SECTION 2
CPU32X

This document describes the modifications of the CPU32 to create the CPU32X.

2.1 Features

The CPU32X is greater than two times faster at the same external clock rate than the
CPUB2 using similar speed memory devices. This performance improvement is
obtained by using burst mode memory for instruction fetches, an instruction queue to
buffer the burst instruction fetches, one clock operand (data) accesses on the fast
access bus and by increasing the speed of the CPU.

NOTE
All references to clocks are to the external clock.

The CPU32X and CPUS2 instruction sets are identical. Interrupts, breakpoints and
bus errors function exactly the same in the CPU32X as they do in the CPU32 except
with reduced response time. Retry, relinquish and retry (RRT), and late bus error are
not supported by the CPU32X. Please refer to the CPU32 Reference Manual
(CPU32RM/AD), for the instruction set, interrupt operation, breakpoint operation, bus
error operation and programmer’s model.

The CPU32X burst mode bus protocol is an extension of the intermodule bus (IMB)
protocol. The CPU32X will support all of the existing and future IMB peripherals. Burst
mode IMB program memory (EEPROM, flash EPROM, ROM) can be implemented on
the IMB to support the CPU32X. The external burst IMB protocol is supported by the
burst mode system integration module (BIM).

The fast access bus is connected to the fast access static RAM (FASRAM) and
increases the data fetch bandwidth of the CPU32X by reducing the minimum data
access time to one clock. In addition the fast access bus separates data accesses
from program accesses such that if the data being accessed is in the FASRAM the
data will be returned to the CPU in one clock and the IMB burst mode program fetch
can continue without interruption.

2.2 CPU32X System Architecture

The recommended system architecture of the CPU32X includes a fast access standby
random access memory (FASRAM) and requires a burst mode interface module
(BIM). Refer to Figure 2-1 for the block diagram of a CPU32X-based device.

MC68377 CPU32X MOTOROLA
REFERENCE MANUAL Rev. 15 Oct 2000 2-1

IMB Peripherals
| \ 16-Bit
16-Bit Burst IMB BIM External
‘ ‘ ‘ ‘ B Burst Bus
Fast Access
16-Bit H ns ru.c ion
Fast Tracking
Access Bus Signals

Figure 2-1 System Architecture

2.3 Optimizing System Performance

Data accesses to the fast access SRAM optimize the performance of the CPU32X sys-
tem therefore the stack and the most frequently used variables should be located in
the FASRAM. Accesses in the FASRAM are one clock while accesses outside the
FASRAM normally require two clocks plus the number of clocks required to run the
IMB or external access. For example the access time of a two-clock IMB SRAM would
be four clocks total (two clocks of internal delay plus two clocks for IMB SRAM
access). The normal total access time for any IMB based memory, IMB based periph-
eral or external device is four clocks. (Two clocks delay from the CPU32X and two
clocks for the fastest possible bus cycle). If IMB or external bus cycles are longer than
two clocks the bus cycle will be extended. If for some reason the IMB is idle then the
minimum number of clocks for a non-FASRAM access is three clocks. The IMB can
be idle due to a full prefetch queue or for other reasons. Refer to Table 2-2 for an
example of a data access to the FASRAM. Refer to Table 2-3 for an example of a data
access not in the FASRAM.

2.4 Instruction Execution

This section describes instruction execution on the CPU32X. External clock cycles are
used to provide as accurate as possible operation and timing of the instruction exam-
ples. Because exact execution time for an instruction or operation depends on
independently scheduled resources, on memory speeds, and on other variables these
diagrams may not exactly match the CPU32X operation in every application.

2.4.1 Resource Scheduling

The CPU32X contains several independently scheduled resources. The organization
of these resources within the CPU32X is shown in Figure 2-2. Some variation in

MC68377 CPU32X MOTOROLA
REFERENCE MANUAL Rev. 15 Oct 2000 2-2

instruction execution timing results from concurrent resource utilization. Due to these
concurrent resources exact instruction execution times are difficult to predict until the
instruction sequence is actually executed. Identical sequences of instructions and
memory accesses will not vary in execution time or bus access pattern from one exe-
cution of the identical sequence to another.

16 Bit
Burst IMB

16-bit
Fast Access
Bus

}

Bus Controller

Microbus
Controller

Write Pending
Buffer

Prefetch
Controller

Figure 2-2 CPU32X Internal Architecture

2.4.2 Microsequencer

The microsequencer either executes microinstructions or awaits completion of
accesses necessary to continue microcode execution. The microsequencer super-
vises the bus controller, instruction execution, and internal processor operations such

MC68377 CPU32X MOTOROLA
REFERENCE MANUAL Rev. 15 Oct 2000 2-3

as the calculation of an effective address and the setting of condition codes. It also ini-
tiates instruction word prefetches after a change of flow and controls validation of
instruction words in the instruction pipeline. The microsequencer is the same on the
CPUB2 as on the CPU32X.

