consecutive words starting at EA are loaded into the 32 bits of GPRs rD through r31.
EA must be a multiple of four; otherwise, the system alignment exception handler is in-
voked.

If rA is in the range of registers specified to be loaded, including the case in which rA = 0,
the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x2E D A
 MOTOROLA INSTRUCTION SET RCPU

9-98 Revised 1 February 1999 REFERENCE MANUAL

lswi lswi
Load String Word Immediate Load/Store Unit

lswi rD,rA,NB

if rA=0 then EA←0
else EA←(rA)
if NB=0 then n←32
else n←NB
r←rD - 1
i←32
do while n Š 0

if i=32 then
r←r+1 (mod 32)
GPR(r)←0

GPR(r)[i:i+7]←MEM(EA, 1)
i←i+8
EA←EA+1
n←n-1

The EA is (rA|0).

Let n=NB if NB¦0, n=32 if NB=0; n is the number of bytes to load. Let nr=CEIL(n/4); nr is
the number of registers to be loaded with data.

n consecutive bytes starting at the EA are loaded into GPRs rD through rD+nr-1. Bytes
are loaded left to right in each register. The sequence of registers wraps around to r0 if
required. If the four bytes of register rD+nr-1 are only partially filled, the unfilled low-order
byte(s) of that register are cleared to zero.

If rA is in the range of registers specified to be loaded, including the case in which rA = 0,
the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

NB 0x255 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-99

lswx lswx
Load String Word Indexed Load/Store Unit

lswx rD,rA,rB

if rA=0 then b←0
else b←(rA)
EA←b+(rB)
n←XER[25:31]
r←rD - 1
i←32
do while n Š 0

if i=32 then
r←r+1 (mod 32)
GPR(r)←0

GPR(r)[i:i+7]←MEM(EA, 1)
i←i+8
EA←EA+1
n←n-1

EA is the sum (rA|0)+(rB). Let n=XER[25:31]; n is the number of bytes to load. Let
nr=CEIL(n/4): nr is the number of registers to receive data.

If n>0, n consecutive bytes starting at EA are loaded into GPRs rD through rD+nr-1.

Bytes are loaded left to right in each register. The sequence of registers wraps around to
r0 if required. If the bytes of rD+nr-1 are only partially filled, the unfilled low-order byte(s)
of that register are cleared to zero.

If n=0, the content of rD is undefined.

If rA or rB is in the range of registers specified to be loaded, including the case in which
rA = 0, either the system illegal instruction error handler is invoked or the results are
boundedly undefined.

If rD = rA or rD = rB, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x215 00x1F D A
 MOTOROLA INSTRUCTION SET RCPU

9-100 Revised 1 February 1999 REFERENCE MANUAL

lwarx lwarx
Load Word and Reserve Indexed Load/Store Unit

lwarx rD,rA,rB

if rA=0 then b←0
else b←(rA)
EA←b+(rB)
RESERVE←1
RESERVE_ADDR←func(EA)
rD←MEM(EA,4)

EA is the sum (rA|0) + (rB). The word in memory addressed by EA is loaded into rD.

This instruction creates a reservation for use by a store word conditional instruction. An
address computed from the EA is associated with the reservation, and replaces any ad-
dress previously associated with the reservation: the manner in which the address to be
associated with the reservation is computed from the EA is described in 4.1.2 Addressing
Modes and Effective Address Calculation.

If the EA is not a multiple of four, the alignment exception handler is invoked.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x14 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-101

lwbrx lwbrx
Load Word Byte-Reverse Indexed Load/Store Unit

lwbrx rD,rA,rB

if rA=0 then b←0
else b←(rA)
EA←b+(rB)
rD←MEM(EA+3, 1) || MEM(EA+2, 1) || MEM(EA+1, 1) || MEM(EA, 1)

EA is the sum (rA|0)+(rB). Bits 0:7 of the word in memory addressed by EA are loaded
into rD[24:31]. Bits 8:15 of the word in memory addressed by EA are loaded into
rD[16:23]. Bits 16:23 of the word in memory addressed by EA are loaded into rD[8:15].
Bits 24:31 of the word in memory addressed by EA are loaded into rD[0:7].

Some PowerPC implementations may run the lwbrx instructions with greater latency than
other types of load instructions. This is not the case in the RCPU. This instruction operates
with the same latency as other load instructions.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x216 00x1F D A
 MOTOROLA INSTRUCTION SET RCPU

9-102 Revised 1 February 1999 REFERENCE MANUAL

lwz lwz
Load Word and Zero Load/Store Unit

lwz rD,d(rA)

if rA=0 then b←0
else b←(rA)
EA←b+EXTS(d)
rD←MEM(EA, 4)

EA is the sum (rA|0) + d. The word in memory addressed by EA is loaded into rD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x20 D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-103

lwzu lwzu
Load Word and Zero with Update Load/Store Unit

lwzu rD,d(rA)

EA ← (rA)+EXTS(d)
rD←MEM(EA, 4)
rA←EA

EA is the sum (rA|0) + d. The word in memory addressed by EA is loaded into rD.

EA is placed into rA.

If rA=0 or rA=rD, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

d0x21 D A
 MOTOROLA INSTRUCTION SET RCPU

9-104 Revised 1 February 1999 REFERENCE MANUAL

lwzux lwzux
Load Word and Zero with Update Indexed Load/Store Unit

lwzux rD,rA,rB

EA ← (rA)+(rB)
rD←MEM(EA, 4)
rA←EA

EA is the sum (rA|0)+(rB). The word in memory addressed by EA is loaded into rD.

EA is placed into rA.

If rA=0 or rA=rD, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x37 00x1F D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-105

lwzx lwzx
Load Word and Zero Indexed Load/Store Unit

lwzx rD,rA,rB

if rA=0 then b←0
else b←(rA)
EA←b+(rB)
rD←MEM(EA, 4)

EA is the sum (rA|0) + (rB). The word in memory addressed by EA is loaded into rD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 0x17 00x1F D A
 MOTOROLA INSTRUCTION SET RCPU

9-106 Revised 1 February 1999 REFERENCE MANUAL

mcrf mcrf
Move Condition Register Field Branch Processor Unit

mcrf crfD,crfS

CR[4∗crfD:4∗crfD+3] ← CR[4∗crfS:4∗crfS+3]

The contents of condition register field crfS are copied into condition register field crfD.
All other condition register fields remain unchanged.

Other registers altered:

• Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO

This instruction is defined by the PowerPC UISA.

0 5 6 8 9 10 11 13 14 15 16 20 21 30 31

Reserved

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00x13 crfD 0 0 crfS
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-107

mcrfs mcrfs
Move to Condition Register from FPSCR Floating Point and Branch Processor Units

mcrfs crfD,crfS

The contents of FPSCR field crfS are copied to CR Field crfD. All other CR fields are un-
changed. All exception bits copied except FEX and VX are cleared in the FPSCR.

Other registers altered:

• Condition Register (CR Field specified by operand crfS):

Affected: FX, OX (if crfS=0)

Affected: UX, ZX, XX, VXSNAN (if crfS=1)

Affected: VXISI, VXIDI, VXZDZ, VXIMZ (if crfS=2)

Affected: VXVC (if crfS=3)

Affected: VXSOFT, VXSQRT, VXCVI (if crfS=5)

This instruction is defined by the PowerPC UISA.

0 5 6 8 9 10 11 13 14 15 16 20 21 30 31

Reserved

0x3F crfD 0 0 crfS 0 0 0 0 0 0 0 0x40 0
 MOTOROLA INSTRUCTION SET RCPU

9-108 Revised 1 February 1999 REFERENCE MANUAL

mcrxr mcrxr
Move to Condition Register from XER Load/Store and Branch Processor Units

mcrxr crfD

CR[4∗crfD:4∗crfD+3]←XER[0:3]
XER[0:3]← 0b0000

The contents of XER[0:3] are copied into the condition register field designated by crfD.
All other fields of the condition register remain unchanged. XER[0:3] is cleared to zero.

