SECTION 6
EXCEPTIONS
The PowerPC exception mechanism allows the processor to change to supervisor
state as a result of external signals, errors, or unusual conditions arising in the ex-
ecution of instructions. When exceptions occur, information about the state of the
processor is saved to certain registers, and the processor begins execution at an
address predetermined for each exception. Processing of exceptions occurs in su-
pervisor mode.

Although multiple exception conditions can map to a single exception vector, the
specific condition can be determined by examining a register associated with the
exception — for example, the DAE/source instruction service register (DSISR) and
the floating-point status and control register (FPSCR). Additionally, specific excep-
tion conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order;
therefore, while exception conditions may be recognized out of order, they are han-
dled strictly in order. When an instruction-caused exception is recognized, any un-
executed instructions that appear earlier in the instruction stream are required to
complete before the exception is taken. An instruction is said to have “completed”
when the results of that instruction’s execution have been committed to the appro-
priate registers (i.e., following the writeback stage). If a single instruction encoun-
ters multiple exception conditions, those exceptions are taken and handled
sequentially.

Asynchronous exceptions (exceptions not associated with a specific instruction)
are recognized when they occur, but are not handled until all completed instruc-
tions have retired and the instruction remaining at the head of the history buffer is
ready to retire.

In many cases, after an exception handler handles an exception, there is an at-
tempt to execute the instruction that caused the exception. Instruction execution
continues until the next exception condition is encountered. This method of recog-
nizing and handling exception conditions sequentially guarantees that the machine
state is recoverable and processing can resume without losing instruction results.

Exception handlers should save the information saved in SRRO and SRR1 soon
after the exception is taken to prevent this information from being lost due to an-
other exception being taken. The information should be saved before enabling any
exception that is automatically disabled when an exception is taken.

NOTE

If debug mode is enabled and the appropriate bit in the debug enable
register (DER) is set, recognition of an exception results in debug-
mode processing rather than normal exception processing. Refer to
SECTION 8 DEVELOPMENT SUPPORT for details.

RCPU EXCEPTIONS MOTOROLA
REFERENCE MANUAL Revised 1 February 1999 6-1

6.1 Exception Classes
Exception classes are shown in Table 6-1. These classes are described in the fol- | T|
lowing paragraphs.

Table 6-1 RCPU Exception Classes

Type Exception

Asynchronous, unordered (non-maskable) System reset
Non-maskable data or instruction breakpoint
Non-maskable external breakpoint

Asynchronous, ordered (maskable) External interrupt
Decrementer
Maskable external breakpoint

Synchronous (precise), ordered Instruction-caused exceptions
(except machine check)

Synchronous (precise), unordered Machine check

6.1.1 Ordered and Unordered Exceptions

An exception is said to be ordered if, when it is taken, it is guaranteed that no pro-
gram state is lost (provided proper procedures are followed in the exception han-
dlers). In the RCPU implementation of the PowerPC architecture, all exceptions
are ordered except for the following:

* Reset

* Machine check

* Non-maskable internal (instruction and data) breakpoints
* Non-maskable external breakpoints

Unordered exceptions may be reported at any time and are not guaranteed to pre-
serve program state information. The processor can never recover from a reset ex-
ception. It can recover from other unordered exceptions in most cases. However,
if an unordered exception occurs during the servicing of a previous exception, the
machine state information in SRR0O and SRR1 (and, in some cases, the DAR and
DSISR) may not be recoverable; the processor may be in the process of saving or
restoring these registers.

To determine whether the machine state is recoverable, the user can read the Rl
(recoverable exception) bit in SRR1. Refer to 6.5 Recovery from Exceptions for
details.

6.1.2 Synchronous, Precise Exceptions

Synchronous exceptions are caused by instructions. They are said to be either pre-
cise or imprecise. In the RCPU implementation of the PowerPC architecture, all
synchronous exceptions are precise.

When a precise exception occurs, the processor backs the machine up to the in-

MOTOROLA EXCEPTIONS RCPU
6-2 Revised 1 February 1999 REFERENCE MANUAL

RCPU

struction causing the exception. This ensures that the machine is in its correct ar-
chitecturally-defined state. The following conditions exist at the point a precise
exception occurs:

1.

2.

3.

Architecturally, no instruction following the faulting instruction in the code
stream has begun execution.

All instructions preceding the faulting instruction appear to have completed
with respect to the executing processor.

SRRO addresses either the instruction causing the exception or the imme-
diately following instruction. Which instruction is addressed can be deter-
mined from the exception type and the status bits.

Depending on the type of exception, the instruction causing the exception
may not have begun execution, may have partially completed, or may have
completed execution. Refer to Table 6-2 for details.

The precise exception model can simplify and speed up exception processing be-

cause software does not have to save the machine’s internal pipeline states, un-

wind the pipelines, and cleanly terminate the faulting instruction, nor does it have
to reverse the process to resume execution of the faulting instruction stream.

NOTE

In the RCPU implementation of the PowerPC architecture, the ma-
chine-check exception is synchronous, (i.e., it is assigned to the in-
struction that caused it). In other PowerPC implementations, this
exception may be asynchronous.

Table 6-2 shows which precise exceptions are taken before the excepting instruc-
tion is executed, which are taken after, and which are taken after the instruction is

partially executed.

EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-3

Table 6-2 Handling of Precise Exceptions

Exception Type Instruction Type Before/After Contents of SRRO
Machine check Any Before Faulting instruction
Alignment Multiple Partially Faulting instruction
Others Before
Floating-point enabled Move to MSR, rfi After Next instruction to execute
Floating-point enabled Move to FPSCR After Faulting instruction
Privileged instruction, Multiple Before Faulting instruction
trap, floating-point
unavailable
System call sc After Next instruction to execute
Trace Any After Next instruction to execute
Debug I-breakpoint Any Before Faulting instruction
Debug L-breakpoint Load/store After Faulting instruction + 4
Software emulation NA Before Faulting instruction
Floating-point assist Floating point Before Faulting instruction

6.1.3 Asynchronous Exceptions

Asynchronous exceptions are not caused by instructions and are thus not synchro-
nized to internal processor events. When an asynchronous exception occurs, the
following conditions exist at the exception point:

* SRRO addresses the instruction that would have completed if the exception
had not occurred.

* An exception is generated such that all instructions preceding the instruction
addressed by SRRO appear to have completed with respect to the executing
processor.

Asynchronous exceptions can be either ordered or unordered, depending on
whether they are maskable.

Maskable exceptions are considered ordered because, if proper software proce-
dures are followed, they are never recognized while the processor is saving or re-
storing the machine state during a previous exception. Thus, the processor can
always recover from one of these exceptions.

Asynchronous, non-maskable exceptions can occur while other exceptions are be-
ing processed. If one of these exceptions occurs immediately after another excep-
tion, the state information saved by the first exception may be overwritten when the
second exception occurs. These exceptions are thus considered unordered. For
additional information, refer to 6.5.2 Recovery from Unordered Exceptions.

MOTOROLA EXCEPTIONS RCPU
6-4 Revised 1 February 1999 REFERENCE MANUAL

6.1.3.1 Asynchronous, Maskable Exceptions

The RCPU supports the following asynchronous, maskable exceptions: external
interrupts, decrementer interrupts, and maskable internal and external breakpoint
exceptions.

External and decrementer interrupts are masked by the external interrupt enable
(EE) bit in the MSR. When MSRI[EE] = 0, these exception conditions are latched
and are not recognized until MSR[EE] is set. MSR[EE] is cleared automatically
when an exception is taken to delay recognition of external and decrementer inter-
rupts.

Maskable internal or external breakpoint exceptions are recognized only when the
RI (recoverable exception) bit in the MSR = 1. This ensures that (with proper soft-
ware safeguards) the processor can always recover from one of these exceptions.

Refer to SECTION 8 DEVELOPMENT SUPPORT for details on maskable and
non-maskable internal and external breakpoints.

6.1.3.2 Asynchronous, Non-Maskable Exceptions

Asynchronous, non-maskable exceptions include reset and non-maskable internal
and external breakpoint exceptions. These exceptions have the highest priority
and can occur while other exceptions are being processed. Because these excep-
tions are non-maskable, they are never delayed; therefore, if an asynchronous,
non-maskable exception occurs immediately after another exception, the state in-
formation saved by the first exception may be overwritten when the second excep-
tion occurs.

For additional information, refer to 6.5.2 Recovery from Unordered Exceptions.
Refer to SECTION 8 DEVELOPMENT SUPPORT for details on maskable and
non-maskable internal and external breakpoints.

6.2 Exception Vector Table

RCPU

The setting of the exception prefix (IP) bit in the MSR determines how exceptions
are vectored. If the bit is cleared, exceptions are vectored to the physical address
0x0000 0000 plus the vector offset; if IP is set, exceptions are vectored to the phys-
ical address OxFFFO 0000 plus the vector offset. Table 6-3 shows the exception
vector offset of the first instruction of the exception handler routine for each excep-
tion type.

NOTE

The exception vectors shown in Table 6-3, up to and including the
floating-point assist exception (vector offset 0XOOEQOQ), are defined
by the PowerPC architecture. Exception vectors beginning with offset
0x01000 (software emulation exception in the RCPU) are reserved in
the PowerPC architecture for implementation-specific exceptions.

EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-5

=

Table 6-3 Exception Vectors and Conditions

2 ETE Vector Offset Causing Conditions
Type
Reserved 0x00000 Reserved
System reset 0x00100 A reset exception results when the RESET input to the processor is asserted.
Machine check 0x00200 A machine check exception results when the TEA signal is asserted internally or
externally.
— 0x00300 Reserved. (In the PowerPC architecture, this exception vector is reserved for
data access exceptions.)
— 0x00400 Reserved. (In the PowerPC architecture, this exception vector is reserved for
instruction access exceptions.)
External 0x00500 An external interrupt occurs when the RCPU IRQ input signal is asserted.
interrupt
Alignment 0x00600 An alignment exception is caused when the processor cannot perform a memory
access for one of the following reasons:

* The operand of a floating-point load or store is not word-aligned.

* The operand of a load- or store-multiple instruction is not word-aligned.

e The operand of lwarx or stwex. is not word-aligned.

e In little-endian mode, an operand is not properly aligned.

* In little-endian mode, the processor attempts to execute a multiple or string
instruction.

Program 0x00700 A program exception is caused by one of the following exception conditions:

* Floating-point enabled exception — A floating-point enabled program
exception condition is generated when the following condition is met as a
result of a move to FPSCR instruction, move to MSR instruction, or return
from interrupt instruction:

(MSRI[FEO] | MSR[FE1]) & FPSCRI[FEX] = 1.

* Privileged instruction — A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and
the MSR register user privilege bit, MSR[PRY], is set. This exception is also
generated for mtspr or mfspr with an invalid SPR field if SPR[0]=1 and
MSR[PR]=1.

e Trap — A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

Floating-point 0x00800 A floating-point unavailable exception is caused by an attempt to execute a
unavailable floating-point instruction (including floating-point load, store, and move
instructions) when the floating-point available bit is disabled, MSR[FP]=0.
Decrementer 0x00900 The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register changes from zero to one.
Reserved 0x00AOQ0 —
Reserved 0x00B00 —
System call 0x00C00 A system call exception occurs when a system call (s¢) instruction is executed.
Trace 0x00D00 A trace exception occurs if MSR[SE] = 1 and any instruction other than rfi is
successfully completed, or if MSR[BE] = 1 and a branch is completed.
MOTOROLA EXCEPTIONS RCPU

6-6 Revised 1 February 1999 REFERENCE MANUAL

Table 6-3 Exception Vectors and Conditions (Continued)

28U Vector Offset Causing Conditions
Type
Floating-point 0x00EO00 A floating-point assist exception occurs in the following cases:
assist * When the following condition is true (except in the cases mentioned above
for program exceptions):
(MSRI[FEQ] | MSR[FE1]) &FPSCR[FEX] = 1
e When atiny result is detected and the floating-point underflow exception is
disabled (FPSCRI[UE] = 0)
* In some cases when at least one of the source operands is denormalized.
Software 0x01000 An implementation-dependent software emulation exception occurs when an
emulation attempt is made to execute an unimplemented instruction, or to execute amtspr
or mfspr instruction that specifies an unimplemented register.
Data 0x01C00 An implementation-dependent data breakpoint exception occurs when an
breakpoint internal breakpoint match occurs on the load/store bus.
Instruction 0x01D00 An implementation-dependent instruction breakpoint exception occurs when an
breakpoint internal breakpoint match occurs on the instruction bus.
Maskable 0x01E00 An implementation-dependent maskable external breakpoint occurs when an
external external device or on-chip peripheral generates a maskable breakpoint.
breakpoint
Non-maskable 0x01F00 An implementation-dependent non-maskable external breakpoint occurs when
external an external breakpoint is input to the serial interface of the development port.
breakpoint

6.3 Precise Exception Model Implementation

In order to achieve maximum performance, the RCPU processes many pieces of
the instruction stream concurrently. Instructions execute in parallel and may com-
plete out of order. The processor is designed to ensure that this out of order oper-
ation never has an effect different from that specified by the program. This
requirement is most difficult to ensure when an exception occurs after instructions
that logically follow the faulting instruction have already completed. When an ex-
ception occurs, the machine state becomes visible to other processes and there-
fore must be in its correct architecturally specified condition. The processor takes
care of this in hardware by automatically backing the machine up to the instruction
that caused the interrupt. The processor is therefore said to implement a precise
exception model.