2.4.3 Instruction Pipeline

The CPU32X contains a four-word instruction pipeline where instruction opcodes are
decoded. The pipeline operates in two stages: IRA and IRC. Each stage of the pipeline
is initially filled under microsequencer control and subsequently refilled by the prefetch
controller as it empties.

The IR word of the instruction pipeline is a buffer. IR receives instructions from either
the instruction queue or directly from the intermodule bus. This register holds the
instruction word until it is emptied by IRA. Instruction words (instruction operation
words and all extension words) are decoded at stage IRA. IRB is an intermediate hold-
ing register for IRC and is filled from IRA when IRC empties. IRC is filled from IRB.
Residual decoding and execution take place in stage IRC.

The instruction pipeline registers IRA, IRB, IRC are the same as on the CPU32. The
IR registers and the prefetch equations will require modification to support the
CPUB2X instruction queue and burst mode bus.

2.4.4 Instruction Queue

The instruction queue is a six word first-in-first-out buffer. The instruction queue is filled
by the prefetch controller when the IR word of the pipeline is full. When IR empties, the
instruction queue provides the next instruction word or if the instruction queue is
empty, the instruction word will come directly off the IMB and into IR. The instruction
queue is dual ported such that the prefetch controller can fill the queue as the pipe
pulls instructions or extension words out of the queue.

Each word in the queue has a bus error and breakpoint status bit which indicates that
the word in that stage was loaded with an instruction or extension word from a bus
cycle that encountered either a bus error or a breakpoint. This status is either trans-
ferred to the pipe when the word is used in the pipe or they are flushed on a change

of flow.

The instruction queue is new on the CPU32X.

2.5 Bus Controller Resources

The bus controller consists of the instruction prefetch controller, the write-pending
buffer and the microbus controller. These resources transact all reads, writes, and
instruction prefetches required for instruction execution.

The bus controller and microsequencer operate concurrently. The bus controller
schedules bus cycles to the IMB and the FASRAM. The bus controller can schedule
an IMB prefetch in parallel with a FASRAM access or an IMB access. While the bus

MC68377 CPU32X MOTOROLA
REFERENCE MANUAL Rev. 15 Oct 2000 2-4

controller is running bus cycles the microsequencer controls effective address calcu-
lation or sets condition codes.

The microsequencer can also request a bus cycle. If the data resides in the FASRAM
the bus controller completes the bus cycle to the FASRAM, see Table 2-2. If the data
is not in the FASRAM the bus controller queues the data cycle to run on the IMB. The
bus controller then terminates any prefetches in progress and runs the cycle when the
current cycle is complete. See Table 2-3 for more information. Once the bus cycle
completes, data is returned to the execution unit. If the first word of a long-word access
is not in the FASRAM the microsequencer will run the second word of the long-word
access on the IMB bypassing the FASRAM access for the second word. If the second
word is in the FASRAM the data will be accessed over the IMB. This is done to improve
performance of long-word accesses on the IMB.

2.5.1 Prefetch Controller

The instruction prefetch controller receives an initial request from the microsequencer
to initiate burst mode instruction prefetching at a given address. Subsequent burst
mode prefetches are initiated or continued by the prefetch controller whenever the
instruction queue contains only a few instruction words. Burst prefetching begins as
soon as the bus is free of operand accesses previously requested by the microse-
quencer. Additional state information permits the controller to inhibit or terminate
prefetch bursts when a change in instruction flow is executing thereby improving the
change of flow performance.

EXAMPLE
Change in flow instructions are bcc, jsr, rts and jmp instructions.

In a typical program, 10 to 25 percent of the instructions cause a change of flow. Each
time a change occurs, the instruction queue and instruction pipeline must be flushed
and refilled from the new instruction stream. The prefetch controller and microse-
quencer optimize change of flow instructions by detecting the change of flow early,
then terminating prefetches in progress or inhibiting unnecessary prefetches from
occurring. For non-change of flow instructions the prefetch controller will schedule
prefetches when adequate room is available in the queue.

2.5.2 Write-Pending Buffer

The CPU32X incorporates a single-operand write-pending buffer. The buffer permits
the microsequencer to continue execution after a request for a write cycle is queued
in the bus controller. The time needed for a write at the end of an instruction can over-
lap the beginning of the following instruction, and thus reduce overall execution time.
Interlocks prevent the microsequencer from overwriting the buffer.

The write pending buffer is the same on the CPU32 as on the CPU32X.

2.5.3 Microbus Controller

The microbus controller performs bus cycles issued by the microsequencer. Operand
accesses always have priority over instruction prefetches. Word and byte operands

MC68377 CPU32X MOTOROLA
REFERENCE MANUAL Rev. 15 Oct 2000 2-5

are accessed in a single CPU-initiated bus cycle, although the external bus interface
will be required to initiate a second cycle when a word operand is sent to a byte-sized | T[
external port. Long operands are accessed in two bus cycles, most significant word

first.

2.6 Execution Unit

The execution unit contains all of the logic for carrying out instruction execution. This
logic includes the user visible registers (A0-A7, DO-D7, SP, PC, CCR, etc.), the arith-
metic logic unit, the shifter and other functional units required for executing all
instructions. In addition the execution unit has access to the pipe for extension words
and to the data bus buffers for reading and writing memory. The execution unit per-
forms its operations under the control of the microsequencer.