Other registers altered:

• Condition Register (CR Field specified by crfD operand):

Affected: LT, GT, EQ, SO

• XER[0:3]

This instruction is defined by the PowerPC UISA.

SECTION 9INSTRUCTION SET

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

0x1F crfD 0 0 0 0 0 0 0 0 0 0 0 0 0x200 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-109

mfcr mfcr
Move from Condition Register Branch Processor Unit

mfcr rD

rD← CR

The contents of the condition register are placed into rD.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 0x13 00x1F D 0 0 0 0 0
 MOTOROLA INSTRUCTION SET RCPU

9-110 Revised 1 February 1999 REFERENCE MANUAL

mffsx mffsx
Move from FPSCR Floating-Point Unit

mffs frD (Rc=0)
mffs. frD (Rc=1)

The contents of the FPSCR are placed into frD[32:63]. frD[0:31] are undefined.

Other registers altered:

• Condition Register (CR1 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 0x247 Rc0x3F frD 0 0 0 0 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-111

mfmsr mfmsr
Move from Machine State Register Branch Processor Unit

mfmsr rD

rD← MSR

The contents of the MSR are placed into rD.

This is a supervisor-level instruction.

Other registers altered:

• None

This instruction is defined by the PowerPC OEA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 0x53 00x1F D 0 0 0 0 0
 MOTOROLA INSTRUCTION SET RCPU

9-112 Revised 1 February 1999 REFERENCE MANUAL

mfspr mfspr
Move from Special Purpose Register All Units

mfspr rD,SPR

n←SPR[5:9] ||SPR[0:4]
 rD← SPR(n)

The SPR field denotes a special purpose register, encoded as shown in Table 4-29, Ta-
ble 4-30, and Table 4-31. The contents of the designated special purpose register are
placed into rD.

For mtspr and mfspr instructions, the SPR number coded in assembly language does
not appear directly as a 10-bit binary number in the instruction. The number coded is split
into two 5-bit halves that are reversed in the instruction, with the high-order 5 bits appear-
ing in bits 16 to 20 of the instruction and the low-order 5 bits in bits 11 to 15.

If the SPR field contains any value other than one of the values shown in one of the tables
listed above, one of the following occurs:

• The system illegal instruction error handler is invoked.

• The system supervisor-level instruction error handler is invoked.

• The system software emulation exception handler is invoked.

The value of SPR[0] is one if and only if reading the register is at the supervisor level. Ex-
ecution of this instruction specifying a supervisor-level register when MSR[PR]=1 will re-
sult in a supervisor-level instruction type program exception or a software emulation
exception. Refer to SECTION 6 EXCEPTIONS for details.

If the SPR field contains a value that is not valid for the RCPU, the instruction form is in-
valid. For an invalid instruction form in which SPR[0]=1, if MSR[PR]=1 a supervisor-level
instruction type program exception will occur instead of a no-op.

The execution unit that executes the mfspr instruction depends on the SPR. Moves from
the XER and from SPRs that are physically implemented outside the processor are han-
dled by the LSU. Moves from the FPSCR and FPECR are executed by the FPU. In all oth-
er cases, the BPU executes the mfspr instruction.

Other registers altered:

• None

0 5 6 10 11 20 21 30 31

Reserved

SPR 0x153 00x1F D
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-113

This instruction is defined by the PowerPC UISA.

Table 9-19 Simplified Mnemonics for mfspr Instruction

Operation Simplified Mnemonic Equivalent To

Move from XER mfxer rD mfspr rD,1

Move from LR mflr rD mfspr rD,8

Move from CTR mfctr rD mfspr rD,9

Move from DSISR mfdsisr rD mfspr rD,18

Move from DAR mfdar rD mfspr rD,19

Move from DEC mfdec rD mfspr rD,22

Move from SRR0 mfsrr0 rD mfspr rD,26

Move from SRR1 mfsrr1 rD mfspr rD,27

Move from SPRG mfsprg rD, n mfspr rD,272+n

Move from TBL mftb rD mftb rD,268

Move from TBU mftbu rD mftb rD,269

Move from PVR mfpvr rD mfspr rD,287
 MOTOROLA INSTRUCTION SET RCPU

9-114 Revised 1 February 1999 REFERENCE MANUAL

mftb mftb
Move from Time Base Load/Store Unit

mftb rD,TBR

n←TBR[5:9] ||TBR[0:4]
if n = 268 then

 rD ← TBL
else if n = 269 then

 rD← TBU

The TBR field denotes either the time base lower (TBL) or time base upper (TBU), encod-
ed as shown in Table 9-20. Notice that the order of the two 5-bit halves of the TBR number
is reversed in the instruction. The contents of the designated register are copied into rD.

If the TBR field contains any value other than one of the values shown in Table 9-20, one
of the following occurs:

• The system illegal instruction error handler is invoked.

• The system supervisor-level instruction error handler is invoked.

• The results are boundedly undefined

Note that mftb serves as both a basic and a simplified mnemonic. The assembler recog-
nized an mftb mnemonic with two operands as the basic form and an mftb mnemonic
with one operand as the simplified form. If mftb is coded with one operand, then that op-
erand is assumed to be rD, and TBR defaults to the value corresponding to TBL.

Other registers altered:

• None

This instruction is defined by the PowerPC VEA.

Table 9-20 TBR Encodings for mftb

Decimal TBR[5:9] TBR[0:4] Register Name Access

268 01000 01100 TBL User

269 01000 01101 TBU User

0 5 6 10 11 20 21 30 31

Reserved

TBR (Split Field) 0x153 00x1F D
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-115

Table 9-21 Simplified Mnemonics for mfspr Instruction

Operation Simplified Mnemonic Equivalent To

Move from TBL mftb rD mftb rD,268

Move from TBU mftbu rD mftb rD,269
 MOTOROLA INSTRUCTION SET RCPU

9-116 Revised 1 February 1999 REFERENCE MANUAL

mtcrf mtcrf
Move to Condition Register Fields Branch Processor Unit

mtcrf CRM,rS

mask←(4)(CRM[0]) || (4)(CRM[1]) ||... (4)(CRM[7])
CR←((rS) & mask) | (CR & ¬mask)

The contents of rS are placed into the condition register under control of the field mask
specified by CRM. The field mask identifies the 4-bit fields affected. Let i be an integer in
the range 0–7. If CRM(i) = 1, CR Field i (CR bits 4∗i through 4∗i+3) is set to the contents
of the corresponding field of rS.

Other registers altered:

• CR fields selected by mask

This instruction is defined by the PowerPC UISA.

Table 9-22 Simplified Mnemonics for mtcrf Instruction

Operation Simplified Mnemonic Equivalent To

Move to condition register mtcr rS mtcrf 0xFF,rS

0 5 6 10 11 12 19 20 21 30 31

Reserved

CRM 0 0x90 00x1F S 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-117

mtfsb0x mtfsb0x
Move to FPSCR Bit 0 Floating-Point Unit

mtfsb0 crbD (Rc=0)
mtfsb0. crbD (Rc=1)

Bit crbD of the FPSCR is cleared to zero. All other bits of the FPSCR are unchanged.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

Affected: FPSCR bit crbD

Note: Bits 1 and 2 (FEX and VX) cannot be explicitly reset.

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 0x46 Rc0x3F crb D 0 0 0 0 0
 MOTOROLA INSTRUCTION SET RCPU

9-118 Revised 1 February 1999 REFERENCE MANUAL

mtfsb1x mtfsb1x
Move to FPSCR Bit 1 Floating-Point Unit

mtfsb1 crbD (Rc=0)
mtfsb1. crbD (Rc=1)

Bit crbD of the FPSCR is set to one. All other bits of the FPSCR are unchanged.