To enable the processor to recover from an exception, a history buffer is used. This
buffer is a FIFO queue which records relevant machine state at the time of each
instruction issue. Instructions are placed on the tail of the queue when they are is-
sued and percolate to the head of the queue while they are in execution. Instruc-

tions remain in the queue until they complete execution (i.e., have completed the

writeback stage) and all preceding instructions have completed as well. In this way,
when an exception occurs, the machine state necessary to recover the architectur-
al state is available. As instructions complete execution, they are retired from the
queue, and the buffer storage is reclaimed for new instructions entering the queue.

EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-7

QUEUE QUEUE T
TAIL HEAD

ISSUED RETIRED

INSTRUCTIONS INSTRUCTIONS
— > HISTORY BUFFER QUEUE I

COMPLETED INSTRUCTIONS
WRITE BACK

HIST BUF Q BLOCK

Figure 6-1 History Buffer Queue

An exception can be detected at any time during instruction execution and is re-
corded in the history buffer when the instruction finishes execution. The exception
is not recognized until the faulting instruction reaches the head of the history
queue. When the exception is recognized, exception processing begins. The
queue is reversed, and the machine is restored to its state at the time the instruc-
tion was issued. Machine state is restored at a maximum rate of two floating-point
and two integer instructions per clock cycle.

To correctly restore the architectural state, the history buffer must record the value
of the destination before the instruction is executed. The destination of a store in-
struction, however, is in memory. It is not practical for the processor to always read
memory before writing it. Therefore, stores issue immediately to store buffers, but
do not update memory until all previous instructions have completed execution
without exception, i.e., until the store has reached the head of the history buffer.

The history buffer has enough storage to hold a total of six instructions. Of these,
a maximum of four can be integer instructions (including integer load or store in-
structions), and a maximum of three can be floating-point instructions (including
floating-point loads or stores). If the buffer includes an instruction with long latency,
it is possible (if a data dependency does not occur first) for issued instructions to
fill up the history buffer. If so, instruction issue halts until the long-latency operation
retires (along with any instructions following it that are ready to retire). Instructions
that can cause the history buffer to fill up include floating-point arithmetic instruc-
tions, integer divide instructions, and instructions that affect or use resources ex-
ternal to the processor (e.g., load/store instructions).

6.4 Implementation of Asynchronous Exceptions

When an enabled asynchronous exception is detected, the processor attempts to
retire as many instructions as possible. That is, all instructions that have completed
the writeback stage without generating exceptions are allowed to retire, provided
all instructions ahead of them in the history buffer have also completed the write-
back stage without generating exceptions.

MOTOROLA EXCEPTIONS RCPU
6-8 Revised 1 February 1999 REFERENCE MANUAL

history buffer, which has not yet completed (otherwise, it would have been retired).
If this instruction is one of the following, it is allowed to complete execution and re-
tire:

The asynchronous exception is then assigned to the instruction at the head of the
| T|

* mtspr, mtmstr, or rfi instruction

* Memory reference that is already on the bus (other than a load or store multi-
ple or string instruction)

* Cache control instruction.

In this case, the exception is assigned to the next instruction in the history buffer.
Notice that if the instruction at the head of the history buffer generates an exception
before it retires, that exception is treated before the asynchronous exception.

If the instruction is not one of those listed above, it and all subsequent instructions
are flushed from the buffer as if they were never executed at all.

6.5 Recovery from Exceptions

The processor should always be able to recover from an ordered exception. Pro-
vided no machine state information is lost, the processor can recover from unor-
dered exceptions, except reset, as well.

6.5.1 Recovery from Ordered Exceptions

The RCPU can always recover from an ordered exception, provided the exception-
handling software follows proper procedures. Exception handlers must ensure that
no exception-generating instruction is executed during the prologue (before appro-
priate registers are saved) or epilogue (between restore of these registers and the
execution of the rfi instruction). Registers that need to be saved are the machine
status save/restore registers (SRR0O and SRR1) and, for certain exceptions, the
DAR (data address register) and DSISR (data storage interrupt status register).

Hardware automatically clears MSR[EE] during exception processing in order to
disable external and decrementer interrupts. If desired, the user can set this bit at
the end of the exception handler prologue, after saving the machine state. In this
case, the user must clear the bit (along with the RI bit) before the start of the ex-
ception handler epilog. Refer to 6.5.3 Commands to Alter MSR[EE] and MSRI[RI]
for instructions on altering these bits.

6.5.2 Recovery from Unordered Exceptions

Unless it is in the process of saving or restoring machine state, the processor can
recover from the following unordered exceptions:

* Machine check
* Non-maskable external breakpoint
* Non-maskable internal instruction or data breakpoint

The RI bit (recoverable exception) in the MSR and its shadow in SRR1 enable an
exception handler to determine whether the processor can recover from an excep-
tion. During exception processing, the Rl bit in the MSR is copied to SRR1; the bit

RCPU EXCEPTIONS MOTOROLA
REFERENCE MANUAL Revised 1 February 1999 6-9

inthe MSR is then cleared. Each exception handler should set the Rl bit in the MSR
(using the mtmsr instruction) at the end of its prologue, after saving the program
state (SRRO, SRR1, and, in some cases, DSISR and DAR). At the start of its epi-
logue (before saving the machine state), each exception handler should clear the
RI bit in the MSR.

In this way, the exception handler for an unordered exception can read the Rl bit
in SRR1 to determine whether the processor can recover from the exception. If the
exception occurs while the machine state is being saved or restored during the pro-
cessing of a previous exception, the Rl bitin SRR1 will be cleared, indicating that
the processor cannot recover from the exception. If the exception occurs at any
other time, the RI bit in SRR1 will be set, indicating the processor can recover from
the exception.

In critical code sections where MSR[EE] is negated but SRR0O and SRR1 are not
busy, MSR[RI] should be left asserted. In these cases if an exception occurs,the
processor can be restarted.

6.5.3 Commands to Alter MSR[EE] and MSR[RI]

The processor includes special commands to facilitate the software manipulation
of the MSR[RI] and MSR[EE] bits. These commands are executed by issuing the
mtspr instruction with one of the pseudo-SPRs shown in Table 6-4. Writing any
data to one of these locations performs the operation specified in the table. A read
(mfspr) of any of these locations is treated as an unimplemented instruction, re-
sulting in a software emulation exception.

Table 6-4 Manipulating EE and RI Bits

SPR # Mnemonic | MSR[EE] MSRI[RI] Use
(Decimal)
EIE 1 1 External Interrupt Enable:
* End of exception handler’s prologue, to enable nested
external interrupts;
* End of critical code segment in which external interrupts
were disabled
EID 0 1 External Interrupt Disable, but other interrupts are
recoverable:
e End of exception handler’s prologue, to keep external
nested interrupts disabled;
e Start of critical code segment in which external interrupts
are disabled
NRI 0 0 Non-Recoverable Interrupt:
e Start of exception handler’s epilogue

6.6 Exception Order and Priority

MOTOROLA

6-10

When multiple conditions that can cause an exception are present, the highest-pri-
ority exception is taken. Exceptions are roughly prioritized by exception class, as
follows:

RCPU
REFERENCE MANUAL

EXCEPTIONS
Revised 1 February 1999

1.

Asynchronous, non-maskable exceptions have priority over all other excep-
tions. These exceptions cannot be delayed and do not wait for the comple-
tion of any precise exception handling.

Synchronous exceptions are caused by instructions and are handled in
strict program order.

Asynchronous, maskable exceptions (external interrupt, decrementer ex-
ceptions, and maskable breakpoint exceptions) are delayed until exceptions
caused by the instruction at the head of the history buffer (after instructions
that have already completed have retired) are taken.

The exceptions are listed in Table 6-5 in order of highest to lowest priority.

Table 6-5 Exception Priorities

Class

Priority

Exception

Asynchronous,
non-maskable

1

Non-maskable external breakpoint — This exception has the highest priority and is
taken immediately, regardless of other pending exceptions or whether the machine
state is recoverable.

Reset —The reset exception has the second-highest priority and is taken
immediately, regardless of other pending exceptions (except for the non-maskable
external breakpoint exception) or whether the machine state is recoverable.

Synchronous

Instruction dependent — When an instruction causes an exception, the exception
mechanism waits for any instructions prior to the exception instruction in the
instruction stream to execute. Any exceptions caused by these instructions are
handled first. It then generates the appropriate exception if no higher priority
exception exists when the exception is to be generated.

RCPU

REFERENCE MANUAL

EXCEPTIONS MOTOROLA
Revised 1 February 1999 6-11

=

Table 6-5 Exception Priorities (Continued)

Class

Priority

Exception

Asynchronous,
maskable

4

Peripheral or external maskable breakpoint request — When this exception type
occurs, the processor retires as many instructions as possible (i.e., all instructions
that have completed the writeback stage without generating an instruction, provided
all instructions ahead of it in the history buffer have also completed the writeback
stage without generating an exception). Then, depending on the instruction
currently at the head of the history buffer, the processor either flushes the history
buffer or allows the instruction at the head of the buffer to retire before generating
an exception. Refer to 6.4 Implementation of Asynchronous Exceptions.

External interrupt — When this exception type occurs, the processor retires as
many instructions as possible (i.e., all instructions that have completed the
writeback stage without generating an instruction, provided all instructions ahead of
it in the history buffer have also completed the writeback stage without generating
an exception). Then, depending on the instruction currently at the head of the
history buffer, the processor either flushes the history buffer or allows the instruction
at the head of the buffer to retire before generating an exception (provided a higher
priority exception does not exist). Refer to 6.4 Implementation of Asynchronous
Exceptions. This exception is delayed if MSR[EE] is cleared.

Decrementer — This exception is the lowest priority exception. When this exception
type occurs, the processor retires as many instructions as possible (i.e., all
instructions that have completed the writeback stage without generating an
instruction, provided all instructions ahead of it in the history buffer have also
completed the writeback stage without generating an exception). Then, depending
on the instruction currently at the head of the history buffer, the processor either
flushes the history buffer or allows the instruction at the head of the buffer to retire
before generating an exception (provided a higher priority exception does not exist).
Refer to 6.4 Implementation of Asynchronous Exceptions. This exception is
delayed if MSR[EE] is cleared.

6.7 Ordering of Synchronous, Precise Exceptions

Synchronous exceptions are handled in strict program order, even though instruc-
tions can execute and exceptions can be detected out of order. Therefore, before
the RCPU processes an instruction-caused exception, it executes all instructions
and handles any resulting exceptions that appear earlier in the instruction stream.

Only one synchronous, precise exception can be reported at a time. If single in-
structions generate multiple exception conditions, the processor handles the ex-
ception it encounters first; then the execution of the excepting instruction continues
until the next excepting condition is encountered. Table 6-6 lists the order in which
synchronous exceptions are detected.

MOTOROLA
6-12

EXCEPTIONS RCPU
Revised 1 February 1999 REFERENCE MANUAL

Table 6-6 Detection Order of Synchronous Exceptions

Order of Exception Type
Detection

1 Trace'

2 Machine check during instruction fetch

3 I-bus breakpoint

4 Software emulation exception

5 Floating-point unavailable

62 Privileged instruction

Alignment exception

Floating-point enabled exception

System call

Trap

7 Floating-point assist exception detected by floating-point unit, or by
load/store unit during a store

8 Machine check during load or store
9 Floating-point assist exception detected by load/store unit during a
load
10 L-bus breakpoint
NOTES:

1. The trace mechanism is implemented by letting one instruction complete as if no trace
were enabled and then trapping the second instruction. Trace has the highest priority
of exceptions associated with this second instruction.

