
APPENDIX D
SYNCHRONIZATION PROGRAMMING EXAMPLES

The examples in this appendix show how synchronization instructions can be used
to emulate various synchronization primitives and how to provide more complex
forms of synchronization. 

For each of these examples, it is assumed that a similar sequence of instructions
is used by all processes requiring synchronization of the accessed data. 

D.1 General Information

The following points provide general information about the lwarx and stwcx. in-
structions:

• In general, lwarx and stwcx. instructions should be paired, with the same ef-
fective address used for both. The exception is an isolated stwcx. instruction
that is used to clear any existing reservation on the processor, for which there
is no paired lwarx and for which any (scratch) effective address can be used. 

• It is acceptable to execute an lwarx instruction for which no stwcx. instruction
is executed. For example, such a dangling lwarx instruction occurs if the val-
ue loaded in the test and set sequence shown in D.3.2 Test and Set is not
zero. 

• To increase the likelihood that forward progress is made, it is important that
looping on lwarx/stwcx. pairs be minimized. For example, in the sequence
shown above for test and set, this is achieved by testing the old value before
attempting the store — were the order reversed, more stwcx. instructions
might be executed, and reservations might more often be lost between the
lwarx and the stwcx. instructions. 

• The manner in which lwarx and stwcx. are communicated to other proces-
sors and mechanisms and between levels of the memory subsystem within a
given processor is implementation-dependent. In some implementations per-
formance may be improved by minimizing looping on an lwarx instruction that
fails to return a desired value. For example, in the test and set example shown
above, to stay in the loop until the word loaded is zero, the programmer could
change the bne S+ 12 to bne loop. However, in some implementations better
performance may be obtained by using an ordinary load instruction to do the
initial checking of the value, as follows: 

loop: lwz rS,0(r3) #load the word
cmpwi r5,0 #loop back if word
bne loop #not equal to 0
lwarx rS,0,r3 #try again, reserving
cmpwi r5,0 #(likely to succeed)
bne loop #try to store nonzero
stwcx. r4,0,r3 #loop if lost reservation
bne loop
RCPU SYNCHRONIZATION PROGRAMMING EXAMPLES MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 D-1



• In a multiprocessor, livelock is possible if a loop containing an lwarx/stwcx.
pair also contains an ordinary store instruction for which any byte of the affect-
ed memory area is in the reservation granule of the reservation. For example,
the first code sequence shown in D.5 List Insertion can cause livelock if two
list elements have next element pointers in the same reservation granule. 

D.2 Synchronization Primitives

The following examples show how the lwarx and stwcx. instructions can be used
to emulate various synchronization primitives. The sequences used to emulate the
various primitives consist primarily of a loop using lwarx and stwcx.. Additional
synchronization is unnecessary, because the stwcx. will fail, clearing the EQ bit, if
the word loaded by lwarx has changed before the stwcx. is executed. 

D.2.1 Fetch and No-Op

The fetch and no-op primitive atomically loads the current value in a word in mem-
ory. In this example it is assumed that the address of the word to be loaded is in
GPR3 and the data loaded are returned in GPR4. 

loop: lwarx r4,0,r3 #load and reserve
stwcx. r4,0,r3 #store old value if still reserved
bne loop #loop if lost reservation

The stwcx., if it succeeds, stores to the destination location the same value that
was loaded by the preceding lwarx. While the store is redundant with respect to
the value in the location, its success ensures that the value loaded by the lwarx
was the current value (that is, the source of the value loaded by the lwarx was the
last store to the location that preceded the stwcx. in the coherence order for the
location).

D.2.2 Fetch and Store

The fetch and store primitive atomically loads and replaces a word in memory. 

In this example it is assumed that the address of the word to be loaded and re-
placed is in GPR3, the new value is in GPR4, and the old value is returned in
GPR5. 

loop: lwarx r5,0,r3 #load and reserve 
stwcx. r4,0,r3 #store new value if still reserved
bne loop #loop if lost reservation

D.3 Fetch and Add

The fetch and add primitive atomically increments a word in memory. 

In this example it is assumed that the address of the word to be incremented is in
GPR3, the increment is in GPR4, and the old value is returned in GPR5. 

loop: lwarx rS,0,r3 #load and reserve
add ra,r4,rS #increment word
stwcx. ra,0,r3 #store new value if still reserved
bne loop #loop if lost reservation
 MOTOROLA SYNCHRONIZATION PROGRAMMING EXAMPLES RCPU

D-2 Revised 1 February 1999 REFERENCE MANUAL



D.3.1 Fetch and AND

The fetch and AND primitive atomically performs a logical AND of a value and a
word in memory.

In this example it is assumed that the address of the word to be ANDed is in GPR3,
the value to AND into it is in GPR4, and the old value is returned in GPR5.

loop: lwarx rS,0,r3 #load and reserve
and ra,r4,rS #AND word
stwcx. ra,0,r3 #store new value if still reserved
bne loop #loop if lost reservation

This sequence can be changed to perform another Boolean operation atomically
on a word in memory, simply by changing the AND instruction to the desired Bool-
ean instruction (OR, XOR, etc.). 