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

FPSCR bit crbD and FX

Note: Bits 1 and 2 (FEX and VX) cannot be explicitly set.

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 0x26 Rc0x3F crbD 0 0 0 0 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-119

mtfsfx mtfsfx
Move to FPSCR Fields Floating-Point Unit

mtfsf FM,frB (Rc=0)
mtfsf. FM,frB (Rc=1)

frB[32:63] are placed into the FPSCR under control of the field mask specified by FM. The
field mask identifies the 4-bit fields affected. Let i be an integer in the range 0–7. If
FM(i)=1, FPSCR Field i (FPSCR bits 4∗i through 4∗i+3) is set to the contents of the cor-
responding field of the low-order 32 bits of register frB.

FPSCR[FX] is altered only if FM[0]=1.

In some PowerPC implementations, updating fewer than all eight fields of the FPSCR may
have substantially poorer performance than updating all the fields. This is not the case
with the RCPU.

When FPSCR[0:3] is specified, bits 0 (FX) and 3 (OX) are set to the values of frB[32] and
frB[35] (i.e., even if this instruction causes OX to change from zero to one, FX is set from
frB[32] and not by the usual rule that FX is set to one when an exception bit changes from
zero to one). Bits 1 and 2 (FEX and VX) are set according to the usual rule and not from
frB[33:34].

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

FPSCR fields selected by mask

This instruction is defined by the PowerPC UISA.

0 5 6 7 14 15 16 20 21 30 31

Reserved

0x3F 0 FM 0 frB 0x2C7 Rc
 MOTOROLA INSTRUCTION SET RCPU

9-120 Revised 1 February 1999 REFERENCE MANUAL

mtfsfix mtfsfix
 Move to FPSCR Field Immediate Floating-Point Unit

mtfsfi crfD,IMM (Rc=0)
mtfsfi. crfD,IMM (Rc=1)

The value of the IMM field is placed into FPSCR field crfD.

FPSCR[FX] is altered only if crfD = 0.

When FPSCR[0:3] is specified, bits 0 (FX) and 3 (OX) are set to the values of IMM[0] and
IMM[3] (i.e., even if this instruction causes OX to change from zero to one, FX is set from
IMM[0] and not by the usual rule that FX is set to one when an exception bit changes from
0 to 1). Bits 1 and 2 (FEX and VX) are set according to the usual rule, given in 2.2.3 Float-
ing-Point Status and Control Register (FPSCR) and not from IMM[1:2].

Other registers altered:

• Condition Register (CR1 Field):

Affected: FX, FEX, VX, OX (if Rc=1)

• Floating-point Status and Control Register:

FPSCR field crfD

This instruction is defined by the PowerPC UISA.

0 5 6 8 9 10 11 12 15 16 19 20 21 30 31

Reserved

0x3F crfD 0 0 0 0 0 0 0 IMM 0 0x86 Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-121

mtmsr mtmsr
 Move to Machine State Register Branch Processor Unit

mtmsr rS

MSR←rS

The contents of rS are placed into the MSR.

This is a supervisor-level, executing-synchronizing instruction.

Other registers altered:

• MSR

This instruction is defined by the PowerPC OEA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 0x92 00x1F S 0 0 0 0 0
 MOTOROLA INSTRUCTION SET RCPU

9-122 Revised 1 February 1999 REFERENCE MANUAL

mtspr mtspr
 Move to Special Purpose Register All Units

mtspr SPR,rS

n =SPR[5:9] ||SPR[0:4]
SPREG(n)←(rS)

The SPR field denotes a special purpose register, encoded as shown in Table 4-29, Ta-
ble 4-30, and Table 4-31. The contents of rS are placed into the designated special pur-
pose register.

For mtspr and mfspr instructions, the SPR number coded in assembly language does
not appear directly as a 10-bit binary number in the instruction. The number coded is split
into two 5-bit halves that are reversed in the instruction, with the high-order 5 bits appear-
ing in bits 16 to 20 of the instruction and the low-order 5 bits in bits 11 to 15.

If the SPR field contains any value other than one of the values shown in one of the tables
listed above, one of the following occurs:

• The system illegal instruction error handler is invoked.

• The system supervisor-level instruction error handler is invoked.

• The software emulation exception handler is invoked.

Note that, for this instruction, SPRs TBL and TBU are treated as separate registers; set-
ting one leaves the other unaltered.

The value of SPR[0] is one if and only if the register is read at the supervisor-level. Exe-
cution of this instruction specifying a supervisor-level register when MSR[PR]=1 results in
a supervisor-level instruction type program exception or software emulation exception.

If the SPR field contains a value that is not valid for the RCPU, the instruction form is in-
valid. For an invalid instruction form in which SPR[0]=1, if MSR[PR]=1 a supervisor-level
instruction type program exception will occur instead of a no-op.

The execution unit that executes the mtspr instruction depends on the SPR. Moves to the
XER and to SPRs that are physically implemented outside the processor are handled by
the LSU. Moves to the FPSCR and FPECR are executed by the FPU. In all other cases,
the BPU executes the mtspr instruction.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 20 21 30 31

Reserved

SPR 0x1D3 00x1F S
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-123

Table 9-23 Simplified Mnemonics for mtspr Instruction

Operation Simplified Mnemonic Equivalent To

Move to XER mtxer rS mtspr 1,rS

Move to LR mtlr rS mtspr 8,rS

Move to CTR mtctr rS mtspr 9,rS

Move to DSISR mtdsisr rS mtspr 18,rS

Move to DAR mtdar rS mtspr 19,rS

Move to DEC mtdec rS mtspr 22,rS

Move to SRR0 mtsrr0 rS mtspr 26,rS

Move to SRR1 mtsrr1 rS mtspr 27,rS

Move to SPRG mtsprg n, rS mtspr 272+n,rS

Move to TBL mttbl rS mtspr 284,rS

Move to TBU mttbu rS mtspr 285,rS
 MOTOROLA INSTRUCTION SET RCPU

9-124 Revised 1 February 1999 REFERENCE MANUAL

mulhwx mulhwx
Multiply High Word Integer Unit

mulhw rD,rA,rB (Rc=0)
mulhw. rD,rA,rB (Rc=1)

prod[0:63]←(rA)∗(rB)
rD←prod[0:31]

The contents of rA and of rB are interpreted as 32-bit signed integers. They are multiplied
to form a 64-bit signed integer product. The high-order 32 bits of the 64-bit product are
placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B 0 0x4B Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-125

mulhwux mulhwux
Multiply High Word Unsigned Integer Unit

mulhwu rD,rA,rB (Rc=0)
mulhwu. rD,rA,rB (Rc=1)

prod[0:63]←(rA)∗(rB)
rD←prod[0:31]

The contents of rA and of rB are interpreted as 32-bit unsigned integers. They are multi-
plied to form a 64-bit unsigned integer product. The high-order 32 bits of the 64-bit product
are placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B 0 0x0B Rc
 MOTOROLA INSTRUCTION SET RCPU

9-126 Revised 1 February 1999 REFERENCE MANUAL

mulli mulli
 Multiply Low Immediate Integer Unit

mulli rD,rA,SIMM

prod[0:47]←rA∗SIMM
rD←prod[16:47]

The low-order 32 bits of the 48-bit product (rA)∗SIMM are placed into rD. The low-order
bits are calculated independently of whether the operands are treated as signed or un-
signed 32-bit integers.