2. All of these cases are mutually exclusive for any one instruction.

6.8 Exception Processing

When an exception is taken, the processor uses the save/restore registers, SRRO
and SRR1, to save the contents of the machine state register and to identify where
instruction execution should resume after the exception is handled.

When an exception occurs, SRRO is set to point to the instruction at which instruc-
tion processing should resume when the exception handler returns control to the
interrupted process. All instructions in the program flow preceding this one will
have completed, and no subsequent instruction will have completed. The address
may be of the instruction that caused the exception or of the next one (as in the
case of a system call exception, for example). The instruction addressed can be
determined from the exception type and status bits.

SRR1 is a 32-bit register used to save machine status (the contents of the MSR)
on exceptions and to restore machine status when rfi is executed.

The data address register (DAR) is a 32-bit register used by alignment exceptions
to identify the address of a memory element.

RCPU EXCEPTIONS MOTOROLA
REFERENCE MANUAL Revised 1 February 1999 6-13

When an exception occurs, SRR1[0:15] are loaded with exception-specific infor-
mation and bits SRR1[16:31] are loaded with the corresponding bits of the MSR. | T|

The machine state register is shown below.

MSR — Machine State Register

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
RESERVED ‘ ILE ‘
RESET:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

‘EE‘PR‘FP‘ME‘FEO‘SE‘BE‘FE‘0‘IP‘IR‘DR‘ 0 ‘RI‘LE‘
RESET:
0 0 0 u 0 0 0 0 0 . 0 0 0 0 0 0

*Reset value of this bit on value of internal data bus configuration word at reset. Refer to theSystem Interface Unit
Reference Manual (SIURM/AD).

Table 6-7 shows the bit definitions for the MSR.

MOTOROLA EXCEPTIONS RCPU
6-14 Revised 1 February 1999 REFERENCE MANUAL

Table 6-7 Machine State Register Bit Settings

Bit(s) Name Description
[0:14] — Reserved
15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to se-
lect the endian mode for the context established by the exception.
0 Processor runs in big-endian mode during exception processing.
1 Processor runs in little-endian mode during exception processing.
16 EE External interrupt enable

0 The processor delays recognition of external interrupts and decrementer exception condi-
tions.

1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18 FP Floating-point available

0 The processor prevents dispatch of floating-point instructions, including floating-point
loads, stores and moves. Floating-point enabled program exceptions can still occur and
the FPRs can still be accessed.

1 The processor can execute floating-point instructions, and can take floating-point enabled
exception type program exceptions.

19 ME Machine check enable

0 Machine check exceptions are disabled.

1 Machine check exceptions are enabled.

20 FEO Floating-point exception mode 0 (See Table 6-8.)
21 SE Single-step trace enable

0 The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful execution of
the next instruction. When this bit is set, the processor dispatches instructions in strict pro-
gram order. Successful execution means the instruction caused no other exception. Sin-
gle-step tracing may not be present on all implementations.

22 BE Branch trace enable

23 FE1 Floating-point exception mode 1 (See Table 6-8.)

24 — Reserved

25 1P Exception prefix. The setting of this bit determines the location of the exception vector table.
0 Exceptions are vectored to the physical address 0x0000 0000 plus vector offset.
1 Exceptions are vectored to the physical address 0xFFFO 0000 plus vector offset.

[26:29] — Reserved

30 RI Recoverable exception
0 Exception is not recoverable.
1 Exception is recoverable.

31 LE Little-endian mode

0 Processor operates in big-endian mode during normal processing.

1 Processor operates in little-endian mode during normal processing.

RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-15

Table 6-8 Floating-Point Exception Mode Bits

FE[0:1] Mode

00 Floating-point exceptions disabled

01, 10, 11 Floating-point precise mode

MSR[16:31] are guaranteed to be written to SRR1 when the first instruction of the
exception handler is encountered.

6.8.1 Enabling and Disabling Exceptions

When a condition exists that causes an exception to be generated, the processor
must determine whether the exception is enabled for that condition.

* Floating-point enabled exceptions (a type of program exception) can be dis-
abled by clearing both MSR[FEQ] and MSR[FE1]. If either or both of these bits
are set, all floating-point exceptions are taken and cause a program excep-
tion. Bits in the FPSCR can enable and disable individual conditions that can
generate floating-point exceptions.

 External and decrementer interrupts are enabled by setting the MSR[EE] bit.
When MSRIEE] = 0, recognition of these exception conditions is delayed.
MSRI[EE] is cleared automatically when an exception is taken to delay recog-
nition of conditions causing those exceptions.

* A machine check exception can only occur if the machine check enable bit,
MSRI[ME], is set. If MSR[ME] is cleared, the processor goes directly into
checkstop state when a machine-check exception condition occurs.

» System reset and non-maskable external breakpoint exceptions cannot be
masked.

* Internal data and instruction breakpoints are specified as maskable or non-
maskable by the BRKNOMSK bit in LCTRL2.

* Maskable internal (data and instruction) and external breakpoints are recog-
nized only when MSR[RI] = 1.

6.8.2 Steps for Exception Processing

After determining that the exception can be taken (by confirming that any instruc-
tion-caused exceptions occurring earlier in the instruction stream have been han-
dled, and by confirming that the exception is enabled for the exception condition),
the processor does the following:

1. Loads the machine status save/restore register 0 (SRRO0) with an instruction
address that depends on the type of exception. See the individual exception
description for details about how this register is used for specific exceptions.

2. Loads SRR1[0:15] with information specific to the exception type.

3. Loads SRR1[16:31] with a copy of MSR[16:31].

4. Sets the MSR as described in Table 6-9. The new values take effect begin-
ning with the fetching of the first instruction of the exception-handler routine
located at the exception vector address.

MOTOROLA EXCEPTIONS RCPU
6-16 Revised 1 February 1999 REFERENCE MANUAL

5. Resumes fetching and executing instructions, using the new MSR value, at
a location specific to the exception type. The location is determined by add-
ing the exception’s vector (see Table 6-3) to the base address determined
by MSR[IP]. If IP is cleared, exceptions are vectored beginning at the phys-
ical address 0x0000 0000. If IP is set, exceptions are vectored beginning at
O0xFFFO 0000. For a machine check exception that occurs when MSR[ME]
=0 (machine check exceptions are disabled), the checkstop state is entered
(the machine stops executing instructions).

6. The lwarx and stwx instructions require special handling if a reservation is
still set when an exception occurs.

Table 6-9 shows the MSR bit settings when the processor changes to supervisor
mode.

Table 6-9 MSR Setting Due to Excepti on

MSR Bit

Exception Type | EE | PR | FP | ME | FEO | SE | BE | FE1 | IP | Rl | LE

16 | 17 | 18 | 19 | 20 | 21 | 22 | 238 | 25 | 30 | 31

Reset 0 0 o | — 0 0 0 0 12 0 0

All others 0 0 0 — 0 0 0 0 — 0 13
NOTES:

1. — indicates that bit is not altered.
2. Depends on value of internal data bus configuration word at reset.
3. Contains value of MSR[ILE] prior to exception.

6.8.3 DAR, DSISR, and BAR Operation

The load/store unit keeps track of all instructions and bus cycles. In case of a bus
error, the data address register (DAR) is loaded with the effective address (EA) of
the cycle. In case of a multi-cycle instruction, the effective address of the first of-
fending cycle is loaded.

The data storage and interrupt status register (DSISR) identifies the cause of the
error in case of an exception caused by a load or a store. The DSISR is loaded with
the instruction information as described in 6.11.4 Alignment Exception
(0x00600).

The breakpoint address register (BAR) indicates the address on which an L-bus
breakpoint occurs. For multi-cycle instructions, the BAR contains the address of
the first cycle associated with the breakpoint. The BAR has a valid value only when
a data breakpoint exception is taken; at all other times its value is boundedly unde-
fined.

Table 6-10 summarizes the values in DAR, BAR, and DSISR following an excep-
tion.

EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-17

=

Table 6-10 DAR, BAR, and DSISR Values in Exception Processing

Exception Type DAR Value DSISR Value BAR Value
Alignment exception Data EA Instruction information Undefined
L-bus breakpoint exception Unchanged Unchanged Cycle EA
Floating-Point Assist Unchanged Unchanged Undefined
Exception
Machine-check exception Cycle EA Instruction information Undefined
Implementation-dependent Unchanged Unchanged Undefined
software emulation exception
Floating-point unavailable Unchanged Unchanged Undefined
exception
Program exception Unchanged Unchanged Unchanged

6.8.4 Returning from Supervisor Mode

The return from interrupt (rfi) instruction performs context synchronization by al-
lowing previously issued instructions to complete before returning to user mode.
Execution of the rfi instruction ensures the following:

* All previous instructions have been retired.

* Previous instructions complete execution in the context (privilege and protec-
tion) under which they were issued.

* The instructions following this instruction execute in the context established
by this instruction.

6.9 Process Switching
The operating system should execute the following when processes are switched:

* The sync instruction, to resolve any data dependencies between the process-
es and to synchronize the use of SPRs.

* The isync instruction, to ensure that undispatched instructions not in the new
process are not used by the new process.

* The stwex. instruction, to clear any outstanding reservations, which ensures
that an lwarx instruction in the old process is not paired with an stwex. in the
new process.

Note that if an exception handler is used to emulate an instruction that is not imple-
mented, the exception handler must report in SRRO the EA computed by the in-
struction being emulated and not one used to emulate the instruction.

6.10 Exception Timing
Table 6-11 illustrates the significant events in exception processing.

MOTOROLA EXCEPTIONS RCPU
6-18 Revised 1 February 1999 REFERENCE MANUAL

Table 6-11 Exception Latency

Time Fetch Issue Instruction Complete Kill Pipeline
A Faulting instruction
issue

B Instruction complete and all

previous instructions

complete

Kill pipeline

C Start fetch

handler

D <B + 3 clocks

E

1st instruction of
handler issued

RCPU

At time-point A the excepting instruction issues and begins execution. During the
interval A-B previously issued instructions are finishing execution. The interval A-
B is equivalent to the time required for all instructions currently in progress to com-
plete, (i.e., the time to serialize the machine).

At time-point B the excepting instruction has reached the head of the history queue,
implying that all instructions preceding it in the code stream have finished execu-
tion without generating any exception. In addition, the excepting instruction itself
has completed execution. At this time the exception is recognized, and exception
processing begins. If at this point the instruction had not generated an exception,
it would have been retired.

During the interval B-D the machine state is being restored. This can take up to
three clock cycles.

At time-point C the processor starts fetching the first instruction of the exception
handler.

By time-point D the state of the machine prior to the issue of the excepting instruc-
tion has been restored. During interval D-E, the machine is saving context informa-
tion in SRRO and SRR1, disabling interrupts, placing the machine in privileged
mode, and may continue the process of fetching the first instructions of the interrupt
handler from the vector table.

At time-point E the MSR and instruction pointer of the executing process have been
saved and control has been transferred to the exception handler routine.

The interval D-E requires a minimum of one clock cycle. The interval C-E depends
on the memory system. This interval is the time it takes to fetch the first instruction
of the exception handler. For a full history buffer, it is no less then two clocks.

EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-19

6.11 Exception Definitions

The following paragraphs describe each type of exception supported by the RCPU.

6.11.1 Reset Exception (0x0100)

The reset exception is a non-maskable, asynchronous exception signaled to the
processor by the assertion of the internal reset input signal (RESET). The system
interface unit asserts this signal in response to either the assertion of the external
RESET pin or an internal reset request, such as from the software watchdog timer.
Refer to the System Interface Unit Reference Manual (SIURM/AD) for a description
of sources within the SIU that can cause the RESET input to the processor to be
asserted.

A reset operation should be performed on power-on to appropriately reset the pro-
cessor. The assertion of RESET causes the reset exception to be taken. The phys-
ical address of the handler is OxFFFO 0100 or 0x0000 0100, depending on the
value of the internal data bus configuration word during reset. Refer to the System
Interface Unit Reference Manual (SIURM/AD) for additional information on the
data bus configuration word and system configuration during reset.