The execution unit is the same on the CPU32 as on the CPU32X.

2.7 Instruction Execution Examples

The following are instruction execution examples to illustrate three points. First, the
overlap of current instruction execution, next instruction decode and burst instruction
prefetch. Second, is the interaction between operand bus cycles and the prefetching
of instructions. Third, restarting the pipe, microsequencer and instruction prefetching
after a change of flow instruction.

These instruction examples represent the expected system implementation. The
external burst memory is a 2,1,1,1 burst memory which results in 3,1,1,1 IMB burst
accesses. Accesses to IMB based peripherals and external memory are assumed to
be two clock accesses. Accesses to the FASRAM are one clock accesses.

2.7.1 Execution Overlap

Table 2-1 is the instruction stream 10, 11 and 12. 10, 11 and 12 are one clock instructions
with decode, prefetch and execute operations overlapping. This figure begins with the
instruction queue containing instructions 14 and 15, a prefetch is initiated for 16 and the
pipe is full with instruction 10 executing.

Table 2-1 Execution Overlap

Clock 1 | 2 | 3 4
IMB bus controller Burst prefetch I6,.... 17
FASRAM —
Instruction queue 14,15 15 —
IR 13 14 15 16
IRA-decode 12 13 14 15
IRB b 12 13 14
IRC-execute 10 b 12 13
MC68377 CPU32X MOTOROLA

REFERENCE MANUAL Rev. 15 Oct 2000 2-6

2.8 Operand Accesses
There are two types of operand accesses (data). An operand access to the FASRAM | T|
and an operand access not to the FASRAM. All operand accesses, except IACK
cycles, go to the FASRAM. IACK cycles are always run on the IMB.) If the operand is
inthe FASRAM it is returned in one clock, the instruction continues and burst prefetch-
ing continues. If the operand is not in the FASRAM the bus controller terminates the
burst prefetch in progress and then runs the operand access cycle on the IMB. Once
the operand access cycle completes on the IMB burst instruction prefetching is
restarted and the instruction continues. An example of a move instruction accessing
the FASRAM is shown in Table 2-2. An example of a move instruction to an operand
not in the FASRAM is shown in Table 2-3. The instruction execution time for the move
from the FASRAM is three clocks. The best case instruction execution time for the
move from two-clock non-FASRAM memory is five clocks. The worst case instruction
execution time for the move from two clock non-FASRAM memory is six clocks. For
comparison this same move from two clock memory on the CPU32 requires six clocks.

2.8.1 Move (A0),D0 A0 = FASRAM

Table 2-2 is an example of an access to the FASRAM which occurs in parallel to
instruction prefetch. Register A0 points to an address which resides in the FASRAM.
In this example instructions |1 through 15 follow the move. The pipe is full and the
instruction queue is as shown.

Table 2-2 Move (A0),D0 A0 = FASRAM

Clock 1 \ 2 \ 3 4
IMB bus controller Burst prefetch 16,... 17
FASRAM Read (A0)
Instruction queue 14,15 14,15 14,15 15,16
IR 13 13 13 14
IRA-decode 12 12 12 I3
IRB 11 I I 12
IRC-execute move (A0),DO 1

2.9 Move (A0),DO A0! = FASRAM

Table 2-3 is an example of a move (A0),D0 and AQ points outside the FASRAM. In this
example instructions 11 through I5 follow the move. The pipe is full, burst prefetch is in
progress and the instruction queue is full as shown. 11, 12 and I3 are one clock instruc-
tions. This example is the worst case delay. If the IMB is idle, no burst in progress, the
move will execute in five clocks instead of six.

MC68377 CPU32X MOTOROLA
REFERENCE MANUAL Rev. 15 Oct 2000 2-7

Table 2-3 Move (A0),D0 A0! = FASRAM

Clock 1 2 3 4 | s 6 | 7 | 8 9
IMB Bus Controller 14 15 16 Read (A0) Burst Prefetch 17,... 18
FASRAM Check (A0)
Instruction Queue 14 14,15 ‘ 14-6 15,16 16 17
IR I3 14 15 16
IRA-Decode 12 13 14 15
IRB 1 12 13 14
IRC-Execute move (A0),DO I 12 13

2.10 Burst Start-up

Table 2-4 is an example of a JMP to instruction 10. The pipe and instruction queue is
flushed. The jump instruction is waiting on the pipe to be refilled to complete.

Table 2-4 JMP to 10

Clock 1 2 | 3 | a 5 6 7
IMB bus controller Burst prefetch 10... 1 12 13
FASRAM
Instruction queue
IR
IRA-decode 10 11 12
IRB 10 "
IRC-execute JMP to 10 10

2.11 Exceptions

Interrupt, breakpoint and bus error exceptions function the same on the CPU32X as
on the CPU32. Retry and relinquish and retry (RRT) are not supported. The late bus
termination is also not supported. Please refer to the Section 6 of the CPU32 User’s
Manual, CPU32RM/AD for information on how the CPU32X interrupt and bus error
exceptions function.