This instruction can be used with mullhwx to calculate a full 64-bit product.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

SIMM0x07 D A
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-127

mullwx mullwx
Multiply Low Integer Unit

mullw rD,rA,rB (OE=0 Rc=0)
mullw. rD,rA,rB (OE=0 Rc=1)
mullwo rD,,rA,rB (OE=1 Rc=0)
mullwo. rD,rA,rB (OE=1 Rc=1)

prod[0:63]←(rA)∗(rB)
rD←prod[32:63]

The low-order 32 bits of the 64-bit product (rA)∗(rB) are placed into rD. The low-order bits
are calculated independently of whether the operands are treated as signed or unsigned
integers. However, OV is set based on the result interpreted as a signed integer.

If OE=1, then OV is set to one if the product cannot be represented in 32 bits.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0xEB Rc
 MOTOROLA INSTRUCTION SET RCPU

9-128 Revised 1 February 1999 REFERENCE MANUAL

nandx nandx
NAND Integer Unit

nand rA,rS,rB (Rc=0)
nand. rA,rS,rB (Rc=1)

rA← ¬ ((rS) & (rB))

The contents of rS are ANDed with the contents of rB, and the complemented result is
placed into rA.

nand with rS = rB can be used to obtain the one’s complement.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x1DC Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-129

negx negx
Negate Integer Unit

neg rD,rA (OE=0 Rc=0)
neg. rD,rA (OE=0 Rc=1)
nego rD,rA (OE=1 Rc=0)
nego. rD,rA (OE=1 Rc=1)

rD← ¬ (rA) + 1

The sum ¬(rA) + 1 is placed into rD.

If rA contains the most negative 32-bit number (0x8000 0000), the result is the most neg-
ative 32-bit number, and if OE=1, OV is set.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: SO OV (if OE=1)

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A 0 0 0 0 0 OE 0x68 Rc
 MOTOROLA INSTRUCTION SET RCPU

9-130 Revised 1 February 1999 REFERENCE MANUAL

norx norx
 NOR Integer Unit

nor rA,rS,rB (Rc=0)
nor. rA,rS,rB (Rc=1)

rA← ¬ ((rS) | (rB))

The contents of rS are ORed with the contents of rB, and the one’s complement of the
result is placed into rA.

nor with rS=rB can be used to obtain the one’s complement.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

Table 9-24 Simplified Mnemonics for nor Instruction

Operation Simplified Mnemonic Equivalent To

Complement register not rA, rS
not. rA, rS

nor rA,rS,rS
nor. rA,rS,rS

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x7C Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-131

orx orx
OR Integer Unit

or rA,rS,rB (Rc=0)
or. rA,rS,rB (Rc=1)

rA←(rS) | (rB)

The contents of rS is ORed with the contents of rB and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

Table 9-25 Simplified Mnemonics for or Instruction

Operation Simplified Mnemonic Equivalent To

Move register mr rA, rS
mr. rA, rS

or rA,rS,rS
or. rA,rS,rS

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x1BC Rc
 MOTOROLA INSTRUCTION SET RCPU

9-132 Revised 1 February 1999 REFERENCE MANUAL

orcx orcx
OR with Complement Integer Unit

orc rA,rS,rB (Rc=0)
orc. rA,rS,rB (Rc=1)

rA ← (rS) | ¬ (rB)

The contents of rS is ORed with the complement of the contents of rB and the result is
placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x19C Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-133

ori ori
OR Immediate Integer Unit

ori rA,rS,UIMM

rA←(rS) | ((16)0 || UIMM)

The contents of rS is ORed with 0x0000 || UIMM and the result is placed into rA.

The preferred no-op is:

ori 0,0,0

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Table 9-26 Simplified Mnemonics for ori Instruction

Operation Simplified Mnemonic Equivalent To

No operation nop ori 0,0,0

0 5 6 10 11 15 16 31

0x18 S A UIMM
 MOTOROLA INSTRUCTION SET RCPU

9-134 Revised 1 February 1999 REFERENCE MANUAL

oris oris
OR Immediate Shifted Integer Unit

oris rA,rS,UIMM

rA←(rS) | (UIMM || (16)0)

The contents of rS is ORed with UIMM || 0x0000 and the result is placed into rA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x19 S A UIMM
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-135

rfi rfi
Return from Interrupt Branch Processor Unit

MSR[16:31]←SRR1[16:31]
NIA←SRR0[0:29] || 0b00

SRR1[16:31] are placed into MSR[16:31]. If the new MSR value does not enable any
pending exceptions, then the next instruction is fetched, under control of the new MSR
value, from the address SRR0[0:29] || 0b00. If the new MSR value enables one or more
pending exceptions, the exception associated with the highest priority pending exception
is generated; in this case the value placed into SRR0 by the exception processing mech-
anism is the address of the instruction that would have been executed next had the ex-
ception not occurred.

This is a supervisor-level, context-synchronizing instruction.

Other registers altered:

• MSR

This instruction is defined by the PowerPC OEA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x32 0
 MOTOROLA INSTRUCTION SET RCPU

9-136 Revised 1 February 1999 REFERENCE MANUAL

rlwimix rlwimix
Rotate Left Word Immediate then Mask Insert Integer Unit

rlwimi rA,rS,SH,MB,ME (Rc=0)
rlwimi. rA,rS,SH,MB,ME (Rc=1)

n←SH
r←ROTL(rS, n)
m←MASK(MB, ME)
rA←(r&M) | (rA &¬m)

The contents of rS are rotated left SH bits. A mask is generated having 1-bits from bit MB
through bit ME and 0-bits elsewhere. The rotated data is inserted into rA under control of
the generated mask.

Note that rlwimi can be used to insert a bit field into the contents of rA using the methods
shown below:

• To insert an n-bit field that is left-justified in rS into rA starting at bit position b, set
SH = 32 - b, MB = b, and ME = b + n - 1

• To insert an n-bit field that is right-justified in rS into rA starting at bit position b, set
SH = 32 - (b + n), MB = b, and ME = b + n - 1

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

Table 9-27 Simplified Mnemonics for rlwimi Instruction

Operation Simplified Mnemonic Equivalent To

Insert from left immediate inslwi rA,rS,n,b
inslwi. rA,rS,n,b

rlwimi rA,rS,32-b,b,b+n-1
rlwimi. rA,rS,32-b,b,b+n-1

Insert from right immediate insrwi rA,rS,n,b
insrwi. rA,rS,n,b

rlwimi rA,rS,32- (b + n),b,b+n-1
rlwimi. rA,rS,32- (b + n),b,b+n-1

0 5 6 10 11 15 16 20 21 25 26 30 31

0x14 S A SH MB ME Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-137

rlwinmx rlwinmx
Rotate Left Word Immediate then AND with Mask Integer Unit

rlwinm rA,rS,SH,MB,ME (Rc=0)
rlwinm. rA,rS,SH,MB,ME (Rc=1)

n←SH
r←ROTL(rS, n)
m←MASK(MB, ME)
rA←r & m

The contents of rS are rotated left SH bits. A mask is generated having 1-bits from bit MB
through bit ME and 0-bits elsewhere. The rotated data is ANDed with the generated mask
and the result is placed into rA.

Note that rlwinm can be used to extract, rotate, or clear bit fields using the following meth-
ods:

• To extract an n-bit field that starts at bit position b in rS[0:31], right-justified into rA
(clearing the remaining 32-n bits of rA), set SH=b+n, MB=32-n, and ME=31.

• To extract an n-bit field that starts at bit position b in rS[0–31], left-justified into rA
(clearing the remaining 32-n bits of rA), set SH=b, MB=0, and ME=n-1.

• To rotate the contents of a register left (or right) by n bits, set SH=n (32-n), MB=0,
and ME=31.

• To shift the contents of a register right by n bits, set SH=32-N, MB=n, and ME=31.

• To clear the high-order b bits of a register and then shift the result left by n bits, set
SH=n, MB=b-n and ME=31-n.