Table 6-12 shows the state of the machine just before it fetches the first instruction
after reset. Registers not listed are not affected by reset.

Table 6-12 Settings Caused by Reset

Register Setting

MSR IP depends on internal data bus configuration word
ME is unchanged
All other bits are cleared

SRRO Undefined

SRR1 Undefined

FPECR 0x0000 0000

ICTRL 0x0000 0000

LCTRL1 0x0000 0000

LCTRL2 0x0000 0000

COUNTA[16:31] 0x0000 0000

COUNTBJ[16:31] 0x0000 0000

DMCR 0x0000 0000

DMMR[2,4,28:31] Set to one

ICCST 0x0000 0000

ICADR, ICDAT Undefined

MOTOROLA EXCEPTIONS RCPU

6-20

Revised 1 February 1999 REFERENCE MANUAL

=

6.11.2 Machine Check Exception (0x00200)

The processor conditionally initiates a machine-check exception after detecting the
assertion of the TEA signal, indicating the occurrence of a bus error. The TEA sig-
nal can be asserted either externally (by an external device asserting the TEA pin),
or internally by the SIU chip-select logic. The processor receives notification of the
exception from either the I-bus (if the exception is caused during the instruction
phase) or the L-bus (if the exception is caused during the data phase).

Machine check exceptions are unordered. The machine-state exception handler
must read the SRR1[RI] bit to determine whether the processor can recover from
a machine-check exception. For additional information, refer to 6.5.2 Recovery
from Unordered Exceptions.

A machine-check exception is assumed to be caused by one of the following con-
ditions:

* The accessed address does not exist.
* A data error was detected.
* A storage protection violation was detected by chip-select logic (either on-chip
or external).
When a machine-check exception occurs, the processor does one of the following:

* Takes a machine check exception;
* Enters the checkstop state; or
* Enters debug mode.

Which action is taken depends on the value of the MSR[ME] bit, whether or not de-
bug mode was enabled at reset, and (if debug mode is enabled) the values of the
CHSTPE (checkstop enable) and MCIE (machine check enable) bits in the debug
enable register (DER). Table 6-13 summarizes the possibilities.

Table 6-13 Machine Check Exception Processor Actions

MSR[ME] Debug Mode CHSTPE MCIE Action Performed when Exception
Enable Detected

0 0 X X Enter checkstop state

1 0 X X Branch to machine-check exception handler
0 1 0 X Enter checkstop state

0 1 1 X Enter debug mode

1 1 X 0 Branch to machine-check exception handler
1 1 X 1 Enter debug mode

6.11.2.1 Machine Check Exception Enabled

A machine check exception is taken when MSR[ME] is set and either debug mode
is disabled or DER[MCIE] is cleared. When a machine check exception is taken,
registers are updated as shown in Table 6-14.

RCPU

REFERENCE MANUAL

EXCEPTIONS

MOTOROLA

Revised 1 February 1999

6-21

=

Table 6-14 Register Settings Following a Machine Check Exception

Register Setting Description

Set to the effective address of the instruction that caused the interrupt.

0 Cleared
1 Set for instruction-fetch related errors, cleared for load-store related errors
[2:15] Cleared
[16:31] Loaded from MSR[16:31].
IP No change
ME Cleared to zero
LE Set to value of ILE bit prior to the exception
Other bits Cleared
DSISR (L-bus case [15:16] Set to bits [29:30] of the instruction if X-form
Set to 0b0O0 if D-form
17 Set to bit 25 of the instruction if X-form
Set to bit 5 of the instruction if D-form
[22:31] Set to bits [6:15] of the instruction
DAR (L-bus case Set to the effective address of the data access that caused the exception.

When a machine check exception is taken, instruction execution resumes at offset
0x00200 from the physical base address indicated by MSRJIP].

6.11.2.2 Checkstop State

The processor enters the checkstop state when a machine check exception oc-
curs, MSR[ME] equals zero, and either debug mode is disabled or DER[CHSTPE]
is cleared. When the processor is in the checkstop state, instruction processing is
suspended and generally cannot be restarted without resetting the processor. The
contents of all latches (except any associated with the bus clock) are frozen within
two cycles upon entering checkstop state so that the state of the processor can be
analyzed.

6.11.2.3 Machine-Check Exceptions and Debug Mode

The processor enters debug mode when a machine check exception occurs, de-
bug mode is enabled, and either MSR[ME] = 0 and DER[CHSTPE] = 1, or
MSR[ME] = 1 and DER[MCIE] = 1. Refer to SECTION 8 DEVELOPMENT SUP-
PORT for more information.

6.11.3 External Interrupt (0x00500)

The interrupt controller in the on-chip peripheral control unit signals an external in-
terrupt by asserting the IRQ input to the processor. The interrupt may be caused
by the assertion of an external IRQ pin, by the periodic interrupt timer, or by an on-
chip peripheral. Refer to System Interface Unit Reference Manual (SIURM/AD) for
more information on the interrupt controller.

The interrupt may be delayed by other higher priority exceptions or if the MSR[EE]

MOTOROLA EXCEPTIONS RCPU

Revised 1 February 1999 REFERENCE MANUAL

bit is cleared when the exception occurs. MSRI[EE] is automatically cleared by
hardware to disable external interrupts when any exception is taken.

Upon detecting an external interrupt, the processor assigns it to the instruction at
the head of the history buffer (after retiring all instructions that are ready to retire).
Refer to 6.4 Implementation of Asynchronous Exceptions for more information.

The register settings for the external interrupt exception are shown in Table 6-15.

Table 6-15 Register Settings Following External Interrupt

Register Setting Description
SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no interrupt conditions were present.
SRR1 [0:15] Cleared
[16:31] Loaded from bits [16:31] of the MSR
MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception

Other bits Cleared

When an external interrupt is taken, instruction execution resumes at offset
0x00500 from the physical base address indicated by MSRJIP].

6.11.4 Alignment Exception (0x00600)

RCPU

The following conditions cause an alignment exception:

* The operand of a floating-point load or store instruction is not word-aligned.

* The operand of a load or store multiple instruction is not word-aligned.

* The operand of lwarx or stwex. is not word-aligned.

* The operand of a load or store instruction is not naturally aligned, and
MSRILE] = 1 (little-endian mode).

* The processor attempts to execute a multiple or string instruction when
MSRILE] = 1 (little-endian mode).

Alignment exceptions use the SRRO and SRR1 to save the machine state and the
DSISR to determine the source of the exception.

The register settings for alignment exceptions are shown in Table 6-16.

EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-23

=

Table 6-16 Register Settings for Alignment Exception

Register Setting Description
SRRO Set to the effective address of the instruction that caused the exception.
SRR1 [0:15] Cleared
[16:31] Loaded from MSR[16:31]
MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared
DSISR [0:11] Cleared
[12:13] Cleared
14 Cleared
[15:16] For instructions that use register indirect with index addressing,

set to bits [29:30] of the instruction.
For instructions that use register indirect with immediate index
addressing, cleared.
17 For instructions that use register indirect with index addressing,
set to bit 25 of the instruction.
For instructions that use register indirect with immediate index
addressing, set to bit 5 of the instruction.
[18:21] For instructions that use register indirect with index addressing,
set to bits [21:24] of the instruction.
For instructions that use register indirect with immediate index
addressing, set to bits [1:4] of the instruction.
[22:26] Set to bits [6:10] (source or destination) of the instruction.
[27:31] Set to bits [11:15] of the instruction (rA).
Set to either bits [11:15] of the instruction or to any register
number not in the range of registers loaded by a valid form
instruction, for Imw, Iswi, and Iswx instructions. Otherwise
undefined.
Note that for load or store instructions that use register indirect with index
addressing, the DSISR can be set to the same value that would have resulted
if the corresponding instruction uses register indirect with immediate index
addressing had caused the exception. Similarly, for load or store instructions
that use register indirect with immediate index addressing, DSISR can hold a
value that would have resulted from an instruction that uses register indirect
with index addressing. (If there is no corresponding instruction, no alternative
value can be specified.)

When an alignment exception is taken, instruction execution resumes at offset
0x00600 from the physical base address indicated by MSRJIP].

6.11.4.1 Interpretation of the DSISR as Set by an Alignment Exception

For most alignment exceptions, an exception handler may be designed to emulate
the instruction that causes the exception. To do this, it needs the following charac-
teristics of the instruction:

* Load or store
* Length (half word, word, or double word)
* String, multiple, or normal load/store

MOTOROLA EXCEPTIONS RCPU
6-24 Revised 1 February 1999 REFERENCE MANUAL

* Integer or floating-point

* Whether the instruction performs update | T[
* Whether the instruction performs byte reversal

The PowerPC architecture provides this information implicitly, by setting opcode

bits in the DSISR that identify the excepting instruction type. The exception handler

does not need to load the excepting instruction from memory. The mapping for all
exception possibilities is unique except for the few exceptions discussed below.

Table 6-17 shows how the DSISR bits identify the instruction that caused the ex-

ception.
Table 6-17 DSISR[15:21] Settings
DSISR[15:21] Instruction
00 0 0000 lwarx, lwz, reserved1
00 0 0010 stw
00 0 0100 Ihz
00 0 0101 lha
00 00110 sth
0000111 Imw
00 0 1000 Ifs
00 0 1001 Ifd
0001010 stfs
000 1011 stfd
00 1 0000 lwzu
00 1 0010 stwu
00 1 0100 lhzu
00 1 0101 lhau
00 10110 sthu
0010111 stmw
00 1 1000 Ifsu
00 1 1001 Ifdu
00 11010 stfsu
0011011 stfdu
01 0 1000 Iswx
01 0 1001 Iswi
0101010 stswx
RCPU EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-25

Table 6-17 DSISR[15:21] Settings (Continued)

DSISR[15:21] Instruction
01 01011 stswi
0110101 lwaux
10 0 0010 stwex.
10 0 1000 lwbrx
100 1010 stwbrx
100 1100 lhbrx
100 1110 sthbrx
11 0 0000 lwzx
11 00010 stwx
11 00100 lhzx
11 00101 lhax
11 00110 sthx
11 0 1000 Ifsx
11 0 1001 Ifdx
1101010 stfsx
11 01011 stfdx
11 1 0000 lwzux
11 1 0010 stwux
111 0100 lhzux
1110101 lhaux
1110110 sthux
111 1000 Ifsux
111 1001 Ifdux
1111010 stfsux
11 11011 stfdux

NOTES:

1. The instructions Iwz and Iwarx give the same DSISR bits (all zero). But if
lwarx causes an alignment exception, it is an invalid form, so it need not
be emulated in any precise way. It is adequate for the alignment exception
handler to simply emulate the instruction as if it were anlwz. Itis important
that the emulator use the address in the DAR, rather than computing it
from rA/rB/D, because lwz and Iwarx use different addressing modes.

6.11.5 Program Exception (0x00700)
A program exception occurs when no higher priority exception exists and one or
more of the following exception conditions, which correspond to bit settings in
SRR1, occur during execution of an instruction:

MOTOROLA EXCEPTIONS RCPU
6-26 Revised 1 February 1999 REFERENCE MANUAL

RCPU

» System floating-point enabled exception — A system floating-point enabled

exception is generated when the following condition is met as a result of a
move to FPSCR instruction, move to MSR (mtmsr) instruction, or return from
interrupt (rfi) instruction:

(MSR[FEOQ] | MSR[FE1]) & FPSCR[FEX] = 1.

Notice that in the RCPU implementation of the PowerPC architecture, a pro-

gram interrupt is not generated by a floating-point arithmetic instruction that

results in the condition shown above; a floating-point assist exception is gen-
erated instead.

Privileged instruction — A privileged instruction type program exception is

generated by any of the following conditions:

— The execution of a privileged instruction (mfmsr, mtmsr, or rfi) is attempt-
ed and the processor is operating at the user privilege level (MSR[PR] =
1).

— The execution of mtspr or mfspr where SPRO = 1 in the instruction encod-
ing (indicating a supervisor-access register) and MSR[PR] = 1 (indicating
the processor is operating at the user privilege level), provided the SPR
instruction field encoding represents either:

* a valid internal-to-the-processor special-purpose register; or
* an external-to-the-processor special-purpose register (either valid or in-
valid).