2.11.1 Standard Bus Cycle Exceptions

Standard (non-burst) IACK breakpoint and bus error exception bus cycles operate the
same on the CPU32X as on the CPU32. In addition interrupts and IMB peripheral
breakpoints operate the same as on the CPU32. Retry, RRT and late bus error are
supported by the CPU32 but are NOT supported on the CPU32X.

2.11.2 Burst Bus Cycle Exceptions

Breakpoint and bus error exception bus cycles are extended as follows to support the
burst bus cycles.

MC68377 CPU32X MOTOROLA
REFERENCE MANUAL Rev. 15 Oct 2000 2-8

2.11.2.1 Burst Breakpoint
Burst instruction breakpoints do not terminate the burst bus cycle. Individual words in | T|
a burst cycle can be breakpointed. The instruction breakpoint is taken when the word
breakpointed is accessed in the pipe. If the pipe and queue are flushed by a change
of flow the breakpoint will not be taken.

2.11.2.2 Burst Bus Error

Bus error terminates the burst bus cycle in progress. The bus error tags the last word
transferred during the burst in the instruction queue with bus error. When the word with
the bus error tag reaches the pipe the bus error exception is taken. Until the bus error
exception is taken more burst prefetches and operand accesses can occur. If the
instruction bus error is flushed from the pipe and queue by a branch instruction or other
change of flow the bus error will not be taken.

Late bus errors on burst bus cycles are not supported.

2.12 Interrupt Response Time

The minimum interrupt response time of the CPU32X is improved over the CPU32.
The CPU32 requires a minimum of thirty clocks to begin executing the first instruction
of the interrupt service routine and the CPU32X will require a minimum of eighteen
clocks or twelve clocks less. Table 2-5 indicates the minimum number of clocks
required and the operations performed for the CPU32 and the CPU32X to begin the
interrupt service routine. This example assumes that the stack and vector table are
in the FASRAM, external memory accesses are two cycle accesses and burst memory
is a 1,1,1,1 external burst memory, which is a 2,1,1,1 internal burst memory. Addi-
tional clocks for slower external burst devices and non-FASRAM vector table
accesses will increase the interrupt response time.

MC68377 CPU32X MOTOROLA
REFERENCE MANUAL Rev. 15 Oct 2000 2-9

Table 2-5 Interrupt Response

Clock

CPU32X

CPU32

Last instruction

Last instruction

IACK cycle

IACK cycle

Stack vector

Stack SR

Stack PCH

Stack PCL

Stack vector

Read vector high

Read vector low

_k_k_k_k_k_k_k_k_k_k
olo|N|lo|a|lrw|p|a|jlo|@@® (N |aI~wIN =

Begin burst
10 Stack SR
11
12 Stack PCH
20 Stack PCL
21
22 Read vector high
23
24 Read vector low
25
Begin Interrupt Routine o
26 Fetch first instruction
27
28 Fetch second instruction
29
30 Fetch third instruction
Begin interrupt routine
2.13 Power

The power dissipation of the greater-than-two-times faster CPU32X is substantially
less than two times the CPU32 power dissipation. This power reduction is from improv-
ing the power dissipation in the CPU32 core, by stopping all unnecessary clocks and
by design for power in the new burst mode, fast bus and instruction queue logic. In
addition the operation of the stop instruction will be improved to reduce power when
the CPU32X is stopped.

MC68377

REFERENCE MANUAL

CPU32X

Rev. 15 Oct 2000

MOTOROLA
2-10

2.14 Debugging Support

The CPU32X provides features that facilitate applications development similar to the
CPUB2 debugging features. These features include background debug mode, break-

point, and pipe tracking.

2.14.1 Background Debug Mode
This feature remains the same on CPU32X as on CPU32.

2.14.2 Breakpoint

This feature is enhanced from the CPU32 to provide burst breakpoints.

2.14.3 Pipe Tracking

CPUB32X uses three pins. IPIPE[2:0] provides five types of information for the bus ana-

lyzer to track the pipe. IPIPE[0] and IPIPE[1] both carry active low, time multiplexed
signals, and provide four types of information, which are instruction-start, opcode-
advance, instruction-fetch, and pipe-flush. IPIPE[2] indicates the number of instruc-
tions in the pipe, and helps the bus analyzer synchronize with the pipe.

2.14.3.1 Instruction Queue and Pipeline

In addition to the original three-stage instruction pipeline, CPU32X implements a six-
word instruction queue. The internal instruction queue and pipeline can be modeled as
a nine-stage FIFO and a fetch pointer. Table 2-6 describes the FIFO.

IR contains the currently executing instruction. IR0 contains instruction extension
words. When a new opcode or extension word is used, the cpu will shift the data in the

instruction registers upward, and discard the old data in IR or IRO.

The fetch pointer contains the address of the empty instruction register to be filled by
the new incoming instruction word. The fetch pointer may point to IRO~IR7, but it will

never directly point to IR.

