
SECTION 5
INSTRUCTION CACHE

The instruction cache (I-cache) is a 4-Kbyte, 2-way set associative cache. The
cache is organized into 128 sets, with two lines per set and four words per line.
Cache lines are aligned on 4-word boundaries in memory.

A cache access cycle begins with an instruction request from the CPU instruction
unit. In case of a cache hit, the instruction is delivered to the instruction unit. In case
of a cache miss, the cache initiates a burst read cycle (four beats per burst, one
word per beat) on the instruction bus (I-bus) with the address of the requested in-
struction. The first word received from the bus is the requested instruction. The
cache forwards this instruction to the instruction unit as soon as it is received from
the I-bus. A cache line is then selected to receive the data that will be coming from
the bus. A least-recently-used (LRU) replacement algorithm is used to select a line
when no empty lines are available.

Each cache line can be used as an SRAM, allowing the application to lock critical
code segments that need fast and deterministic execution time.

Cache coherency in a multiprocessor environment is maintained by software and
supported by a fast hardware invalidation capability.

5.1 Instruction Cache Organization

Figure 5-1 illustrates the I-cache organization.
RCPU INSTRUCTION CACHE MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 5-1

Figure 5-1 Instruction Cache Organization

Figure 5-2 illustrates the data path of the I-cache.

WAY0

28 292721200

WORD SELECT

21

BIDIRECTIONAL MUX 2 ➝1

21

128

HIT0

HIT

128

INSTRUCTION POINTER

7

. .

. .

. .

. .

SET0
SET1

SET127
SET126

COMP

TAG0 W0 W1 W2 W3

V
A

LI
D

 B
IT

LO
C

K
 B

IT
TAG1 W0 W1 W2 W3

TAG127 W0 W1 W2 W3
TAG126 W0 W1 W2 W3

. .
 .

. .
 .

. .
 .

. .
 .

L
R
U

A
R
R
A
Y

. .

. .

. .

. .

21

128
COMP

HIT1

TO LINE BUFFER/
FROM BURST BUFFER

2

W2 TAG0 W0 W1 W2 W3

WAY1

TAG1 W0 W1 W2 W3

TAG127 W0 W1 W2 W3
TAG126 W0 W1 W2 W3

. .
 .

. .
 .

. .
 .

. .
 .

V
A

LI
D

 B
IT

LO
C

K
 B

IT

W2

INST CACHE ORG
 MOTOROLA INSTRUCTION CACHE RCPU

5-2 Revised 1 February 1999 REFERENCE MANUAL

Figure 5-2 Instruction Cache Data Path

5.2 Programming Model

Table 5-1 lists the special purpose registers (SPRs) that control the operation of
the I-cache.

These registers are privileged; attempting to access them when the CPU is oper-
ating at the user privilege level results in a program interrupt.

5.2.1 I-Cache Control and Status Register (ICCST)

The ICCST contains control bits for enabling the I-cache and executing I-cache
commands and status bits to indicate error conditions.

Table 5-1 Instruction Cache Programming Model

SPR Number
(Decimal)

Name Description

560 ICCST I-cache control and status register

561 ICADR I-cache address register

562 ICDAT I-cache data port (read only)

128

128

128

INSTRUCTION
I-BUS

DATA
TO CPU

4-KBYTE

ARRAY

CACHE

SET

DECODER

ADDR[21:27]

4-WORD

BUFFER

LINE

4-WORD

BURST

BUFFER

128

128

STREAM

HIT

MUX

2➝1

32

128

WORD

SELECT

MUX

4➝1
32

128

DATA

BYPASS

MUX
2➝1

32

ADDR[28:29]

IC DATA PATH
RCPU INSTRUCTION CACHE MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 5-3

ICCST — I-Cache Control and Status Register SPR 560

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IEN RESERVED CMD RESERVED CCER
1

CCER
2

CCER
3

RESERVED

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RESERVED

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5-2 ICCST Bit Settings

Bits Mnemonic Description

0 IEN I-cache enable status bit. This bit is a read-only bit. Any attempt to write it is ignored

0 = I-cache is disabled
1 = I-cache is enabled

[1:3] — Reserved

[4:6] CMD I-Cache Command

000 = No command
001 = Cache enable
010 = Cache disable
011 = Load & lock
100 = Unlock line
101 = Unlock all
110 = Invalidate all
111 = Reserved