— Refer to 7.5 Implementation of Special-Purpose Registers for a discus-
sion of internal- and external-to-the-processor SPRs.

* Trap — A trap type program exception is generated when any of the condi-

tions specified in a trap instruction is met. Trap instructions are described in
SECTION 4 ADDRESSING MODES AND INSTRUCTION SET SUMMARY.

Notice that, in contrast to some other PowerPC processors, the RCPU generates
a software emulation exception, rather than a program exception, when an attempt
is made to execute any unimplemented instruction. This includes all illegal instruc-
tions and optional instructions not implemented in the RCPU.

The register settings are shown in Table 6-18.

EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-27

Table 6-18 Register Settings Following Program Exception

Register Setting Description
SRRO Contains the effective address of the excepting instruction
SRR1 [0:10] Cleared
11 Set for a floating-point enabled program exception; otherwise cleared.
12 Cleared.
13 Set for a privileged instruction program exception; otherwise cleared.
14 Set for a trap program exception; otherwise cleared.
15 Cleared if SRRO contains the address of the instruction causing the exception, and set if
SRRO contains the address of a subsequent instruction.
[16:31] Loaded from MSR[16:31].
Note that only one of bits 11, 13, and 14 can be set.
MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared to zero

When a program exception is taken, instruction execution resumes at offset
0x00700 from the physical base address indicated by MSRJIP].

6.11.6 Floating-Point Unavailable Exception (0x00800)

A floating-point unavailable exception occurs when no higher priority exception ex-
ists, an attempt is made to execute a floating-point instruction (including floating-
point load, store, and move instructions), and the floating-point available bit in the
MSR is disabled, (MSR[FP] = 0).

The register settings for floating-point unavailable exceptions are shown in Table
6-19.

Table 6-19 Register Settings Following a Floating-Point Unavailable Exception

Register Setting Description
SRRO Set to the effective address of the instruction that caused the exception.
SRR1 [0:15] Cleared
[16:31] Loaded from MSR[16:31]
MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception

Other bits Cleared

When a floating-point unavailable exception is taken, instruction execution re-
sumes at offset 0x00800 from the physical base address indicated by MSRJ[IP].

MOTOROLA

6-28

EXCEPTIONS RCPU
Revised 1 February 1999 REFERENCE MANUAL

A decrementer exception occurs when no higher priority exception exists, the dec-
rementer register has completed decrementing, and MSR[EE] = 1. The decrement-
er exception request is canceled when the exception is handled. The decrementer
register counts down, causing an exception (unless masked) when passing
through zero. The decrementer implementation meets the following requirements:

6.11.7 Decrementer Exception (0x00900)
| ol

* Loading a GPR from the decrementer does not affect the decrementer.

» Storing a GPR value to the decrementer replaces the value in the decrementer
with the value in the GPR.

* Whenever bit 0 of the decrementer changes from zero to one, an exception
request is signaled. If multiple decrementer exception requests are received
before the first can be reported, only one exception is reported. The occur-
rence of a decrementer exception cancels the request.

* |f the decrementer is altered by software and if bit 0 is changed from zero to
one, an interrupt request is signaled.

The register settings for the decrementer exception are shown in Table 6-20.

Table 6-20 Register Settings Following a Decrementer Exception

Register Setting Description
SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.
SRR1 [0:15] Cleared
[16:31] Loaded from MSR[16:31]
MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception

Other bits Cleared to zero

When a decrementer exception is taken, instruction execution resumes at offset
0x00900 from the physical base address indicated by MSRJIP].

6.11.8 System Call Exception (0x00C00)

A system call exception occurs when a system call instruction is executed. The ef-
fective address of the instruction following the sc¢ instruction is placed into SRRO.
MSR[16:31] are placed into SRR1[16:31], and SRR1[0:15] are set to undefined
values. Then a system call exception is generated.

The system call instruction is context synchronizing. That is, when a system call
exception occurs, instruction dispatch is halted and the following synchronization
is performed:

1. The exception mechanism waits for all instructions in execution to complete
to a point where they report all exceptions they will cause.
2. The processor ensures that all instructions in execution complete in the con-

RCPU EXCEPTIONS MOTOROLA
REFERENCE MANUAL Revised 1 February 1999 6-29

text in which they began execution.
3. Instructions dispatched after the exception is processed are fetched and ex-
ecuted in the context established by the exception mechanism.

Register settings are shown in Table 6-22.

Table 6-21 Register Settings Following a System Call Exception

Register Setting Description
SRRO Set to the effective address of the instruction following the System Call instruction
SRR1 [0:15] Undefined
[16:31] Loaded from MSR[16:31]
MSR P No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared to zero

When a system call exception is taken, instruction execution resumes at offset
0x00CO00 from the physical base address indicated by MSR][IP].

6.11.9 Trace Exception (0x00D00)

A trace exception occurs if MSR[SE] = 1 and any instruction other than rfi is suc-
cessfully completed, or if MSR[BE] = 1 and a branch is completed. Notice that the
trace exception does not occur after an instruction that causes an exception.

A monitor or debugger software needs to change the vectors of other possible ex-
ception addresses in order to single-step such instructions. If this is not desirable,
other debugging features can be used. Refer to SECTION 8 DEVELOPMENT
SUPPORT for more information.

Register settings are shown in Table 6-22.

Table 6-22 Register Settings Following a Trace Exception

Register Setting Description
SRRO Set to the effective address of the instruction following the executed instruction
SRR1 [0:15] Cleared to zero
[16:31] Loaded from MSR[16:31]
MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared to zero

When a trace exception is taken, execution resumes at offset 0x0O0DO0O from the
base address indicated by MSR][IP].

MOTOROLA

6-30

EXCEPTIONS RCPU
Revised 1 February 1999 REFERENCE MANUAL

=

6.11.10 Floating-Point Assist Exception (0x00E00)
A floating point assist exception occurs in the following cases:

* When the following conditions are true:
— A floating-point enabled exception condition is detected,;
— the corresponding floating-point enable bit in the FPSCR (floating point sta-
tus and control register) is set (exception enabled); and
— MSRIFEOQ] | MSR[FE1] =1
These conditions are summarized in the following equation:

(MSRI[FEOQ] | MSR[FE1]) &FPSCRI[FEX] = 1

Note that when ((MSR[FEOQ] | MSR[FE1]) &FPSCRI[FEX]) is set as a result of
move to FPSCR, move to MSR or rfi, a program exception is generated, rath-
er than a floating-point assist exception.

* When a tiny result is detected and the floating point underflow exception is dis-
abled (FPSCR[UE] = 0)

* In some cases when at least one of the source operands is denormalized (re-
fer to 6.11.10.2 Floating-Point Assist for Denormalized Operands)

The register settings for floating-point assist exceptions are shown in Table 6-22.

In addition, floating-point enabled exceptions affect the FPSCR as shown in Table

6-26.

Table 6-23 Register Settings Following a Floating-Point Assist Exception

Register Setting Description
SRRO Set to the effective address of the instruction that caused the exception
SRR1 [0:15] Cleared to zero
[16:31] Loaded from bits [16:31] of the MSR
MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared to zero

When a floating-point assist exception is taken, execution resumes at offset
0x00EO00 from the base address indicated by MSR][IP].

6.11.10.1 Floating-Point Software Envelope
The floating-point assist software envelope is an exception handler for floating-
point assist exceptions. Use of this exception handler guarantees that results of
floating-point operations are in compliance with IEEE standards.

In most cases, floating-point operations are implemented in hardware in the RCPU.
For cases in which the hardware needs software assistance, the software enve-
lope emulates the instruction using a special synchronized ignore exceptions (SIE)
hardware mode. This mode is useful only for emulating an instruction executed in
the floating-point unit, not an instruction executed by the load/store unit. SIE mode
is described in 6.11.10.3 Synchronized Ignore Exceptions (SIE) Mode.

RCPU

REFERENCE MANUAL

EXCEPTIONS MOTOROLA
Revised 1 February 1999 6-31

shows the execution of all floating-point instructions except the floating-point move

Execution of floating-point instructions is illustrated in Figure 6-2. This process
| ol
to FPSCR type instructions.

USER EXCEPTION HANDLER

([FLOATING POINT UNIT) PTEC HARDWARE FPSCR_ A
(REGULAR OPERATION) (REGULAR OPERATION) FEx
VX
UX OX b
XX 7X [e—
| /X SNAN
VXIS
VXIDI |EEE
VXZDZ
VXIMZ RESULT
C VXVC
FI FR
g
VXCVI INTERRUPT
—-
P RESULT [
_ \ _)]
SOFTWARE ENVELOPE
ENABLED
: EXCEPTION
RESULT (-
-
: IEEE
: FPSCR RESULT
: m—- X
I Ux
I c FR —-—
FI
o
- USER
(N |le<oo R N PROGRAM
FLOATING POINT UNIT |©&&3&| |RESULT
SIE MODE OPERATION] A 1 1 —
.))

CPU FP ARCH

Figure 6-2 RCPU Floating-Point Architecture

6.11.10.2 Floating-Point Assist for Denormalized Operands

When a denormalized operand is detected there are some cases in which the pro-
cessor needs the assistance of the software to perform the operation. In these
cases the software envelope is invoked. Table 6-24 summarizes the hardware/
software partitioning in handling denormalized operands in the input stage of the
execution units. The ranges referred to in the table are defined in Figure 6-3.

MOTOROLA EXCEPTIONS RCPU
6-32 Revised 1 February 1999 REFERENCE MANUAL

LA] B | _C | I E I F | G |
I I I I I I I I
MIN DP MIN SP MAX SP MAX DP
+0 2—1074 2—1022 2—150 2-126 2128_1 21024_1 4o
| |
! DOUBLE SINGLE SINGLE !
DENORM _DENORM_| NORMALIZED
SINGLE PRECISION RANGE

DOUBLE NORMALIZED

A

DOUBLE PRECISION RANGE

A

A

-
'

DENORM OPER REAL NUM

Figure 6-3 Real Numbers Axis for Denormalized Operands

Table 6-24 Software/Hardware Partitioning in Operands Treatment

Instruction Range B Range C Range D Range E Range F
Load single NA NA Floating-Point Hardware NA
Assist
Load double Hardware Hardware Hardware Hardware Hardware
Store single Programming Programming Floating-Point Hardware? Programming
error’ error’ Assist error
Store double Hardware Hardware Hardware Hardware Hardware
FP arithmetic & Programming Programming Hardware? Hardware? Programming
Multiply-add single | error error’ error’
FP arithmetic & Floating-Point Hardware Hardware Hardware Hardware
Multiply-add double | Assist
Round to single Floating-Point Hardware® Hardware® Hardware Hardware
Assist
FP compare, FP Hardware Hardware Hardware Hardware Hardware

move, convert to
integer & FPSCR
instr.

NOTES:

1. The results in all cases of programming errors are boundedly undefined.

2. When used by a single precision instruction, generates correct result only if bits [35:63] of the operand equal
zero, otherwise it is a programming error.
3. Since the result is tiny, a floating-point assist exception is taken at the end of instruction execution.

RCPU

REFERENCE MANUAL

EXCEPTIONS
Revised 1 February 1999

MOTOROLA
6-33

6.11.10.3 Synchronized Ignore Exceptions (SIE) Mode
| ol

The software envelope uses SIE mode to emulate instructions executed by the
floating-point unit. (This mode is not used to emulate floating-point instructions
executed by the load/store unit.) In SIE mode the floating-point unit does the
following:

* Re-executes the instruction (without generating a floating-point assist excep-
tion a second time)

» Generates default results in hardware

* Updates the FPSCR

» Updates the floating-point exceptions cause register (FPECR).

The FPECR is a special-purpose register used by the software envelope. It con-
tains four status bits indicating whether the result of the operation is tiny and wheth-
er any of three source operands are denormalized. In addition, it contains one
control bit to enable or disable SIE mode. This register must not be accessed by
user code. Refer to 6.11.10.4 Floating-Point Exception Cause Register for more
information.

If as a result of the operation performed in SIE mode, ((MSR[FEO] | MSR[FEf1]) &
FPSCRI[FEX]) is set, a program exception is taken. It is the responsibility of the
software envelope to make sure that when executing an instruction in SIE mode
((MSR[FEQ] | MSR[FE1]) = 0).