• To clear the low-order n bits of a register, set SH=0, MB=0, and ME=31-n.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 25 26 30 31

0x15 S A SH MB ME Rc
 MOTOROLA INSTRUCTION SET RCPU

9-138 Revised 1 February 1999 REFERENCE MANUAL

Table 9-28 Simplified Mnemonics for rlwinm Instruction

Operation Simplified Mnemonic Equivalent To

Extract and left justify immediate extlwi rA,rS,n,b (n > 0)
extlwi. rA,rS,n,b (n > 0)

rlwinm rA,rS,b,0,n-1
rlwinm. rA,rS,b,0,n-1

Extract and right justify
immediate

extrwi rA,rS,n,b (n > 0)
extrwi rA,rS,n,b (n > 0)

rlwinm rA,rS,b + n, 32 – n, 31
rlwinm. rA,rS,b + n, 32 – n, 31

Rotate left immediate rotlwi rA,rS,n
rotlwi. rA,rS,n

rlwinm rA,rS,n,0,31
rlwinm. rA,rS,n,0,31

Rotate right immediate rotrwi rA,rS,n
rotrwi. rA,rS,n

rlwinm rA,rS,32 – n,0,31
rlwinm. rA,rS,32 – n,0,31

Shift left immediate srwi rA,rS,n (n < 32)
srwi. rA,rS,n (n < 32)

rlwinm rA,rS,n,0,31–n
rlwinm. rA,rS,n,0,31–n

Shift right immediate srwi rA,rS,n (n < 32)
srwi. rA,rS,n (n < 32)

rlwinm rA,rS,32-n,n,31
rlwinm. rA,rS,32-n,n,31

Clear left immediate clrlwi rA,rS,n (n<32)
clrlwi. rA,rS,n (n<32)

rlwinm rA,rS,0,n,31
rlwinm. rA,rS,0,n,31

Clear right immediate clrrwi rA,rS,n (n<32)
clrrwi. rA,rS,n (n<32)

rlwinm rA,rS,0,0,31-n
rlwinm. rA,rS,0,0,31-n

Clear left and shift left immediate clrlslwi rA,rS,b,n (n ð b ð 31)
clrlslwi. rA,rS,b,n (n ð b ð 31)

rlwinm rA,rS,n,b-n,31-n
rlwinm. rA,rS,n,b-n,31-n
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-139

rlwnmx rlwnmx
Rotate Left Word then AND with Mask Integer Unit

rlwnm rA,rS,rB,MB,ME (Rc=0)
rlwnm. rA,rS,rB,MB,ME (Rc=1)

n←rB[27:31]
r←ROTL(rS, n)
m←MASK(MB, ME)
rA←r & m

The contents of rS are rotated left the number of bits specified by rB[27:31]. A mask is
generated having 1-bit from bit MB through bit ME and 0-bits elsewhere. The rotated data
is ANDed with the generated mask and the result is placed into rA.

Note that rlwnm can be used to extract and rotate bit fields using the following methods:

• To extract an n-bit field that starts at variable bit position b in rS[0:31], right-justified
into rA (clearing the remaining 32-n bits of rA), set rB[27:31]=b+n, MB=32-n, and
ME=31.

• To extract an n-bit field, that starts at variable bit position b in rS[0:31], left-justified
into rA (clearing the remaining 32-n bits of rA), set rB[27:31]=b, MB=0, and ME=n-
1.

• To rotate the contents of a register left (or right) by variable n bits, set rB[27:31]=n
(32-N), MB=0, and ME=31.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

Table 9-29 Simplified Mnemonics for rlwnm Instruction

Operation Simplified Mnemonic Equivalent To

Rotate left rotlw rA,rS,rB
rotlw. rA,rS,rB

rlwnm rA,rS,rB,0,31
rlwnm. rA,rS,rB,0,31

0 5 6 10 11 15 16 20 21 25 26 30 31

0x17 S A B MB ME Rc
 MOTOROLA INSTRUCTION SET RCPU

9-140 Revised 1 February 1999 REFERENCE MANUAL

sc sc
System Call Branch Processor Unit

This instruction calls the operating system to perform a service. When control is returned
to the program that executed the system call, the content of the registers depends on the
register conventions used by the program providing the system service.

The effective address of the instruction following the system call instruction is placed into
SRR0. MSR[16:31] are placed into SRR1[16:31], and SRR1[0:15] are set to undefined
values.

Then a system call exception is generated. The exception causes the MSR to be altered
as described in 6.11.8 System Call Exception (0x00C00).

The exception causes the next instruction to be fetched from offset 0xC00 from the phys-
ical base address indicated by the new setting of MSR[IP]. This instruction is context-syn-
chronizing.

Other registers altered:

• Dependent on the system service

• SRR0

• SRR1

• MSR

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 29 30 31

0x11 0 1 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-141

slwx slwx
Shift Left Word Integer Unit

slw rA,rS,rB (Rc=0)
slw. rA,rS,rB (Rc=1)

n←rB[27:31]
r←ROTL((rS), n)
if rB[26]=0 then

m← MASK(0,31-n)
else

m←(32)0
rA←r&m

If rB[26]=0, the contents of rS are shifted left the number of bits specified by rB[27:31].
Bits shifted out of position 0 are lost. Zeros are supplied to the vacated positions on the
right. The 32-bit result is placed into rA. If rB[26]=1, 32 zeros are placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x18 Rc
 MOTOROLA INSTRUCTION SET RCPU

9-142 Revised 1 February 1999 REFERENCE MANUAL

srawx srawx
Shift Right Algebraic Word Integer Unit

sraw rA,rS,rB (Rc=0)
sraw. rA,rS,rB (Rc=1)

n←rB[27:31]
r←ROTL((rS), 32-n)
if rB[26]=0 then

m← MASK(n,31)
else

m←(32)0
s←rS[0]
rA←r&m | (32)s & ¬ m
XER[CA]←s & ((r & ¬ m)¦0)

If rB[26]=0,then the contents of rS are shifted right the number of bits specified by
rB[27:31]. Bits shifted out of position 31 are lost. The result is padded on the left with sign
bits before being placed into rA. If rB[26]=1, then rA is filled with 32 sign bits (bit 0) from
rS. CR0 is set based on the value written into rA.

XER[CA] is set to one if rS contains a negative number and any 1-bits are shifted out of
position 31; otherwise XER[CA] is cleared to zero. A shift amount of zero causes XER[CA]
to be cleared.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x318 Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-143

srawix srawix
Shift Right Algebraic Word Immediate Integer Unit

srawi rA,rS,SH (Rc=0)
srawi. rA,rS,SH (Rc=1)

n←SH
r←ROTL((rS), 32-n)
m← MASK(n,31)
s←rS[0]
rA←r&m | (32)s & ¬ m
XER[CA]←s & ((r & ¬ m)¦0)

The contents of rS are shifted right SH bits. Bits shifted out of position 31 are lost. The
shifted value is sign extended before being placed in rA. The 32-bit result is placed into
rA. XER[CA] is set to one if rS contains a negative number and any 1-bits are shifted out
of position 31; otherwise XER[CA] is cleared to zero. A shift amount of zero causes
XER[CA] to be cleared to zero.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A SH 0x338 Rc
 MOTOROLA INSTRUCTION SET RCPU

9-144 Revised 1 February 1999 REFERENCE MANUAL

srwx srwx
Shift Right Word Integer Unit

srw rA,rS,rB (Rc=0)
srw. rA,rS,rB (Rc=1)

n←rB[27:31]
r←ROTL((rS), 32-n)
if rB[26]=0 then

m←MASK(n,31)
else

m←(32)0
rA←r & m

If rB[26]=0, the contents of rA are shifted right the number of bits specified by rA[27:31].
Bits shifted out of position 31 are lost. Zeros are supplied to the vacated positions on the
left. The 32-bit result is placed into rA.