[7:9] — Reserved

10 CCER1 I-Cache Error Type 1 (sticky bit)

0 = No error
1 = Error

11 CCER2 I-Cache Error Type 2 (sticky bit)

0 = No error
1 = Error

12 CCER3 I-Cache Error Type 3 (sticky bit)

0 = No error
1 = Error

[13:31] — Reserved
 MOTOROLA INSTRUCTION CACHE RCPU

5-4 Revised 1 February 1999 REFERENCE MANUAL

5.2.2 I-Cache Address Register (ICADR)

Writing to the ICADR assigns the address that will be used by subsequent I-cache
commands that are programmed in the ICCST.

5.2.3 I-Cache Data Register (ICDAT)

The ICDAT register contains the data received when the I-cache tag array is read.

5.3 Instruction Cache Operation

On an instruction fetch, bits 21 to 27 of the instruction’s address are used as an
index into the cache to retrieve the tags and data of one set. The tags from both
accessed lines are then compared to bits 0 to 20 of the instruction’s address. If a
match is found and the matched entry is valid, then the access is a cache hit.

If neither tag matches or if the matched tag is not valid, the access is a cache miss.

The I-cache includes one burst buffer that holds the last line received from the bus,
and one line buffer that holds the last line received from the cache array. If the re-
quested data is found in one of these buffers, the access is considered a cache hit.

ICADR — I-Cache Address Register SPR 561

0 31

ADR

RESET: UNDEFINED

Table 5-3 ICADR Bit Settings

Bits Mnemonic Description

[0:31] ADR The address to be used in the command programmed in the control and status
register

ICDAT — I-Cache Data Register SPR 562

0 31

DAT

RESET: UNDEFINED

Table 5-4 ICDAT Bit Settings

Bits Mnemonic Description

[0:31] DAT The data received when reading information from the I-cache
RCPU INSTRUCTION CACHE MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 5-5

To minimize power consumption, the I-cache attempts to make use of data stored
in one of its internal buffers. Using a special indication from the CPU, it is also pos-
sible, in some cases, to detect that the requested data is in one of the buffers early
enough so the cache array is not activated at all.

5.3.1 Cache Hit

On a cache hit, bits 28 to 29 of the instruction’s address are used to select one word
from the cache line whose tag matched. In the same clock cycle, the instruction is
transferred to the instruction unit of the processor.

5.3.2 Cache Miss

On a cache miss, the address of the missed instruction is driven on the I-bus with
a four-word burst transfer read request. A cache line is then selected to receive the
data that will be coming from the bus. The selection algorithm gives first priority to
invalid lines. If neither of the two candidate lines in the selected set are invalid, then
the least recently used line is selected for replacement. Locked lines are never re-
placed.

The transfer begins with the word requested by the instruction unit (critical word
first), followed by any remaining words of the line, then by any remaining words at
the beginning of the line (wrap around). As the missed instruction is received from
the bus, it is immediately delivered to the instruction unit and also written to the
burst buffer.

As subsequent instructions are received from the bus they are also written into the
burst buffer and, if needed, delivered to the instruction unit (stream hit) either di-
rectly from the bus or from the burst buffer. When the entire line resides in the burst
buffer, it is written to the cache array if the cache array is not busy with an instruc-
tion unit request.

If a bus error is encountered on the access to the requested instruction, a machine
check exception is taken. If a bus error occurs on any access to other words in the
line, the burst buffer is marked invalid and the line is not written to the array. If no
bus error is encountered, the burst buffer is marked valid and eventually is written
to the array.

Together with the missed word, an indication may arrive from the I-bus that the
memory device is non-cacheable. If such an indication is received, the line is writ-
ten only to the burst buffer and not to the cache. Instructions stored in the burst
buffer that originated in a cache-inhibited memory region are used only once before
being refetched. Refer to 5.4.8 Cache Inhibit for more information.