Except when the result is tiny or when denormalized operands are detected, the
results generated by the hardware in SIE mode are practically all that is needed in
order to complete the operation according to the IEEE standard. Therefore, in most
cases after executing the instruction in SIE mode all that is needed by the software
is to issue rfi. Upon execution of the rfi, the hardware restores the previous value
of the MSR, as it was saved in SRR1. If as a result (MSR[FEOQ] | MSR[FE1]) &
FPSCRI[FEX)]) is set, a program exception is generated.

When the result is tiny and the floating-point underflow exception is disabled
(FPSCR[UE] = 0), the hardware in SIE mode delivers the same result as when the
exception is enabled (FPSCR[UE] = 1), (i.e., rounded mantissa with exponent ad-
justed by adding 192 for single precision or 1536 for double precision). This inter-
mediate result simplifies the task of the emulation routine that finishes the
instruction execution and delivers the correct IEEE result. In this case the software
envelope is responsible for updating the floating-point underflow exception bit
(FPSCR[UX)]) as well.

When at least one of the source operands is denormalized and the hardware can
not complete the operation, the destination register value is unchanged. In this
case, the software emulation routine must execute the instruction in software, de-
liver the result to the destination register, and update the FPSCR.

6.11.10.4 Floating-Point Exception Cause Register
The FPECR is a special-purpose register used by the software envelope. It con-

MOTOROLA EXCEPTIONS RCPU
6-34 Revised 1 February 1999 REFERENCE MANUAL

tains four status bits indicating whether the result of the operation is tiny and wheth-
er any of three source operands are denormalized. In addition, it contains one
control bit to enable or disable SIE mode. This register must not be accessed by
user code.

FPECR — Floating-Point Exception Cause Register

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
‘ SIE ‘ RESERVED
RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RESERVED ‘ DNC ‘ DNB ‘ DNA ‘ TR ‘

RESET:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A listing of FPECR bit settings is shown in Table 6-26.

Table 6-25 FPECR Bit Settings

Bit(s) Name Description

0 SIE SIE mode control bit
0 Disable SIE mode
1 Enable SIE mode

[1:27] | — Reserved

28 DNC Source operand C denormalized status bit
0 Source operand C is not denormalized
1 Source operand C is denormalized

29 DNB Source operand B denormalized status bit
0 Source operand B is not denormalized
1 Source operand B is denormalized

30 DNA Source operand A denormalized status bit
0 Source operand A is not denormalized
1 Source operand A is denormalized

31 TR Floating-point tiny result
0 Floating-point result is not tiny
1 Floating-point result is tiny

NOTE
Software must insert a sync instruction before reading the FPECR.

RCPU EXCEPTIONS MOTOROLA
REFERENCE MANUAL Revised 1 February 1999 6-35

Floating-point exceptions are signaled by condition bits set in the floating-point sta-
tus and control register (FPSCR). They can cause the system floating-point en-
abled exception error handler to be invoked. All floating-point exceptions are
handled precisely. The FPSCR is shown below.

6.11.10.5 Floating-Point Enabled Exceptions
| ol

FPSCR — Floating-Point Status and Control Register

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
FX FEX VX OoX uXx ZX XX | VXS- | VXISI | VXIDI | VXZD |VXIMZ| VXVC | FR Fl FPRF
NAN 4 0
RESET:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FPRF[16:19] 0 VX- VX- |VXCVI| VE OE UE ZE XE NI RN
SOFT | SQR
RESET:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A listing of FPSCR bit settings is shown in Table 6-26.

Table 6-26 FPSCR Bit Settings

Bit(s) Name Description

0 FX Floating-point exception summary (FX). Every floating-point instruction implicitly sets FP-
SCRIFX] if that instruction causes any of the floating-point exception bits in the FPSCR to
change from zero to one. The merfs instruction implicitly clears FPSCR[FX] if the FPSCR field
containing FPSCR[FX] is copied. The mtfsf, mtfsfi, mtfsb0, and mtfsb1 instructions can set
or clear FPSCRIFX] explicitly. This is a sticky bit.

1 FEX Floating-point enabled exception summary (FEX). This bit signals the occurrence of any of the
enabled exception conditions. It is the logical OR of all the floating-point exception bits masked
with their respective enable bits. The merfs instruction implicitly clears FPSCR[FEX] if the re-
sult of the logical OR described above becomes zero. The mtfsf, mtfsfi, mtfsb0, and mtfsb1
instructions cannot set or clear FPSCR[FEX] explicitly. This is not a sticky bit.

2 VX Floating-point invalid operation exception summary (VX). This bit signals the occurrence of any
invalid operation exception. It is the logical OR of all of the invalid operation exceptions. The
mcrfs instruction implicitly clears FPSCR[VX] if the result of the logical OR described above
becomes zero. The mtfsf, mtfsfi, mtfsb0, and mtfsb1 instructions cannot set or clear FP-
SCR[VX] explicitly. This is not a sticky bit.

3 OX Floating-point overflow exception (OX). This is a sticky bit. See 6.11.10.8 Overflow Exception
Condition.
4 UXx Floating-point underflow exception (UX). This is a sticky bit. See 6.11.10.9 Underflow Excep-

tion Condition.

MOTOROLA EXCEPTIONS RCPU
6-36 Revised 1 February 1999 REFERENCE MANUAL

Table 6-26 FPSCR Bit Settings (Continued)

Bit(s)

Name

Description

ZX

Floating-point zero divide exception (ZX). This is a sticky bit. See 6.11.10.7 Zero Divide Ex-
ception Condition.

XX

Floating-point inexact exception (XX). This is a sticky bit. See 6.11.10.10 Inexact Exception
Condition.

VXSNAN

Floating-point invalid operation exception for SNaN (VXSNAN). This is a sticky bit. See
6.11.10.6 Invalid Operation Exception Conditions.

VXISI

Floating-point invalid operation exception for x-x (VXISI). This is a sticky bit. See 6.11.10.6 In-
valid Operation Exception Conditions.

VXIDI

Floating-point invalid operation exception for x/x (VXIDI). This is a sticky bit. See 6.11.10.6 In-
valid Operation Exception Conditions.

10

VXZDZ

Floating-point invalid operation exception for 0/0 (VXZDZ). This is a sticky bit. See 6.11.10.6
Invalid Operation Exception Conditions.

11

VXIMZ

Floating-point invalid operation exception for x*0 (VXIMZ). This is a sticky bit. See 6.11.10.6
Invalid Operation Exception Conditions.

12

VXVC

Floating-point invalid operation exception for invalid compare (VXVC). This is a sticky bit. See
6.11.10.6 Invalid Operation Exception Conditions.

13

FR

Floating-point fraction rounded (FR). The last floating-point instruction that potentially rounded
the intermediate result incremented the fraction. (See 3.3.11 Rounding.) This bit is not sticky.

14

Fl

Floating-point fraction inexact (FI). The last floating-point instruction that potentially rounded
the intermediate result produced an inexact fraction or a disabled exponent overflow. (See
3.3.11 Rounding.) This bit is not sticky.

[15:19

FPRF

Floating-point result flags (FPRF). This field is based on the value placed into the target register

even if that value is undefined. Refer to Table 6-27 for specific bit settings.

15 Floating-point result class descriptor (C). Floating-point instructions other than the
compare instructions may set this bit with the FPCC bits, to indicate the class of
the result.

[16:19] Floating-point condition code (FPCC). Floating-point compare instructions always
set one of the FPCC bits to one and the other three FPCC bits to zero. Other
floating-point instructions may set the FPCC bits with the C bit, to indicate the class
of the result. Note that in this case the high-order three bits of the FPCC retain their
relational significance indicating that the value is less than, greater than, or equal
to zero.

16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)

19 Floating-point unordered or NaN (FU or?)

20

Reserved

21

VXSOFT

Floating-point invalid operation exception for software request (VXSOFT). This bit can be al-
tered only by the mcerfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions. The purpose of VX-
SOFT is to allow software to cause an invalid operation condition for a condition that is not
necessarily associated with the execution of a floating-point instruction. For example, it might
be set by a program that computes a square root if the source operand is negative. This is a
sticky bit. See 6.11.10.6 Invalid Operation Exception Conditions.

22

VXSQRT

Floating-point invalid operation exception for invalid square root (VXSQRT). This is a sticky bit.
This guarantees that software can simulate fsqrt and frsqrte, and to provide a consistent in-
terface to handle exceptions caused by square-root operations. See6.11.10.6 Invalid Opera-
tion Exception Conditions.

RCPU

EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-37

Table 6-26 FPSCR Bit Settings (Continued)

Bit(s) Name Description

23 VXCVI Floating-point invalid operation exception for invalid integer convert (VXCVI). This is a sticky
bit. See 6.11.10.6 Invalid Operation Exception Conditions.

24 VE Floating-point invalid operation exception enable (VE). See 6.11.10.6 Invalid Operation Ex-
ception Conditions.

25 OE Floating-point overflow exception enable (OE). See 6.11.10.8 Overflow Exception Condition.

26 UE Floating-point underflow exception enable (UE). This bit should not be used to determine
whether denormalization should be performed on floating-point stores. See 6.11.10.9 Under-
flow Exception Condition.

27 ZE Floating-point zero divide exception enable (ZE). See 6.11.10.7 Zero Divide Exception Con-
dition.

28 XE Floating-point inexact exception enable (XE). See 6.11.10.10 Inexact Exception Condition.

29 NI Non-IEEE mode bit. See 3.4.3 Non-IEEE Operation.

[30:31 | RN Floating-point rounding control (RN). See 3.3.11 Rounding.

1 00 Round to nearest
01 Round toward zero
10 Round toward +infinity
11 Round toward —infinity

Table 6-27 illustrates the floating-point result flags that correspond to FP-
SCR[15:19].

Table 6-27 Floating-Point Result Flags in FPSCR

Result Flags Result Value Class
FPSCR[15:19]
C<>=?
10001 Quiet NaN
01001 —Infinity
01000 —Normalized number
11000 —Denormalized number
10010 —-Zero
00010 + Zero
10100 + Denormalized number
00100 +Normalized number
00101 +Infinity

The following conditions cause floating-point assist exceptions when the corre-
sponding enable bit in the FPSCR is set and the FE field in the MSR has a nonzero
value (enabling floating-point exceptions). These conditions may occur during ex-
ecution of floating-point arithmetic instructions. The corresponding status bits in the

MOTOROLA

6-38

EXCEPTIONS RCPU
Revised 1 February 1999 REFERENCE MANUAL

FPSCR are indicated in parentheses.

* Invalid floating-point operation exception condition (VX)
— SNaN condition (VXSNAN)
— Infinity—infinity condition (VXISI)
— Infinity/infinity condition (VXIDI)
— Zero/zero condition (VXZDZ)
— Infinity*zero condition (VXIMZ)
— lllegal compare condition (VXVC)
These exception conditions are described in 6.11.10.6 Invalid Operation Ex-
ception Conditions.

» Software request condition (VXSOFT). These exception conditions are de-
scribed in 6.11.10.6 Invalid Operation Exception Conditions.

* lllegal integer convert condition (VXCVI). These exception conditions are de-
scribed in 6.11.10.6 Invalid Operation Exception Conditions.

e Zero divide exception condition (ZX). These exception conditions are de-
scribed in 6.11.10.7 Zero Divide Exception Condition.

* Overflow Exception Condition (OX). These exception conditions are described
in 6.11.10.8 Overflow Exception Condition.

* Underflow Exception Condition (UX). These exception conditions are de-
scribed in 6.11.10.9 Underflow Exception Condition.

* Inexact Exception Condition (XX). These exception conditions are described
in 6.11.10.10 Inexact Exception Condition.

Each floating-point exception condition and each category of illegal floating-point
operation exception condition have a corresponding exception bit in the FPSCR. In
addition, each floating-point exception has a corresponding enable bit in the
FPSCR. The exception bit indicates the occurrence of the corresponding condition.
If a floating-point exception occurs, the corresponding enable bit governs the result
produced by the instruction and, in conjunction with bits FEO and FE1, whether and
how the system floating-point enabled exception error handler is invoked. (The “en-
abling” specified by the enable bit is of invoking the system error handler, not of
permitting the exception condition to occur. The occurrence of an exception condi-
tion depends only on the instruction and its inputs, not on the setting of any control
bits.)