Table 2-6 Nine-Stage Instruction Registers

Address Instruction Register Data
IR (IRC) Current instruction

000 IRO(IRB) Extension word
001 IR1(IRA) New opcode

010 IR2 New opcode

011 IR3 New opcode

100 IR4 Empty

101 IR5 Empty

110 IR6 Empty

111 IR7 Empty

MC68377 CPU32X

REFERENCE MANUAL

Rev. 15 Oct 2000

-

Fetch Pointer

MOTOROLA
2-11

=

2.14.4 PIPE Tracking Operations

2.14.4.1 IPIPE[0]

The IPIPE[0] pin provides the instruction-start and opcode-advance signals. The start
signal is derived from sampling IPIPE[Q] at the falling edge of the system clock, and
the advance signal is derived from sampling IPIPE[0] at the rising edge of the system
clock. They are both active low signals.

Instruction-start and opcode-advance both indicate the use of the new instruction word
in the pipeline. Instruction-start means the start of a new instruction. The old opcode
in IR is replaced by the new opcode in IR0, and all of the data in the pipeline is shifted
upward, (i.e., IRO->IR, IR1->IR0, ... and IR7->IR6). The fetch pointer is decremented
by one.

Opcode-advance is different from instruction-start. It indicates the use of extension
word from IR0. The data in IR0 is replaced by IR1 and all of the data is shifted upward
to IR0, (i.e., IR1->IR0, IR2->IR1,..., and IR7->IR6). The fetch pointer is also decre-
mented by one.

2.14.4.2 IPIPE[1]

The IPIPE[1] pin provides pipe-flush and instruction-fetch information. The flush signal
is derived from sampling IPIPE[1] at the rising edge of system clock, and the fetch sig-
nal is derived from sampling IPIPE[1] at the falling edge of system clock. The fetch and
flush signals are both active low.

Pipe-flush indicates when a change of flow occurs and all of the instructions in the
pipeline are flushed. After pipe-flush is asserted, the pipeline is empty, and the fetch
pointer is zero.

Instruction-fetch indicates that the data from the current IMB cycle is to be routed to
the instruction register pointed to by the fetch pointer. After the data is copied to the
instruction register, the fetch pointer is incremented by one. The fetch pointer now
points to the next empty instruction register.

The instruction-fetch signal is asserted at IMB B3 state, and repeats asserted during
wait states until B4.

Figure 2-3 describes the timing of IPIPE[1:0] pins and the fetch pointer.

Figure 2-3 through Figure 2-8 describe the timing of the IPIPE[1] in different burst
fetch cycle. Figure 2-5 shows minimum logic required to demultiplex IPIPE[0] and
IPIPE[1].

MC68377 CPU32X MOTOROLA
REFERENCE MANUAL Rev. 15 Oct 2000 2-12

St S2 S3 Sw S3 Sw S3 Sw S3 S4 S5
B2 B3 B3* B3 B3* B3 B3* B3 B3* B3 B4

CLK ‘

Data Bus data1 data2 data3 data4

Fetch
Pointer 4 X 3 1 >< 2

7IPIPE[1] fetch|data1 fetch data2 fet¢h data 3 fetch data4
flush three words

/ to ;1 to IR1 to IRR2
in the pipeline
IPIPE[0] /

start advance start start advance

fetgh data 5

IPIPE[1]

Figure 2-3 IPIPE[1:0] Timing Diagram

MC68377 CPU32X MOTOROLA
REFERENCE MANUAL Rev. 15 Oct 2000 2-13

[

S0 S1 S2 S3 Sw S3 Sw S3 Sw S3 Sw S3 S4 S5 SO0 S1 S2 S3 Sw S3
B3 B3* B3 B3* B3, B3" B3,B37B3, B4, B1, B2

B3 B4 B1 B2 B3

B3*

B3,B3* B3 B3*

CLOCKOUT [L

BCLK | |

IFC,IADDR, ISIZE = 2
ISIZE,IWRITE WRITE = 1

| |
=2
IWRITE =

|
/

FC,ADDR,
SIZE,WRITE X

SIZE =0, R/W|=1 X SIZE

e

BREQ

L

/\
w0\

AS

LBA

BTACK

IBTACK

BAA

BOE(async) / \

DATA

D1

X YoX

IDATA

DTACK - NA

IDTACK

\

VAAVAAVIAVAAW/

/L

Figure 2-4 IPIPE[1] Timing Diagram In a Burst Fetch Cycle (Part 1)

MC68377
REFERENCE MANUAL

CPU32X
Rev. 15 Oct 2000

MOTOROLA
2-14

=

S0 S1 S2 S3 Sw S3 Sw S3 Sw S3 Sw S3 S4 S5 S0 St TI
B3 B4 B1 B2 B3 B3* B3 B3* B3 B3* B3 B3*B3 B3*B3 B4 B1 B2

CLOCKOUT [| | |
BCLK [L P e e
IFC,IADDR, ISIZE=2 \ /
ISIZE,JWRITE ~ \IWRITE = 1/

glcz’é,DF?/va’ X SIZE = |0, R/W =1 X

wea U U

BREQ

IAS

/\
/\

xS -/ \ /
O\

LBA

aracx \ /7

IBTACK |
BOE(async) J _\ / _

BAA \ / L
/ 4

DATA { D1 ><Dz D3 D4

VRTINS]

DTACK

o _/

R VAVAVAVAVAV,

NOTE: Slave terminates cycle by asserting DTACK.
IPIPE[1] indicates the data, D1~D4, enters pipeline.