5.3.3 Instruction Fetch on a Predicted Path

The processor implements branch prediction to allow branches to issue as early as
possible. This mechanism allows instruction pre-fetch to continue while an unre-
solved branch is being computed and the condition is being evaluated. Instructions
fetched following unresolved branches are said to be fetched on a predicted path.
 MOTOROLA INSTRUCTION CACHE RCPU

5-6 Revised 1 February 1999 REFERENCE MANUAL

These instructions may be discarded later if it turns out that the machine has fol-
lowed the wrong path.

To minimize power consumption, the I-cache does not initiate a miss sequence in
most cases when the instruction is inside a predicted path. The I-cache evaluates
fetch requests to determine whether they are inside a predicted path. If a hit is de-
tected, the requested data is delivered to the processor. However, on a cache
miss, in most cases the cache-miss sequence is not initiated until the processor fin-
ishes the branch evaluation.

5.4 Cache Commands

The instruction cache supports the PowerPC instruction cache block invalidate
(icbi) instruction together with some additional commands that help control the
cache and debug the information stored in it. The additional commands are imple-
mented using the three special purpose control registers ICCST, ICADR, and IC-
DAT.

Most of the commands are executed immediately after the control register is written
and cannot generate any errors. When these commands are executed, there is no
need to check the error status in the ICCST.

The load & lock command may take longer and may generate errors. When exe-
cuting this command, the user needs to insert an isync instruction immediately af-
ter the I-cache command and check the error status in the ICCST after the isync
instruction. The error type bits in the ICCST are sticky, allowing the user to perform
a series of I-cache commands before checking the termination status. These bits
are set by hardware and cleared by software.

Only commands that are not executed immediately need to be followed by an
isync instruction for the hardware to perform them correctly. However, all com-
mands need to be followed by isync in order to make sure all fetches of instruc-
tions that follow the I-cache command in the program stream are affected by the I-
cache command.

Because the ICCST is a supervisor-level register, cache commands that require
setting bits in this register are accessible only at the supervisor privilege level
(MSR[PR] = 0). Attempting to write this register at the user privilege level results in
a program exception.

The CPU icbi instruction (discussed below) can be performed at the user privilege
level.

5.4.1 Instruction Cache Block Invalidate

The PowerPC instruction cache block invalidate (icbi) instruction invalidates the
cache block indicated by the effective address in the instruction. The RCPU imple-
ments this instruction as if it pertains only to the on-chip instruction cache. This in-
struction does not broadcast on the external bus, and the RCPU does not snoop
this instruction if broadcast by other masters.
RCPU INSTRUCTION CACHE MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 5-7

This command is not privileged and has no error cases that the user needs to
check.

The I-cache performs this instruction in one clock cycle. In order to calculate the
latency of this instruction accurately, bus latency should be taken into account.

5.4.2 Invalidate All

To invalidate the whole cache, set the invalidate all command in the ICCST. This
command has no error cases that the user needs to check.

When the command is invoked, if MSR[PR] = 0, all valid lines in the cache, except
lines that are locked, are made invalid. As a result of this command, the LRU of all
lines points to an unlocked way or to way zero if both lines are not locked. This last
feature is useful in order to initialize the I-cache out of reset.

The I-cache performs this instruction in one clock cycle. In order to calculate the
latency of this instruction accurately, bus latency should be taken into account.

5.4.3 Load and Lock

The load & lock operation is used to lock critical code segments in the cache. The
load & lock operation is performed on a single cache line. After a line is locked it
operates as a regular instruction SRAM; it will not be replaced during future misses
and will not be affected by invalidate commands.

The following sequence loads and locks one line:

1. Read error type bits in the ICCST in order to clear them
2. Write the address of the line to be locked to the ICADR
3. Set the load & lock command in the ICCST
4. Issue the isync instruction
5. Return to step 2 to load and lock more lines
6. Read the error type bits in the ICCST to determine whether the operation

completed properly

After the load & lock command is written to the ICCST, the cache checks if the line
containing the byte addressed by the ICADR is in the cache. If it is, the line is
locked and the command terminates with no exception. If the line is not in the
cache a regular miss sequence is initiated. After the whole line is placed in the
cache the line is locked.