The floating-point exception summary bit (FX) in the FPSCR is set when any of the
exception condition bits transitions from a zero to a one or when explicitly set by
software. The floating-point enabled exception summary bit (FEX) in the FPSCR is
set when any of the exception condition bits is set and the exception is enabled (en-
able bit is one).

A single instruction may set more than one exception condition bit in the following
cases:

* The inexact exception condition bit may be set with overflow exception condi-
tion.

* The inexact exception condition bit may be set with underflow exception con-
dition.

* The illegal floating-point operation exception condition bit (SNaN) may be set

RCPU EXCEPTIONS MOTOROLA
REFERENCE MANUAL Revised 1 February 1999 6-39

with illegal floating-point operation exception condition (x*0) for multiply-add
instructions.

* The illegal operation exception condition bit (SNaN) may be set with illegal
floating-point operation exception condition (illegal compare) for compare or-
dered instructions.

* The illegal floating-point operation exception condition bit (SNaN) may be set
with illegal floating-point operation exception condition (illegal integer convert)
for convert to integer instructions.

When an exception occurs, the instruction execution may be suppressed or a result
may be delivered, depending on the exception condition.

Instruction execution is suppressed for the following kinds of exception conditions,
so that there is no possibility that one of the operands is lost:

* Enabled illegal floating-point operation
* Enabled zero divide

For the remaining kinds of exception conditions, a result is generated and written
to the destination specified by the instruction causing the exception. The result may
be a different value for the enabled and disabled conditions for some of these ex-
ception conditions. The kinds of exception conditions that deliver a result are the
following:

* Disabled illegal floating-point operation
e Disabled zero divide

e Disabled overflow

¢ Disabled underflow

¢ Disabled inexact

e Enabled overflow

e Enabled underflow

e Enabled inexact

Subsequent sections define each of the floating-point exception conditions and
specify the action taken when they are detected.

The IEEE standard specifies the handling of exception conditions in terms of traps
and trap handlers. In the PowerPC architecture, setting an FPSCR exception en-
able bit causes generation of the result value specified in the IEEE standard for the
trap enabled case — the expectation is that the exception is detected by software,
which will revise the result. An FPSCR exception enable bit of zero causes gener-
ation of the default result value specified for the trap disabled (or no trap occurs or
trap is not implemented) case — the expectation is that the exception will not be
detected by software, which will simply use the default result. The result to be de-
livered in each case for each exception is described in the following sections.

The IEEE default behavior when an exception occurs, which is to generate a de-
fault value and not to notify software, is obtained by clearing all FPSCR exception
enable bits and using ignore exceptions mode (see Table 6-8). In this case the sys-
tem floating-point assist error handler is not invoked, even if floating-point excep-

MOTOROLA EXCEPTIONS RCPU
6-40 Revised 1 February 1999 REFERENCE MANUAL

tions occur. If necessary, software can inspect the FPSCR exception bits to
determine whether exceptions have occurred.

If the program exception handler notifies software that a given exception condition
has occurred, the corresponding FPSCR exception enable bit must be set and a
mode other than ignore exceptions mode must be used. In this case the system
floating-point assist error handler is invoked if an enabled floating-point exception
condition occurs.

Whether the system floating-point enabled exception error handler is invoked if an
enabled floating-point exception occurs is controlled by MSR bits FEO and FE1 as
shown in Table 6-8. (The system floating-point enabled exception error handler is
never invoked because of a disabled floating-point exception.)

Table 6-28 Floating-Point Exception Mode Bits

FE[0:1] Mode

00 Ignore exceptions mode — Floating-point exceptions do not cause the
floating-point assist error handler to be invoked.

01, 10, 11 Floating-point precise mode — The system floating-point assist error
handler is invoked precisely at the instruction that caused the enabled
exception.

Whenever the system floating-point enabled exception error handler is invoked,
the processor ensures that all instructions logically residing before the excepting
instruction have completed, and no instruction after that instruction has been exe-
cuted.

If exceptions are ignored, an FPSCR instruction can be used to force any excep-
tions caused by instructions initiated before the FPSCR instruction to be recorded
in the FPSCR. A sync instruction can also be used to force exceptions, but is likely
to degrade performance more than an FPSCR instruction.

For the best performance across the widest range of implementations, the follow-
ing guidelines should be considered:

* |f the IEEE default results are acceptable to the application, FEO and FE1
should be cleared (ignore exceptions mode). All FPSCR exception enable bits
should be cleared.

* For even faster operation, non-IEEE can be selected by setting the NI bit in
the FPSCR. To ensure that the software envelope is never invoked, select
non-lIEEE mode, disable all floating-point exceptions, and avoid using denor-
malized numbers as input to floating-point calculations. Refer to 3.4.3 Non-
IEEE Operation and 3.4.4 Working Without the Software Envelope for
more information.

* [gnore exceptions mode should not, in general, be used when any FPSCR ex-
ception enable bits are set.

RCPU EXCEPTIONS MOTOROLA
REFERENCE MANUAL Revised 1 February 1999 6-41

substantially, and therefore should be used only for debugging and other spe-

* Precise mode may degrade performance in some implementations, perhaps
| ol
cialized applications.

6.11.10.6 Invalid Operation Exception Conditions

An invalid operation exception occurs when an operand is invalid for the specified
operation. The invalid operations are as follows:

* Any operation except load, store, move, select, or mtfsf on a signaling NaN
(SNaN)

* For add or subtract operations, magnitude subtraction of infinities (x-x)

* Division of infinity by infinity (x/x)

* Division of zero by zero (0/0)

 Multiplication of infinity by zero (x*0)

* Ordered comparison involving a NaN (invalid compare)

* Square root or reciprocal square root of a negative, non-zero number (invalid
square root)

* Integer convert involving a number that is too large to be represented in the
format, an infinity, or a NaN (invalid integer convert)

FPSCR[VXSOFT] allows software to cause an invalid operation exception for a
condition that is not necessarily associated with the execution of a floating-point in-
struction. For example, it might be set by a program that computes a square root if
the source operand is negative. This facilitates the emulation of PowerPC instruc-
tions not implemented in the RCPU.

When an invalid-operation exception occurs, the action to be taken depends on the
setting of the invalid operation exception enable bit of the FPSCR. When invalid op-
eration exception is enabled (FPSCR[VE] = 1) and invalid operation occurs or soft-
ware explicitly requests the exception, the following actions are taken:

* The following status bits are set in the FPSCR:
— VXSNAN (if SNaN)
— VXISI (if x-x)
— VXIDI (if x/x)
— VXZDZ (if 0/0)
— VXIMZ (if x*0)
— VXVC (if invalid comparison)
— VXSOFT (if software request)
— VXCVI (if invalid integer convert)
* If the operation is an arithmetic or convert-to-integer operation,
— the target FPR is unchanged
— FPSCRI[FR] and FPSCRIFI] are cleared
— FPSCR[FPRF] is unchanged
* If the operation is a compare,
— the FR, FI, and C bits in the FPSCR are unchanged
— FPSCR[FPCC] is set to reflect unordered
* |f software explicitly requests the exception, FPSCR[FR FI FPRF] are as set
by the mtfsfi, mtfsf, or mtfsb1 instruction

MOTOROLA EXCEPTIONS RCPU
6-42 Revised 1 February 1999 REFERENCE MANUAL

When invalid operation exception condition is disabled (FPSCRVE = 0) and invalid
operation occurs or software explicitly requests the exception, the following actions
are taken:

* The same status bits are set in the FPSCR as when the exception is enabled.
* If the operation is an arithmetic operation,
— the target FPR is set to a quiet NaN
— FPSCRI[FR] and FPSCRIFI] are cleared
— FPSCR[FPRF] is set to indicate the class of the result (quiet NaN)
* |[f the operation is a convert to 32-bit integer operation, the target FPR is set
as follows:
— FRTJ[0:31] = undefined
— FRT[32:63] = most negative 32-bit integer
— FPSCRI[FR] and FPSCRIFI] are cleared
— FPSCR[FPRF] is undefined
* |f the operation is a convert to 64-bit integer operation, the target FPR is set
as follows:
— FRT[0:63] = most negative 64-bit integer
— FPSCR[FR] and FPSCRIFI] are cleared
— FPSCR[FPRF] is undefined
* If the operation is a compare,
— The FR, FI, and C bits in the FPSCR are unchanged
— FPSCR[FPCC] is set to reflect unordered
* If software explicitly requests the exception, the FR, Fl and FPRF fields in the
FPSCR are as set by the mtfsfi, mtfsf, or mtfsb1 instruction.

6.11.10.7 Zero Divide Exception Condition

A zero divide exception condition occurs when a divide instruction is executed with
a zero divisor value and a finite, non-zero dividend value.

When a zero divide exception occurs, the action to be taken depends on the setting
of the zero divide exception condition enable bit of the FPSCR. When the zero di-
vide exception condition is enabled (FPSCR[ZE] = 1) and a zero divide condition
occurs, the following actions are taken:

e Zero divide exception condition bit is set: FPSCR[ZX] = 1
* The target FPR is unchanged

* FPSCR[FR] and FPSCRJ[FI] are cleared

* FPSCR[FPRF] is unchanged

When zero divide exception condition is disabled (FPSCR[ZE] = 0) and zero divide
occurs, the following actions are taken:

e Zero divide exception condition bit is set: FPSCR[ZX] = 1

* The target FPR is set to a xinfinity, where the sign is determined by the XOR
of the signs of the operands

* FPSCR[FR] and FPSCRJ[FI] are cleared

* FPSCR[FPRF] is set to indicate the class and sign of the result (zinfinity)

RCPU EXCEPTIONS MOTOROLA
REFERENCE MANUAL Revised 1 February 1999 6-43

6.11.10.8 Overflow Exception Condition
| ol

Overflow occurs when the magnitude of what would have been the rounded result
if the exponent range were unbounded exceeds that of the largest finite number of
the specified result precision.

The action to be taken depends on the setting of the overflow exception condition
enable bit of the FPSCR. When the overflow exception condition is enabled (FP-
SCR[OE] = 1) and an exponent overflow condition occurs, the following actions are
taken:

* Overflow exception condition bit is set: FPSCR[OX] = 1.

* For double-precision arithmetic instructions, the exponent of the normalized
intermediate result is adjusted by subtracting 1536.

* For single-precision arithmetic instructions and the floating round to single-
precision instruction, the exponent of the normalized intermediate result is ad-
justed by subtracting 192.

* The adjusted rounded result is placed into the target FPR.

* FPSCR[FPRF] is set to indicate the class and sign of the result (xnormal num-
ber).

When the overflow exception condition is disabled (FPSCR[OE] = 0) and an over-
flow condition occurs, the following actions are taken:

* Overflow exception condition bit is set: FPSCR[OX] = 1
* Inexact exception condition bit is set: FPSCR[XX] = 1
* The result is determined by the rounding mode (FPSCR[RN]) and the sign of
the intermediate result as follows:
— Round to nearest
Store + infinity, where the sign is the sign of the intermediate result
— Round toward zero
Store the format's largest finite number with the sign of the intermediate
result
— Round toward +infinity
For negative overflows, store the format's most negative finite number; for
positive overflows, store +infinity
— Round toward —infinity
For negative overflows, store —infinity; for positive overflows, store the for-
mat's largest finite number
* The result is placed into the target FPR
* FPSCRIFR FI] are cleared
* FPSCRI[FPRF] is set to indicate the class and sign of the result (xinfinity or
+normal number)

6.11.10.9 Underflow Exception Condition
The underflow exception condition is defined separately for the enabled and dis-
abled states:
* Enabled — Underflow occurs when the intermediate result is tiny.
* Disabled — Underflow occurs when the intermediate result is tiny and there is
loss of accuracy.

MOTOROLA EXCEPTIONS RCPU
6-44 Revised 1 February 1999 REFERENCE MANUAL

A tiny result is detected before rounding, when a non-zero result value computed
as though the exponent range were unbounded would be less in magnitude than
the smallest normalized number.

If the intermediate result is tiny and the underflow exception condition enable bit is
cleared (FPSCR[UE] = 0), the intermediate result is denormalized.

Loss of accuracy is detected when the delivered result value differs from what
would have been computed were both the exponent range and precision
unbounded.

When an underflow exception occurs, the action to be taken depends on the setting
of the underflow exception condition enable bit of the FPSCR.

When the underflow exception condition is enabled (FPSCR[UE] = 1) and an ex-
ponent underflow condition occurs, the following actions are taken:

* Underflow exception condition bit is set: FPSCR[UX] = 1.