IPIPE[1:0] Timing Diagram in a Burst Fetch Cycle (Part 2)

MC68377 CPU32X MOTOROLA
REFERENCE MANUAL Rev. 15 Oct 2000 2-15

S0 S1 82 S3 Sw S3 Sw S3 Sw S3 S4 S5 SO S1 S2 S5 SO |T|
B3 B4 B1 B2 B3 B3* B3 B3* B3 B3*B3 B3*B3 B4 B1 B2 B3 B4 B1

CLOCKOUT I I I I I I I I []
IFC,IADDR, ISIZE = 2 ISIZE =2
ISIZE,IWRITE IWRITE = 1/ WRITE=0/

e A X SIZE=0,R/W=1 ste:o,R/W - oX

IR0 ARSARYARVARY U Uy
s/
IBTACK L

) Il
/X

IDATA \0_1/ ‘ \0_2/ \0_3/
DeCe0!
I e \VAVAaFaY

IPIPE[1:0] Timing Diagram in a Burst Fetch Cycle (Part 3)

MC68377 CPU32X MOTOROLA
REFERENCE MANUAL Rev. 15 Oct 2000 2-16

flush

IPIPE[1] D Q
! D Q fetch
IPIPE[0] D Q advance
! D Q start
CLK jL

Figure 2-5 IPIPE[1:0] DEMUX Logic

2.14.4.3 IPIPE[2]

In the CPU32, the only way to synchronize the bus analyzer with the internal pipe at
the first start is through a pipe_flush signal. Once the bus analyzer receives the signal,
it knows the pipeline is empty and then starts the pipe tracking. However, since the
pipe_flush signal depends on the change-of-flow signal from the user’s program, there
is a chance that the bus analyzer has to wait for a long time before the pipe_flush is
generated and can not service the user at all.

In the CPU32X, IPIPE[2] pin provides the pipe synchronization function to help the bus
analyzer synchronize with the internal pipe without depending on the pipe_flush sig-

nal. A series of bits (see Figure 2-3) are sent out by IPIPE[2] to indicate the number

of instruction words in the pipeline. Once the bus analyzer gets the information, it can
assign the fetch pointer to the correct address and start tracking the pipe from that time

point.

The serial data bits start from one start bit (“0”), followed by three bits, indicating the
number of instruction words in the pipeline, and then followed by three or more stop
bits (“111”). The start bit always comes with a fetch or a flush signal, called fetch or
flush. The IPIPE[2] data indicates the number of instructions in the pipeline after the
fetch or flush occur. When it comes with flush, the data from the next fetch cycle must

MC68377 CPU32X MOTOROLA
REFERENCE MANUAL Rev. 15 Oct 2000 2-17

enter IR0. When it comes with fetch, the instruction number derived from IPIPE[2] is
assigned as the fetch pointer for the fetch cycle following fetch.

If there are start or advance signals detected between fetch and the next fetch, the
fetch pointer has to be adjusted by subtracting the number of starts and advances to
acquire the correct fetch pointer.

In the example of Figure 2-3, the fetch pointeris “011” after fetch1 occurs. However,
a start occurs simultaneously with the following fetch cycle, so the data2 from the fol-
lowing fetch enters IR2 again. The fetch pointer is “101” after fetch2 occurs and
therefore, data7 from the following fetch enters IR5.

Figure 2-7 lists the detailed timing for IPIPE[2:0] and shows an example of how to use
IPIPE[2] to synchronize the pipe tracking function in tabular form.

In Figure 2-7, the first IPIPE[2] start bit is detected at line one, which comes with a
flush signal; therefore, the data of the following fetch cycle enters IR0O. The second
IPIPE[2] start bit is detected at line 17, and the IPIPE[2] data indicates there are three
instruction words in the pipeline before the next fetch (at line 19) occurs. The fetch
pointer is set to ‘3’ at line 18. However, there is another “instruction-start” detected at
line19, so the fetch pointer for the fetch cycle at line19 is adjusted to two by subtracting
91’

The third IPIPE[2] start bit is detected at line 33, which comes with a fetch cycle at line
33. The IPIPE[2] data indicates the following incoming data should enter IRO. In this
case, it means the pipeline is full and if another fetch cycle occurs before any “instruc-
tion-start” or “instruction-advance”, the pipe will overflow, which is impossible to
happen. At line 34, the fetch pointer is assigned to ‘O’ according to the data from
IPIPE[2]. But before the next fetch cycle comes, an “instruction-start” and “instruction-
advance” are detected, and the fetch pointer should be adjusted by adding ‘8’ and sub-
tracting 2’ for the fetch cycle at line 39.