The user needs to check the error type bits in the ICCST to determine if the oper-
ation completed properly or not. The load & lock command can generate two er-
rors:

• Type 1 — bus error in one of the cycles that fetches the line
• Type 2 — no place to lock. It is the responsibility of the user to make sure that

there is at least one unlocked way in the appropriate set.
 MOTOROLA INSTRUCTION CACHE RCPU

5-8 Revised 1 February 1999 REFERENCE MANUAL

5.4.4 Unlock Line

The unlock line operation is used to unlock locked cache lines. The unlock line
operation is performed on a single cache line. If the line is found in the cache
(cache hit), it is unlocked and starts to operate as a regular valid cache line. If the
line is not found in the cache (cache miss), no operation is performed, and the com-
mand terminates with no exception.

The following sequence unlocks one cache line:

1. Write the address of the line to be unlocked to the ICADR
2. Set the unlock line command in the ICCST

This command has no error cases that the user needs to check.

The I-cache performs this instruction in one clock cycle. To calculate the latency of
this instruction accurately, bus latency should be taken into account.

5.4.5 Unlock All

The unlock all operation is used to unlock the whole cache. This operation is per-
formed on all cache lines. If a line is locked it is unlocked and starts to operate as
a regular valid cache line. If a line is not locked or if it is invalid no operation is per-
formed.

In order to unlock the whole cache set the unlock all command in the ICCST.

This command has no error cases that the user needs to check.

The I-cache performs this instruction in one clock cycle. To calculate the latency of
this instruction accurately, bus latency should be taken into account.

5.4.6 Cache Enable

To enable the cache, set the cache enable command in the ICCST. This operation
can be performed only at the supervisor privilege level. The cache enable com-
mand has no error cases that the user needs to check.

5.4.7 Cache Disable

To disable the cache, set the cache disable command in the ICCST. This opera-
tion can be performed only at the supervisor privilege level. The cache disable
command has no error cases that the user needs to check.

5.4.8 Cache Inhibit

A memory region can be programmed in the chip select logic to be cache inhibited.
When an instruction is fetched from a cache-inhibited region, the full line is brought
to the internal burst buffer. Instructions stored in the burst buffer that originated
from a cache-inhibited region may be sent to the processor no more than once be-
fore being re-fetched.
RCPU INSTRUCTION CACHE MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 5-9

When changing a memory region (by writing to the appropriate chip-select regis-
ters) from a cache-enabled to a cache-inhibited region, the user must do the fol-
lowing:

1. Unlock all locked lines containing code that originated in this memory region
2. Invalidate all lines containing code that originated in this memory region
3. Execute an isync instruction

If these steps are not followed, code from a cache-inhibited region could be left in-
side the cache, and a reference to a cache-inhibited region could result in a cache
hit. When a reference to a cache-inhibited region results in a cache hit, the data is
delivered to the processor from the cache, not from memory.

When the FREEZE signal is asserted, indicating that the processor is under debug,
all fetches from the cache are treated as if they were from cache-inhibited regions.

5.4.9 Cache Read

The user can read all data stored in the I-cache, including the data stored in the
tags array.

To read the data that is stored in the I-cache,

1. Write the address of the data to be read to the ICADR. Note that it is also
possible to read this register for debugging purposes.

2. Read the ICDAT

So that all parts of the I-cache can be accessed, the ICADR is divided into the fol-
lowing fields:

When the data array is read from, the 32 bits of the word selected by the ICADR
are placed in the target general-purpose register.

When the tag array is read, the 21 bits of the tag selected by the ICADR, along with
additional information, are placed in the target general-purpose register. Table 5-
6 illustrates the bits layout of the I-cache data register when a tag is read.

Table 5-5 ICADR Bits Function for the Cache Read Command

[0:17] 18 19 20 [21:27] [28:29] [30:31]

Reserved 0 = tag
1 = data

0 = way 0
1 = way 1

Reserved Set select Word select
(used only for

data array)

Reserved
 MOTOROLA INSTRUCTION CACHE RCPU

5-10 Revised 1 February 1999 REFERENCE MANUAL

5.5 I-Cache and On-Chip Memories with Zero Wait States

On-chip memories on the I-bus are considered to be cache-inhibited memory re-
gions.

Performing a load & lock with such an on-chip memory is not advised. In most cas-
es the instruction will still be fetched from the on-chip memory, even though it is
also present in the I-cache.