If rB[26]=1, then rA is filled with zeros.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x218 Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-145

stb stb
Store Byte Load/Store Unit

stb rS,d(rA)

if rA = 0 then b←0
else b←(rA)
EA←b + EXTS(d)
MEM(EA, 1)←rS[24:31]

EA is the sum (rA|0)+d. The contents of rS[24:31] are stored into the byte in memory ad-
dressed by EA. Register rS is unchanged.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x26 S A d
 MOTOROLA INSTRUCTION SET RCPU

9-146 Revised 1 February 1999 REFERENCE MANUAL

stbu stbu
Store Byte with Update Load/Store Unit

stbu rS,d(rA)

EA← (rA) + EXTS(d)
MEM(EA, 1)←rS[24:31]
rA←EA

EA is the sum (rA|0)+d. The contents of rS[24:31] are stored into the byte in memory ad-
dressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x27 S A d
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-147

stbux stbux
Store Byte with Update Indexed Load/Store Unit

stbux rS,rA,rB

EA← (rA) + (rB)
MEM(EA, 1)←rS[24:31]
rA←EA

EA is the sum (rA|0)+(rB). The contents of rS[24:31] is stored into the byte in memory ad-
dressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 21 22 30 31

0x1F S A B 0xF7 0
 MOTOROLA INSTRUCTION SET RCPU

9-148 Revised 1 February 1999 REFERENCE MANUAL

stbx stbx
Store Byte Indexed Load/Store Unit

stbx rS,rA,rB

if rA = 0 then b←0
else b←(rA)
EA←b + (rB)
EM(EA, 1) ← rS[24:31]

EA is the sum (rA|0)+(rB).

The contents of rS[24:31] is stored into the byte in memory addressed by EA. Register rS
is unchanged.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 21 22 30 31

0x1F S A B 0xD7 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-149

stfd stfd
Store Floating-Point Double-Precision Floating-Point Unit

stfd frS,d(rA)

if rA = 0 then b←0
else b←(rA)
EA←b + EXTS(d)
MEM(EA, 8)←(frS)

EA is the sum (rA|0)+d.

The contents of frS are stored into the double word in memory addressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 30 31

0x36 frS A d
 MOTOROLA INSTRUCTION SET RCPU

9-150 Revised 1 February 1999 REFERENCE MANUAL

stfdu stfdu
Store Floating-Point Double-Precision with Update Load/Store Unit

stfdu frS,d(rA)

EA← (rA) + EXTS(d)
MEM(EA, 8)← (frS)
rA←EA

EA is the sum (rA|0)+d.

The contents of frS are stored into the double word in memory addressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x37 frS A d
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-151

stfdux stfdux
Store Floating-Point Double-Precision with Update Indexed Load/Store Unit

stfdux frS,rA,rB

EA← (rA) + (rB)
MEM(EA, 8)←(frS)
rA←EA

EA is the sum (rA|0)+(rB).

The contents of frS are stored into the double word in memory addressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F frS A B 0x2F7 0
 MOTOROLA INSTRUCTION SET RCPU

9-152 Revised 1 February 1999 REFERENCE MANUAL

stfdx stfdx
Store Floating-Point Double-Precision Indexed Load/Store Unit

stfdx frS,rA,rB

if rA + 0 then b ←0
else b←(rA)
EA←b + (rB)
MEM(EA, 8)←(frS)

EA is the sum (rA|0)+(rB).

The contents of frS are stored into the double word in memory addressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F frS A B 0x2D7 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-153

stfiwx stfiwx
Store Floating-Point as Integer Word Indexed Load/Store Unit

stfiwx frS,rA,rB

if rA =0 then b ←0
else b←(rA)
EA←b + (rB)
MEM(EA, 4)←frS[32:63]

EA is the sum (rA|0)+(rB).

The low-order 32 bits of frS are stored, without conversion, into the word in memory ad-
dressed by EA.

If the contents of frS were produced, either directly or indirectly, by an lfs instruction, a
single-precision arithmetic instruction, or frsp, then the value stored is undefined. The
contents of frS are produced directly by such an instruction if frS is the target register for
the instruction. The contents of frS are produced indirectly by such an instruction if frS is
the final target register of a sequence of one or more floating-point move instructions, with
the input to the sequence having been produced directly by such an instruction.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F frS A B 0x3D7 0
 MOTOROLA INSTRUCTION SET RCPU

9-154 Revised 1 February 1999 REFERENCE MANUAL

stfs stfs
Store Floating-Point Single-Precision Load/Store Unit

stfs frS,d(rA)

if rA = 0 then b←0
else b←(rA)
EA←b + EXTS(d)
MEM(EA, 4)←SINGLE(frS)

EA is the sum (rA|0)+d.

The contents of frS are converted to single-precision and stored into the word in memory
addressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x34 frS A d
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-155

stfsu stfsu
Store Floating-Point Single-Precision with Update Integer and Floating-Point Units

stfsu frS,d(rA)

EA← (rA) + EXTS(d)
MEM(EA, 4)←SINGLE(frS)
rA←EA

EA is the sum (rA|0)+d.

The of frS are converted to single-precision and stored into the word in memory ad-
dressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x35 frS A d
 MOTOROLA INSTRUCTION SET RCPU

9-156 Revised 1 February 1999 REFERENCE MANUAL

stfsux stfsux
Store Floating-Point Single-Precision with Update Indexed Integer/Floating-Point Units

stfsux frS,rA,rB

EA← (rA) + (rB)
MEM(EA, 4)←SINGLE(frS)
rA←EA

EA is the sum (rA|0)+(rB).

The contents of frS are converted to single-precision and stored into the word in memory
addressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F frS A B 0x2B7 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-157

stfsx stfsx
Store Floating-Point Single-Precision Indexed Load/Store Unit

stfsx frS,rA,rB

if rA=0 then b←0
else b←(rA)
EA←b + (rB)
MEM(EA, 4)←SINGLE(frS)

EA is the sum (rA|0)+(rB).

The contents of frS are converted to single-precision and stored into the word in memory
addressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F frS A B 0x297 0
 MOTOROLA INSTRUCTION SET RCPU

9-158 Revised 1 February 1999 REFERENCE MANUAL

sth sth
Store Half Word Load/Store Unit

sth rS,d(rA)

if rA = 0 then b←0
else b←(rA)
EA←b + EXTS(d)
MEM(EA, 2)←rS[16:31]

EA is the sum (rA|0)+d.

The contents of rS[16:31] are stored into the half word in memory addressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x2C S A d
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-159

sthbrx sthbrx
Store Half Word Byte-Reverse Indexed Load/Store Unit

sthbrx rS,rA,rB

if rA = 0 then b←0
else b←(rA)
EA←b + (rB)
MEM(EA, 2)←rS[24:31] || rS[16:23]

EA is the sum (rA|0)+(rB).

The contents of rS[24:31] are stored into bits 0:7 of the half word in memory addressed
by EA. Bits rS[16:23] are stored into bits 8:15 of the half word in memory addressed by
EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x396 0
 MOTOROLA INSTRUCTION SET RCPU

9-160 Revised 1 February 1999 REFERENCE MANUAL

sthu sthu
Store Half Word with Update Load/Store Unit

sthu rS,d(rA)

EA← (rA) + EXTS(d)
MEM(EA, 2)←rS[16:31]
rA←EA

EA is the sum (rA|0)+d.

The contents of rS[16:31] are stored into the half word in memory addressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x2D S A d
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-161

sthux sthux
Store Half Word with Update Indexed Load/Store Unit

sthux rS,rA,rB

EA← (rA) + (rB)
MEM(EA, 2)←rS[16:31]
rA←EA

EA is the sum (rA|0)+(rB).