MC68377 CPU32X MOTOROLA
REFERENCE MANUAL Rev. 15 Oct 2000 2-18

2.Uojay Jaye L.Uyo3a} Jaye
G saw029(q Jajulod yola} 9|p! € sawo0929(Jajulod Yo}
Hq Hq
I I I 0 I uels I I I I I I I 0 uels

\|/|\|/ [c]1adidl

] v=e-9 §=1-9 g v)€ z=zv)\ €) z=1€ \e 1ajutod

yoled

sng

pHI GHI GHI pHI €Hl | zHI eHl At zdl eeq
6eiep gejep Leiepgee ceiep/\ pejep\ geiep\ celep| Lee

\|/I\|/N\\|/ [113didi

¢+42919} 1.Ud13}

W
LAn TP e

€d.€d €9 ¢c49 149 ¥4 .vd ¥4 €4 «€d €49 .£9 €d ¢9 19 v4.vy9v9 .v4d ¥4 .v9 v49 €9 .€9 €49.€d €9 .£€9 €9 .€d €9

A10

Figure 2-6 IPIPE[2] Timing Diagram

CPU32X MOTOROLA

Rev. 15 Oct 2000

MC68377

2-19

REFERENCE MANUAL

Table 2-7 How to Use IPIPE[2] to Synchronize Pipe Tracking

line clkout ipipe2 flush advance fetch start |latch data _:Ia:, pfg-)eitnctr;r
1 A 0 1 1 X 1 XXXX
2 0 1 1 X 1 XXXX 0
3 A 0 0 1 X 1 XXXX 0
4 0 0 1 0 1 2a7c 0
5 A 0 1 1 0(+) 1 2a7c IRO 0
6 0 1 1 0 1 0020 1
7 A 0 1 1 0(+) 1 0020 IR1 1
8 0 1 1 0 1 4a00 2
9 A 1 1 1 0(+) 1 4a00 IR2 2
10 1 1 1 0 0 4e68 3
11 A 1 1 0(-) 0(+) 0(-) 4e68 IR1 1
12 1 1 0 0 1 4e60 2
13 A 1 1 0(-) 0(+) 1 4e60 IR1 1
14 1 1 0 0 1 4e7a 2
15 A 1 1 1 0(+) 1 4e7a IR2 2
16 1 1 1 0 0 6801 3
17 A 0 1 1 0(+) 0(-) 6801 IR2 2
18 0 1 1 0 0 48d5 3
19 A 0 1 1 0(+) 0(-) 48d5 IR2 2
20 0 1 1 0 0 5555 3
21 A 1 1 0(-) 0(+) 0(-) 5555 IR1 1
22 1 1 0 0 1 0f8e 2
23 A 1 1 1 0(+) 1 0f8e IR2 2
24 1 1 1 0 1 0000 3
25 A 1 1 1 0(+) 1 0000 IR3 3
26 1 1 1 0 1 700a 4
27 A 1 1 1 0(+) 1 700a IR4 4
28 1 1 1 0 1 Oel5 5
29 A 1 1 1 0(+) 1 Oe15 IR5 5
30 1 1 1 0 1 1800 6
31 A 1 1 1 0(+) 1 1800 IR6 6
32 1 1 1 0 1 c7¢c2 7
33 N 0 1 1 0(+) 1 c7¢c2 IR7 7
34 0 1 1 1 0 0
35 N 0 1 0(-) 1 0(-) 0-2+8
36 0 1 0 1 1 6
37 A 0 1 1 1 1 6
38 0 1 1 0 1 XXXX 6
39 A 0 1 1 0(+) 1 XXXX IR6 6
40 0 1 1 1 1 7
MC68377 CPU32X MOTOROLA

REFERENCE MANUAL

Rev. 15 Oct 2000

2-20

2.14.4.4 Loop Mode

IPIPE[1] and IPIPE[2] continue to work normally during loop mode. However, unlike
CPUB32, CPU32X does not discard any opcode since the opcodes are being reused
during loop mode. The start and advance signals will not be asserted during loop
mode. From the user’s point of view, loop mode is like running a long instruction.
Figure 2-8 is an example of loop mode.