* For double-precision arithmetic and conversion instructions, the exponent of
the normalized intermediate result is adjusted by adding 1536.

* For single-precision arithmetic instructions and the floating round to single-
precision instruction, the exponent of the normalized intermediate result is ad-
justed by adding 192.

* The adjusted rounded result is placed into the target FPR.

* FPSCR[FPRF] is set to indicate the class and sign of the result (xnormalized
number).

The FR and Fl bits in the FPSCR allow the system floating-point enabled exception
error handler, when invoked because of an underflow exception condition, to sim-
ulate a trap disabled environment. That is, the FR and FI bits allow the system float-
ing-point enabled exception error handler to unround the result, thus allowing the
result to be denormalized.

When the underflow exception condition is disabled (FPSCR[UE] = 0) and an un-
derflow condition occurs, the following actions are taken:

* Underflow exception condition enable bit is set: FPSCR[UX] = 1

* The rounded result is placed into the target FPR

* FPSCR[FPRF] is set to indicate the class and sign of the result
(xdenormalized number or +zero)

6.11.10.10 Inexact Exception Condition

RCPU

The inexact exception condition occurs when one of two conditions occur during
rounding:

* The rounded result differs from the intermediate result assuming the interme-
diate result exponent range and precision to be unbounded.
* The rounded result overflows and overflow exception condition is disabled.

When the inexact exception condition occurs, regardless of the setting of the inex-
act exception condition enable bit of the FPSCR, the following actions are taken:

EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-45

* Inexact exception condition enable bit in the FPSCR is set: FPSCR[XX] = 1.
* The rounded or overflowed result is placed into the target FPR.
* FPSCR[FPRF] is set to indicate the class and sign of the result.

6.11.11 Software Emulation Exception (0x01000)

An implementation-dependent software emulation exception occurs in the follow-
ing cases:

* An attempt is made to execute an instruction that is not implemented in the
RCPU. This includes all illegal and optional instructions. Since an RCPU-
based MCU does not contain a data cache, segment registers, or a translation
lookaside buffer, the following optional PowerPC instructions cause the
RCPU to generate a software emulation exception:

— Data cache instructions (dcbt, dcbtst, dcbz, dcbst, dcbf, dcbi)

— Instructions to access segment registers (mtsr, mfsr, mtsrin, mfsrin)

— Instructions to manage translation lookaside buffers (tlbei, tibiex, tibsync,
tibie, tibia)

* An attempt is made to execute an mtspr or mfspr instruction that specifies an
unimplemented internal-to-the-processor SPR. (This exception is taken re-
gardless of the value of the SPRO bit of the instruction. That is, if the SPRO bit
of the instruction equals one, indicating a privileged register, and the proces-
sor is operating in user mode, this exception is taken rather than a program
exception.)

Refer to 7.5 Implementation of Special-Purpose Registers for an explana-
tion of internal- and external-to-the-processor SPRs.

* An attempt is made to execute a mtspr or mfspr instruction that specifies an
unimplemented external-to-the-processor register, and either SPRO = 0 or
MSR[PR] = 0 (no program exception condition).

Register settings after a software emulation exception is taken are shown in Table
6-22.

MOTOROLA EXCEPTIONS RCPU
6-46 Revised 1 February 1999 REFERENCE MANUAL

=

Table 6-29 Register Settings Following a Software Emulation Exception

Register Setting Description
SRRO Set to the effective address of the instruction that caused the exception
SRR1 [0:15] Cleared to zero
[16:31] Loaded from MSR[16:31]
MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception

Other bits Cleared

When a software emulation exception is taken, execution resumes at offset
0x01000 from the base address indicated by MSR[IP].

6.11.12 Data Breakpoint Exception (0x01C00)

RCPU

An implementation-dependent data (L-bus) breakpoint occurs when an internal
breakpoint match occurs on the load/store bus.

The processor can be programmed to recognize a data breakpoint at all times
(non-masked mode), or only when the MSR[RI] bit is set (masked mode). When
operating in non-masked mode, the processor enters a non-restartable state if it
recognizes an internal breakpoint when MSR[RI] is cleared.

In order to enable the user to use the breakpoint features without adding restric-
tions on the software, the address of the load/store cycle that generated the data

breakpoint is not stored in the DAR (data address register), as with other excep-
tions that occur during loads or stores. Instead, the address of the load/store cycle
that generated the breakpoint is stored in an implementation dependent register
called the breakpoint address register (BAR).

Register settings after a data breakpoint exception is taken are shown in Table 6-
22,

EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-47

=

Table 6-30 Register Settings Following Data Breakpoint Exception

Register Setting Description
SRRO Set to the effective address of the instruction following the instruction that caused the exception
SRR1 [0:15] Cleared to zero
[16:31] Loaded from bits MSR[16:31]
If development port request is asserted at reset, the value of SRR1 is undefined.
MSR P No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared
BAR Set to the effective address of the data access as computed by the instruction that caused the
exception.
DSISR, No change
DAR

When a data breakpoint exception is taken, execution resumes at offset 0x01C00
from the base address indicated by MSR[IP].

Refer to SECTION 8 DEVELOPMENT SUPPORT for additional information on
data breakpoints.

6.11.13 Instruction Breakpoint Exception (0x01D00)

An implementation-dependent instruction (I-bus) breakpoint occurs when an inter-
nal breakpoint match occurs on the instruction bus.

The processor can be programmed to recognize a data breakpoint at all times
(non-masked mode), or only when the MSR[RI] bit is set (masked mode). When
operating in non-masked mode, the processor enters a non-restartable state if it
recognizes an internal breakpoint when MSR[RI] is cleared.

Register settings after an instruction breakpoint exception is taken are shown in

Table 6-22.

Table 6-31 Register Settings Following an Instruction Breakpoint Exception

Register Setting Description
SRRO Set to the effective address of the instruction that caused the exception
SRR1 [0:15] Cleared to zero
[16:31] Loaded fromMSR[16:31]
If development port request is asserted at reset, the value of SRR1 is undefined.
MOTOROLA EXCEPTIONS RCPU
6-48 Revised 1 February 1999 REFERENCE MANUAL

Table 6-31 Register Settings Following an Instruction Breakpoint Exception

=

Register Setting Description
MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception
Other bits Cleared

When an instruction breakpoint exception is taken, execution resumes at offset
0x01DO00 from the base address indicated by MSR[IP].

Refer to SECTION 8 DEVELOPMENT SUPPORT for more information on instruc-
tion breakpoint exceptions.

6.11.14 Maskable External Breakpoint Exception (0x01E00)

An implementation-dependent maskable external breakpoint can be generated by
any of the peripherals of the system, including those found on the L-bus, I-bus,
IMB2 and external bus, and also by an external development system. Peripherals
found on the external bus use the serial interface of the development port to assert
the external breakpoint. Breakpoints are generated by the development port from
the associated bits of the trap enable control register.

Maskable external breakpoint exceptions are asynchronous and ordered. The pro-
cessor does not take the exception if the RI (recoverable exception) bit in the MSR
is cleared. Refer to SECTION 8 DEVELOPMENT SUPPORT for more information.

Table 6-32 Register Settings Following a
Maskable External Breakpoint Exception

Register Setting Description
SRRO Set to the effective address of the instruction that caused the exception
SRR1 [0:15] Cleared to zero
[16:31] Loaded fromMSR[16:31]
If development port request is asserted at reset, the value of SRR1 is undefined.
MSR IP No change
ME No change
LE Set to value of ILE bit prior to the exception

Other bits Cleared to zero

When a maskable external breakpoint exception is taken, execution resumes at
offset 0xO1EQO from the base address indicated by MSRJIP].

6.11.15 Non-Maskable External Breakpoint Exception (0x01F00)

RCPU

An implementation-dependent non-maskable external breakpoint exception is
generated by the development port from the associated bits of the trap enable
mode serial communications.

EXCEPTIONS MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 6-49

This exception is asynchronous and unordered. The exception is not referenced to
any particular instruction. The processor stops instruction execution and either be-
gins exception processing or enters debug mode as soon as possible after detect-
ing the breakpoint exception.

The non-maskable external breakpoint exception causes the processor to stop
without regard to the state of the MSR[RI] bit. If the processor is in a non-recover-
able state when the exception occurs, the state of the SRR0O, SRR1, DAR, and
DSISR registers may have been overwritten. In this case, it is not possible to restart
the processor since the restarting address and MSR context are saved in the SRRO
and SRR1 registers.

This exception allows the user to stop the processor in cases in which it would oth-
erwise not stop, but with the penalty that the processor may not be restartable. The
value of the MSRI[RI] bit, as saved in the SRR1 register, indicates whether the pro-
cessor stopped in a recoverable state or not.

Table 6-33 Register Settings Following a
Non-Maskable External Breakpoint Exception

Register Setting Description

SRRO Set to the effective address of the instruction that would have been executed next if no exception had
occurred. If the development port request is asserted at reset, the value of SRRO is undefined.

SRR1 [0:15] Cleared to zero

[16:31] Loaded from bits [16:31] of the MSR

If development port request is asserted at reset, the value of SRR1 is undefined.
MSR IP No change

ME No change

LE Set to value of ILE bit prior to the exception

Other bits Cleared to zero

When a non-maskable external breakpoint exception is taken, execution resumes
at offset 0x01000 from the base address indicated by MSR[IP].

MOTOROLA EXCEPTIONS RCPU
6-50 Revised 1 February 1999 REFERENCE MANUAL

	SECTION 6 EXCEPTIONS
	6.1 Exception Classes
	6.1.1 Ordered and Unordered Exceptions
	6.1.2 Synchronous, Precise Exceptions
	6.1.3 Asynchronous Exceptions
	6.1.3.1 Asynchronous, Maskable Exceptions
	6.1.3.2 Asynchronous, Non-Maskable Exceptions

	6.2 Exception Vector Table
	6.3 Precise Exception Model Implementation
	6.4 Implementation of Asynchronous Exceptions
	6.5 Recovery from Exceptions
	6.5.1 Recovery from Ordered Exceptions
	6.5.2 Recovery from Unordered Exceptions
	6.5.3 Commands to Alter MSR[EE] and MSR[RI]

	6.6 Exception Order and Priority
	6.7 Ordering of Synchronous, Precise Exceptions
	6.8 Exception Processing
	6.8.1 Enabling and Disabling Exceptions
	6.8.2 Steps for Exception Processing
	6.8.3 DAR, DSISR, and BAR Operation
	6.8.4 Returning from Supervisor Mode

	6.9 Process Switching
	6.10 Exception Timing
	6.11 Exception Definitions
	6.11.1 Reset Exception (0x0100)
	6.11.2 Machine Check Exception (0x00200)
	6.11.2.1 Machine Check Exception Enabled
	6.11.2.2 Checkstop State
	6.11.2.3 Machine-Check Exceptions and Debug Mode

	6.11.3 External Interrupt (0x00500)
	6.11.4 Alignment Exception (0x00600)
	6.11.4.1 Interpretation of the DSISR as Set by an Alignment Exception

	6.11.5 Program Exception (0x00700)
	6.11.6 Floating-Point Unavailable Exception (0x00800)
	6.11.7 Decrementer Exception (0x00900)
	6.11.8 System Call Exception (0x00C00)
	6.11.9 Trace Exception (0x00D00)
	6.11.10 Floating-Point Assist Exception (0x00E00)
	6.11.10.1 Floating-Point Software Envelope
	6.11.10.2 Floating-Point Assist for Denormalized Operands
	6.11.10.3 Synchronized Ignore Exceptions (SIE) Mode
	6.11.10.4 Floating-Point Exception Cause Register
	6.11.10.5 Floating-Point Enabled Exceptions
	6.11.10.6 Invalid Operation Exception Conditions
	6.11.10.7 Zero Divide Exception Condition
	6.11.10.8 Overflow Exception Condition
	6.11.10.9 Underflow Exception Condition
	6.11.10.10 Inexact Exception Condition

	6.11.11 Software Emulation Exception (0x01000)
	6.11.12 Data Breakpoint Exception (0x01C00)
	6.11.13 Instruction Breakpoint Exception (0x01D00)
	6.11.14 Maskable External Breakpoint Exception (0x01E00)
	6.11.15 Non-Maskable External Breakpoint Exception (0x01F00)