The contents of rS[16:31] are stored into the half word in memory addressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x1B7 0
 MOTOROLA INSTRUCTION SET RCPU

9-162 Revised 1 February 1999 REFERENCE MANUAL

sthx sthx
Store Half Word Indexed Load/Store Unit

sthx rS,rA,rB

if rA = 0 then b←0
else b←(rA)
EA←b + (rB)
MEM(EA, 2)←rS[16:31]

EA is the sum (rA|0)+(rB).

The contents of rS[16:31] are stored into the half word in memory addressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x197 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-163

stmw stmw
Store Multiple Word Load/Store Unit

stmw rS,d(rA)

if rA = 0 then b←0
else b←(rA)
EA←b + EXTS(d)
r←rS
do while r ð 31

MEM(EA, 4) ← GPR(r)
r←r + 1
EA← EA + 4

EA is the sum (rA|0)+d.

n = (32 - rS).

n consecutive words starting at EA are stored from the GPRs rS through 31. For example,
if rS=30, two words are stored.

EA must be a multiple of four; otherwise, the system alignment error handler is invoked.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x2F S A d
 MOTOROLA INSTRUCTION SET RCPU

9-164 Revised 1 February 1999 REFERENCE MANUAL

stswi stswi
Store String Word Immediate Load/Store Unit

stswi rS,rA,NB

if rA = 0 then EA←0
else EA←(rA)
if NB = 0 then n←32
else n←NB
r←rS-1
i←0
do while n>0

if i = 0 then r←r+1 (mod 32)
MEM(EA, 1)←GPR(r)[i:i+7]
i←i+8
if i = 32 then i←0
EA←EA+1
n←n-1

EA is (rA|0). Let n = NB if NB¦0, n = 32 if NB=0; n is the number of bytes to store. Let nr
= CEIL(n/4): nr is the number of registers to supply data.

n consecutive bytes starting at EA are stored from GPRs rS through rS+nr-1.

Bytes are stored left to right from each register. The sequence of registers wraps around
to GPR0 if required.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F S A NB 0x205 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-165

stswx stswx
Store String Word Indexed Load/Store Unit

stswx rS,rA,rB

if rA = 0 then b←0
else b←(rA)
EA←b+(rB)
n←XER[25:31]
r←rS-1
i←0
do while n>0

if i = 0 then r←r+1 (mod 32)
MEM(EA, 1)←GPR(r)[i:i+7]
i←i+8
if i = 32 then i←0
EA←EA+1
n←n-1

EA is the sum (rA|0)+(rB). Let n = XER[25:31]; n is the number of bytes to store.

Let nr = CEIL(n/4): nr is the number of registers to supply data.

n consecutive bytes starting at EA are stored from GPRs rS through rS+nr-1. If n = 0, no
bytes are stored.

Bytes are stored left to right from each register. The sequence of registers wraps around
to GPR0 if required.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x295 0
 MOTOROLA INSTRUCTION SET RCPU

9-166 Revised 1 February 1999 REFERENCE MANUAL

stw stw
Store Word Load/Store Unit

stw rS,d(rA)

if rA = 0 then b←0
else b←(rA)
EA←b + EXTS(d)
MEM(EA, 4)←rS

EA is the sum (rA|0)+d.

The contents of rS are stored into the word in memory addressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x24 S A d
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-167

stwbrx stwbrx
Store Word Byte-Reverse Indexed Load/Store Unit

stwbrx rS,rA,rB

if rA = 0 then b←0
else b←(rA)
EA←b + (rB)
MEM(EA, 4)←rS[24:31] || rS[16:23] || rS[8:15] || rS[0:7]

EA is the sum (rA|0)+(rB).

The contents of rS[24:31] are stored into bits 0:7 of the word in memory addressed by EA.
Bits rS[16:23] are stored into bits 8:15 of the word in memory addressed by EA. Bits
rS[8:15] are stored into bits 16:23 of the word in memory addressed by EA. Bits rS[0:7]
are stored into bits 24:31 of the word in memory addressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x296 0
 MOTOROLA INSTRUCTION SET RCPU

9-168 Revised 1 February 1999 REFERENCE MANUAL

stwcx. stwcx.
Store Word Conditional Indexed Load/Store Unit

stwcx. rS,rA,rB

if rA = 0 then b←0
else b←(rA)
EA←b + (rB)
if RESERVE then

MEM(EA, 4)←rS
RESERVE←0
CR0←0b00 || 0b1|| XER[SO]

else
CR0←0b00 || 0b0 || XER[SO]

EA is the sum (rA|0)+(rB).

If a reservation exists, the contents of rS are stored into the word in memory addressed
by EA and the reservation is cleared. If no reservation exists, the instruction completes
without altering memory.

CR0 Field is set to reflect whether the store operation was performed (i.e., whether a res-
ervation existed when the stwcx. instruction commenced execution) as follows.

CR0[LT GT EQ S0] ←0b00 || store_performed || XER[SO]

The EQ bit in the condition register field CR0 is modified to reflect whether the store op-
eration was performed (i.e., whether a reservation existed when the stwcx. instruction be-
gan execution). If the store was completed successfully, the EQ bit is set to one.

EA must be a multiple of four; otherwise, the system alignment error handler is invoked.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x96 1
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-169

stwu stwu
Store Word with Update Load/Store Unit

stwu rS,d(rA)

EA← (rA) + EXTS(d)
MEM(EA, 4)←rS
rA←EA

EA is the sum (rA|0)+d.

The contents of rS are stored into the word in memory addressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x25 S A d
 MOTOROLA INSTRUCTION SET RCPU

9-170 Revised 1 February 1999 REFERENCE MANUAL

stwux stwux
Store Word with Update Indexed Load/Store Unit

stwux rS,rA,rB

EA← (rA) + (rB)
MEM(EA, 4)←rS
rA←EA

EA is the sum (rA|0)+(rB).

The contents of rS are stored into the word in memory addressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0xB7 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-171

stwx stwx
Store Word Indexed Load/Store Unit

stwx rS,rA,rB

if rA = 0 then b←0
else b←(rA)
EA←b + (rB)
MEM(EA, 4)←rS

EA is the sum (rA|0)+(rB). The contents of rS are stored into the word in memory ad-
dressed by EA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x97 0
 MOTOROLA INSTRUCTION SET RCPU

9-172 Revised 1 February 1999 REFERENCE MANUAL

subfx subfx
Subtract from Integer Unit

subf rD,rA,rB (OE=0 Rc=0)
subf. rD,rA,rB (OE=0 Rc=1)
subfo rD,rA,rB (OE=1 Rc=0)
subfo. rD,rA,rB (OE=1 Rc=1)

rD← ¬ (rA) + (rB) + 1

The sum ¬ (rA)+(rB)+1 is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

Table 9-30 Simplified Mnemonics for subf Instruction

Operation Simplified Mnemonic Equivalent To

Subtract sub rD,rA,rB
sub. rD,rA,rB
subo rD,rA,rB
subo. rD,rA,rB

subf rD,rB,rA
subf. rD,rB,rA
subfo rD,rB,rA
subfo. rD,rB,rA

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0x28 Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-173

subfcx subfcx
Subtract from Carrying Integer Unit

subfc rD,rA,rB (OE=0 Rc=0)
subfc. rD,rA,rB (OE=0 Rc=1)
subfco rD,rA,rB (OE=1 Rc=0)
subfco. rD,rA,rB (OE=1 Rc=1)

rD← ¬ (rA) + (rB) + 1

The sum ¬ (rA)+(rB)+1 is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

Table 9-31 Simplified Mnemonics for subfc Instruction

Operation Simplified Mnemonic Equivalent To

Subtract subc rD,rA,rB
subc. rD,rA,rB
subco rD,rA,rB
subco. rD,rA,rB

subfc rD,rB,rA
subfc. rD,rB,rA
subfco rD,rB,rA
subfco. rD,rB,rA

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0x08 Rc
 MOTOROLA INSTRUCTION SET RCPU

9-174 Revised 1 February 1999 REFERENCE MANUAL

subfex subfex
Subtract from Extended Integer Unit

subfe rD,rA,rB (OE=0 Rc=0)
subfe. rD,rA,rB (OE=0 Rc=1)
subfeo rD,rA,rB (OE=1 Rc=0)
subfeo. rD,rA,rB (OE=1 Rc=1)

rD← ¬ (rA) + (rB) + XER[CA]

The sum ¬ (rA)+(rB)+XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A B OE 0x88 Rc
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-175

subfic subfic
Subtract from Immediate Carrying Integer Unit

subfic rD,rA,SIMM

rD← ¬ (rA) + EXTS(SIMM) + 1

The sum ¬ (rA)+EXTS(SIMM)+1 is placed into rD.