Assembly Code

203c 0000 0000
207c 0000 1000

move.l #$0,d0
move.l #$1000,a0

d441 add d1,d2

30c0 Ip move d0,(a0)+

54ca fffc dbcc d2,lp

de42 add d2,d3

d84b add d3,d4
sync fetch advance - fetch operand

flush start IR IR0 IR1 |R2 ©OPcode addr. data
1 1 1 1 1 d441 30c0 b54ca fffc
1 1 1 0 1 30c0 b54ca fffc d642
1 1 1 1 1 30c0 bH4ca fffic de642 1000 0000
1 1 1 0 1 b4ca fffc d642 d84b
0 1 1 1 0O 54ca d642 d84b
0 0* 1 1 1 XXXX XXXX XXXX XXXX
0 1 1 1 1 XXXX XXXX XXXX XXXX
0 1 0 1 1 XXXX 30c0 xxxx xxxx 30c0
1 1 0 0 1 30c0 H4ca xxxx Xxxx 54ca
1 1 0 1 1 30c0 54ca ffic xxxx fffc 1002 0000
1 1 0O O 1 B4ca fffc d642 xxxx d642
1 1 0 1 1 B4ca fffc d642 d84b d84b 1004 0000
1 1 0 1 1 54ca fffc d642 d84b
1 1 0 1 1 b4ca fffc d642 d84b . 1006 0000
1 1 1 1 1 B4ca fffc d642 d84b
1 1 1 1 1 B4ca fffc d642 d84b 1008 0000
1 1 1 1 1 B4ca fffc d642 d84b
1 1 1 1 1 B4ca fffc d642 d84b 100a 0000
1 1 1 1 1 b4ca fffc d642 d84b
1 1 1 0O 54ca d642 d84b
1 1 1 0 1 de42 d84b

Loop Mode
Figure 2-7 Pipe Tracking Operation In Loop Mode
MC68377 CPU32X MOTOROLA
REFERENCE MANUAL Rev. 15 Oct 2000 2-21

=

2.14.5 Pipe Tracking Flowchart

Figure 2-9 is the pipe tracking flowchart. The bus analyzer should follow it to track the
pipeline.

Master terminates cycle by negating IBREQ. IPIPE[1] indicates the data, D1-D6,

enters pipeline.

check sampled ipipe[2]

idle(“111”)
detected?

start bit(“0”)
detected?

*capture the instruction
number (X) from ipipe[2];

*assign X as the fetch pointer
after fetch*/flush*;

Figure 2-8 Pipe Tracking Flowchart (Part 1)

MC68377 CPU32X MOTOROLA
REFERENCE MANUAL Rev. 15 Oct 2000 2-22

=

check sampled IPIPE[1:0]

*shift IR0->IR;
*shift IR[i + 1] -> IR]i], i = 0 ~ 6;

*decrement the fetch pointer
by one;

opcode
advance?

*shift IR[i + 1] - IR[i], i = 0 ~ 6;

*decrement the fetch pointer
by one;

instruction
fetch & data
bus ready?

yes

*latch data bus ->
IR[fetch pointer];
*increment the fetch pointer
by one;

*initialize the fetch pointer to
uoooou;

Figure 2-9 Pipe Tracking Flowchart (Part 2)

MC68377
REFERENCE MANUAL

CPU32X

MOTOROLA

Rev. 15 Oct 2000

2-23

2.15 IMB Interface and External Pins
All of the IMB pins currently supported by the CPU32 will be supported by the

CPUB32X. The IMB burst protocol pins, BTACK and BREQ are added to the IMB inter-

face. One pin will be added, in addition to the IPIPE and IFETCH pins, to support pipe
and instruction queue tracking.

2.16 Basic Electrical Specifications

Table 2-8 Electrical Specifications

Operating Temperature Min/Max Max Fsys |Max Current
Range Range in C VDD in V in MHz in mA
Automotive -40 to 125 4910 5.1 21.75 90
Commercial -40 to 110 4.75105.25 25 105
Low voltage commercial -40 to 85 271033 8 20

2.17 Test Features

The test features of the CPU32X will include at least the test features of the CPU32.
Any additional test features are to be determined.

MC68377
REFERENCE MANUAL

CPU32X

Rev. 15 Oct 2000

MOTOROLA

2-24

=

	SECTION 2 CPU32X
	2.1 Features
	2.2 CPU32X System Architecture
	2.3 Optimizing System Performance
	2.4 Instruction Execution
	2.4.1 Resource Scheduling
	2.4.2 Microsequencer
	2.4.3 Instruction Pipeline
	2.4.4 Instruction Queue

	2.5 Bus Controller Resources
	2.5.1 Prefetch Controller
	2.5.2 Write-Pending Buffer
	2.5.3 Microbus Controller

	2.6 Execution Unit
	2.7 Instruction Execution Examples
	2.7.1 Execution Overlap

	2.8 Operand Accesses
	2.8.1 Move (A0),D0 A0 = FASRAM

	2.9 Move (A0),D0 A0! = FASRAM
	2.10 Burst Start-up
	2.11 Exceptions
	2.11.1 Standard Bus Cycle Exceptions
	2.11.2 Burst Bus Cycle Exceptions
	2.11.2.1 Burst Breakpoint
	2.11.2.2 Burst Bus Error

	2.12 Interrupt Response Time
	2.13 Power
	2.14 Debugging Support
	2.14.1 Background Debug Mode
	2.14.2 Breakpoint
	2.14.3 Pipe Tracking
	2.14.3.1 Instruction Queue and Pipeline

	2.14.4 PIPE Tracking Operations
	2.14.4.1 IPIPE[0]
	2.14.4.2 IPIPE[1]
	2.14.4.3 IPIPE[2]
	2.14.4.4 Loop Mode

	2.14.5 Pipe Tracking Flowchart

	2.15 IMB Interface and External Pins
	2.16 Basic Electrical Specifications
	2.17 Test Features