D.3.2 Test and Set

The test and set primitive atomically loads a word from memory, ensures that the
word in memory contains a non-zero value, and sets the EQ bit of CR field 0 ac-
cording to whether the value loaded is zero. 

In this example it is assumed that the address of the word to be tested is in GPR3,
the new value (non-zero) is in GPR4, and the old value is returned in GPR5. 

loop: lwarx r5,0,r3 #load and reserve
cmpwi r5,0 #done if word
bne $+12 #not equal to 0
stwcx. r4,0,r3 #try to store nonzero
bne loop #loop if lost reservation

Test and set is shown primarily for pedagogical reasons. It is useful on machines
that lack the better synchronization facilities provided by lwarx and stwcx.. Test
and set does not scale well. Using test and set before a critical section allows only
one process to execute in the critical section at a time. Using lwarx and stwcx. to
bracket the critical section allows many processes to execute in the critical section
at once, but at most one will succeed in exiting from the section with its results
stored. 

Depending on the application, if test and set fails (that is, clears the EQ bit of CR
field 0) it may be appropriate to re-execute the test and set. 

D.4 Compare and Swap

The compare and swap primitive atomically compares a value in a register with a
word in memory. If they are equal, it stores the value from a second register into
the word in memory. If they are unequal, it loads the word from memory into the
first register, and sets the EQ bit of the CR0 field to indicate the result of the com-
parison. 

In this example it is assumed that the address of the word to be tested is in GPR3,
the comparand is in GPR4, the new value is in GPR5, and the old value is returned
in GPR6. 
RCPU SYNCHRONIZATION PROGRAMMING EXAMPLES MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 D-3



lwarx r6,0,r3 #load and reserve
cmpw r4,r6 #first 2 operands equal ?
bne $+8 #skip if not
stwcx. rS,0,r3 #store new value if still reserved

Compare and swap is shown primarily for pedagogical reasons. It is useful on ma-
chines that lack the better synchronization facilities provided by lwarx and stwcx..
A major weakness of typical compare and swap instructions is that they permit spu-
rious success if the word being tested has changed and then changed back to its
old value: the sequence shown above does not have this weakness. 

Depending on the application, if compare and swap fails (that is, clears the EQ bit
of CR0) it may be appropriate to recompute the value potentially to be stored and
then re-execute the compare and swap. 

D.5 List Insertion

The following example shows how the lwarx and stwcx. instructions can be used
to implement simple LIFO (last-in-first-out) insertion into a singly-linked list. (Com-
plicated list insertion, in which multiple values must be changed atomically, or in
which the correct order of insertion depends on the contents of the elements, can-
not be implemented in the manner shown below, and requires a more complicated
strategy such as using locks.) 

The next element pointer from the list element after which the new element is to be
inserted, here called the parent element, is stored into the new element, so that the
new element points to the next element in the list: this store is performed uncondi-
tionally. Then the address of the new element is conditionally stored into the parent
element, thereby adding the new element to the list. 

In this example it is assumed that the address of the parent element is in GPR3,
the address of the new element is in GPR4, and the next element pointer is at offset
O from the start of the element. It is also assumed that the next element pointer of
each list element is in a reservation granule separate from that of the next element
pointer of all other list elements. 

loop: lwarx r2,0,r3 #get next pointer
stw r2,0(r4) #store in new element
sync #let store settle (can omit if not

MP)
stwcx. r 4, a, r3 #add new element to list
bne loop #loop if stwcx. failed

In the preceding example, if two list elements have next element pointers in the
same reservation granule then, in a multiprocessor, livelock can occur. (Livelock is
a state in which processors interact in a way such that no processor makes
progress.)

If it is not possible to allocate list elements such that each element's next element
pointer is in a different reservation granule, then livelock can be avoided by using
the following, more complicated, code sequence.
 MOTOROLA SYNCHRONIZATION PROGRAMMING EXAMPLES RCPU

D-4 Revised 1 February 1999 REFERENCE MANUAL



lwz r2,0(r3) #get next pointer
loopl: mr r5,r2 #keep a copy

stw r2,0(r4) #store in new element
sync #let store settle

loop2: lwarx rZ,0,r3 #get it again
cmpw r2,r5 #loop if changed (someone
bne loopl #else progressed)
stwcx. r4,0,r3 #add new element to list
bne loop2 #loop if failed
RCPU SYNCHRONIZATION PROGRAMMING EXAMPLES MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 D-5



 MOTOROLA SYNCHRONIZATION PROGRAMMING EXAMPLES RCPU

D-6 Revised 1 February 1999 REFERENCE MANUAL


	APPENDIX D SYNCHRONIZATION PROGRAMMING EXAMPLES
	D.1 General Information
	D.2 Synchronization Primitives
	D.2.1 Fetch and No-Op
	D.2.2 Fetch and Store

	D.3 Fetch and Add
	D.3.1 Fetch and AND
	D.3.2 Test and Set

	D.4 Compare and Swap
	D.5 List Insertion