Other registers altered:

• XER:

Affected: CA

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x08 D A SIMM
 MOTOROLA INSTRUCTION SET RCPU

9-176 Revised 1 February 1999 REFERENCE MANUAL

subfmex subfmex
Subtract from Minus One Extended Integer Unit

subfme rD,rA (OE=0 Rc=0)
subfme. rD,rA (OE=0 Rc=1)
subfmeo rD,rA (OE=1 Rc=0)
subfmeo. rD,rA (OE=1 Rc=1)

rD← ¬ (rA) + XER[CA] - 1

The sum ¬ (rA)+XER[CA]+0xFFFF_FFFF is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A

Reserved

0 0 0 0 0 OE 0xE8
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-177

subfzex subfzex
Subtract from Zero Extended Integer Unit

subfze rD,rA (OE=0 Rc=0)
subfze. rD,rA (OE=0 Rc=1)
subfzeo rD,rA (OE=1 Rc=0)
subfzeo. rD,rA (OE=1 Rc=1)

rD← ¬ (rA) + XER[CA]

The sum ¬ (rA)+XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

• XER:

Affected: CA

Affected: SO, OV (if OE=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 22 30 31

0x1F D A

Reserved

0 0 0 0 0 OE 0xC8 Rc
 MOTOROLA INSTRUCTION SET RCPU

9-178 Revised 1 February 1999 REFERENCE MANUAL

sync sync
Synchronize Load/Store Unit

The sync instruction provides an ordering function for the effects of all instructions exe-
cuted by a given processor. Executing a sync instruction ensures that all instructions pre-
viously initiated by the given processor appear to have completed before any subsequent
instructions are initiated by the given processor. When the sync instruction completes, all
external accesses initiated by the given processor prior to the sync will have been per-
formed with respect to all other mechanisms that access memory.

The sync instruction can be used to ensure that the results of all stores into a data struc-
ture, performed in a “critical section” of a program, are seen by other processors before
the data structure is seen as unlocked.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x1F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x256 0
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-179

tw tw
Trap Word Integer Unit

tw TO,rA,rB

a← (rA)
b← (rB)
if (a < b) & TO[0] then TRAP
if (a > b) & TO[1] then TRAP
if (a = b) & TO[2] then TRAP
if (a <U b) & TO[3] then TRAP
if (a >U b) & TO[4] then TRAP

The contents of rA are compared with the contents of rB. If any bit in the TO field is set to
one and its corresponding condition is met by the result of the comparison, then the sys-
tem trap handler is invoked.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Table 9-32 Simplified Mnemonics for tw Instruction

Operation Operands Equivalent To

Trap unconditionally trap tw 31,0,0

Trap if equal tweq rA,rB tw 4,rA,rB

Trap if greater than or equal to twge rA,rB tw 12,rA,rB

Trap if greater than twgt rA,rB tw 8,rA,rB

Trap if less than or equal to twle rA,rB tw 20,rA,rB

Trap if logically greater than or equal to twlge rA,rB tw 5,rA,rB

Trap if logically greater than twlgt rA,rB tw 1,rA,rB

Trap if logically less than or equal to twlle rA,rB tw 6,rA,rB

Trap if logically less than twllt rA,rB tw 2,rA,rB

Trap if logically not greater than twlng rA,rB tw 6,rA,rB

Trap if logically not less than twlnl rA,rB tw 5,rA,rB

Trap if less than twlt rA,rB tw 16,rA,rB

Trap if not equal to twne rA,rB tw 24,rA,rB

Trap if not greater than twng rA,rB tw 20,rA,rB

Trap if not less than twnl rA,rB tw 12,rA,rB

0 5 6 10 11 15 16 20 21 30 31

Reserved

0x1F TO A B 0x04
 MOTOROLA INSTRUCTION SET RCPU

9-180 Revised 1 February 1999 REFERENCE MANUAL

twi twi
Trap Word Immediate Integer Unit

twi TO,rA,SIMM

a← (rA)
if (a < EXTS(SIMM)) & TO[0] then TRAP
if (a > EXTS(SIMM)) & TO[1] then TRAP
if (a = EXTS(SIMM)) & TO[2] then TRAP
if (a <U EXTS(SIMM)) & TO[3] then TRAP
if (a >U EXTS(SIMM)) & TO[4] then TRAP

The contents of rA are compared with the sign-extended SIMM field. If any bit in the TO
field is set to one and its corresponding condition is met by the result of the comparison,
then the system trap handler is invoked.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Table 9-33 Simplified Mnemonics for twi Instruction

Operation Operands Equivalent To

Trap if equal tweqi rA,value twi 4,rA,value

Trap if greater than or equal to twgei rA,value twi 12,rA,value

Trap if greater than twgti rA,value twi 8,rA,value

Trap if less than or equal to twlei rA,value twi 20,rA,value

Trap if logically greater than or equal to twlgei rA,value twi 5,rA,value

Trap if logically greater than twlgti rA,value twi 1,rA,value

Trap if logically less than or equal to twllei rA,value twi 6,rA,value

Trap if logically less than twllti rA,value twi 2,rA,value

Trap if logically not greater than twlngi rA,value twi 6,rA,value

Trap if logically not less than twlnli rA,value twi 5,rA,value

Trap if less than twlti rA,value twi 16,rA,value

Trap if not equal to twnei rA,value twi 24,rA,value

Trap if not greater than twngi rA,value twi 20,rA,value

Trap if not less than twnli rA,value twi 12,rA,value

0 5 6 10 11 15 16 31

0x03 TO A SIMM
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-181

xorx xorx
XOR Integer Unit

xor rA,rS,rB (Rc=0)
xor. rA,rS,rB (Rc=1)

rA←(rS) ⊕ (rB)

The contents of rA is XORed with the contents of rB and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 Field):

Affected: LT, GT, EQ, SO (if Rc=1)

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0x13C Rc
 MOTOROLA INSTRUCTION SET RCPU

9-182 Revised 1 February 1999 REFERENCE MANUAL

xori xori
XOR Immediate Integer Unit

xori rA,rS,UIMM

rA←(rS) ⊕ ((16)0 || UIMM)

The contents of rS is XORed with 0x0000 || UIMM and the result is placed into rA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x1A S A UIMM
RCPU INSTRUCTION SET MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 9-183

xoris xoris
XOR Immediate Shifted Integer Unit

xoris rA,rS,UIMM

rA←(rS) ⊕ (UIMM || (16)0)

The contents of rS is XORed with UIMM || 0x0000 and the result is placed into rA.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

0 5 6 10 11 15 16 31

0x1B S A UIMM
 MOTOROLA INSTRUCTION SET RCPU

9-184 Revised 1 February 1999 REFERENCE MANUAL

	SECTION 9 INSTRUCTION SET
	9.1 Instruction Formats
	9.1.1 Split Field Notation
	9.1.2 Instruction Fields
	9.1.3 Notation and Conventions

	9.2 RCPU Instruction Set