5.6 Cache Coherency

Cache coherency in a multi-processor environment is maintained by software and
supported by the invalidation mechanisms described in 5.4 Cache Commands. All
instruction storage is considered to be in “coherency not required” mode.

5.7 Updating Code and Attributes of Memory Regions

When updating code or when changing the attributes of memory regions (by writing
to chip-select registers), the user must perform the following actions:

1. Update code or change memory region programming in the chip-select
logic.

2. Execute the sync instruction to ensure the update or change operation fin-
ished.

3. Unlock all locked lines containing code that was updated.
4. Invalidate all lines containing code that was updated.
5. Execute the isync instruction.

5.8 Reset Sequence

To simplify system debugging, the I-cache is forced to be disabled only during reset
(ICCST[EN] = 0). This feature enables the user to investigate the exact state of the
I-cache prior to the event that asserted the reset.

In order to ensure proper operation of the I-cache after reset, the following actions
must be performed:

1. unlock all
2. invalidate all
3. cache enable

Table 5-6 ICDAT Layout During a Tag Read

[0:20] 21 22 23 24 [25:31]

Tag value Reserved 0 = not valid
1 = valid

0 = not locked
1 = locked

LRU bit Reserved
RCPU INSTRUCTION CACHE MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 5-11

5.9 Debugging Support

The processor can be debugged either in debug mode or by a software monitor
debugger. In both cases the processor asserts the internal FREEZE signal. For a
detailed description of RCPU debugging support, refer to SECTION 8
DEVELOPMENT SUPPORT.

When FREEZE is asserted, the I-cache treats all misses as if they were from
cache-inhibited regions. That is, the misses are loaded only to the burst buffer and
the cache state therefore remains exactly the same (assuming the debug routine
is not in the I-cache). Notice that when FREEZE is asserted, cache hits are still
read from the array, and therefore the LRU bits are updated.

5.9.1 Running a Debug Routine from the I-Cache

It may be desirable, in some cases, to be able to run a debug routine from the I-
cache (e.g., for performance reasons). The following steps could be used to run the
debug routine from the I-cache:

1. Save both ways of the sets that are needed for the debug routine by reading
the tag value, LRU bit value, valid bit value, and lock bit value.

2. Unlock the locked ways in the selected sets.
3. Use load & lock to load and lock the debug routine into the I-cache (load &

lock operates the same when FREEZE is asserted).
4. Run the debug routine. All accesses to it will result in hits.

After the debug routine is finished, the old state of the I-cache can be restored by
following these steps:

1. Unlock and invalidate all the sets that are used by the debug routine (both
ways).

2. Use load & lock to restore the old sets.
3. Unlock the ways that were not locked before.
4. In order to restore the old state of the LRU, make sure the last access (load

& lock or unlock) is performed the MRU way (not the LRU way).

5.9.2 Instruction Fetch from the Development Port

When the processor is in debug mode, all instructions are fetched from the devel-
opment port, regardless of the address generated by the processor. The I-cache is
therefore bypassed in debug mode.
 MOTOROLA INSTRUCTION CACHE RCPU

5-12 Revised 1 February 1999 REFERENCE MANUAL

	SECTION 5 INSTRUCTION CACHE
	5.1 Instruction Cache Organization
	5.2 Programming Model
	5.2.1 I-Cache Control and Status Register (ICCST)
	5.2.2 I-Cache Address Register (ICADR)
	5.2.3 I-Cache Data Register (ICDAT)

	5.3 Instruction Cache Operation
	5.3.1 Cache Hit
	5.3.2 Cache Miss
	5.3.3 Instruction Fetch on a Predicted Path

	5.4 Cache Commands
	5.4.1 Instruction Cache Block Invalidate
	5.4.2 Invalidate All
	5.4.3 Load and Lock
	5.4.4 Unlock Line
	5.4.5 Unlock All
	5.4.6 Cache Enable
	5.4.7 Cache Disable
	5.4.8 Cache Inhibit
	5.4.9 Cache Read

	5.5 I-Cache and On-Chip Memories with Zero Wait States
	5.6 Cache Coherency
	5.7 Updating Code and Attributes of Memory Regions
	5.8 Reset Sequence
	5.9 Debugging Support
	5.9.1 Running a Debug Routine from the I-Cache
	5.9.2 Instruction Fetch from the Development Port

