
SECTION 7
INSTRUCTION TIMING

This section describes instruction flow and the basic instruction pipeline in the
RCPU, provides details of execution timing for each execution unit, defines the
concepts of serialization and synchronization, provides timing information for each
RCPU instruction, and provides timing examples for different types of instructions.

7.1 Instruction Flow

The instruction sequencer provides centralized control over data flow between ex-
ecution units and register files. The sequencer implements the basic instruction
pipeline, fetches instructions from the memory system, issues them to available ex-
ecution units, and maintains a state history so it can back the machine up in the
event of an exception.

The instruction sequencer fetches the instructions from the instruction cache into
the instruction pre-fetch queue. The processor uses branch folding (a technique of
removing the branch instructions from the pre-fetch queue) in order to execute
branches in parallel with execution of sequential instructions. Sequential (non-
branch) instructions reaching the top of the instruction queue are issued to the ex-
ecution units. Instructions may be flushed from the instruction queue when an ex-
ternal interrupt is detected, a previous instruction causes an exception, or a branch
prediction turns out to be incorrect.

All instructions, including branches, enter the history buffer along with processor
state information that may be affected by the instruction’s execution. This informa-
tion is used to enable out of order completion of instructions together with precise
exceptions handling. Instructions may be flushed from the machine when an ex-
ception is taken. The instruction queue is always flushed when recovery of the his-
tory buffer takes place. Refer to 6.3 Precise Exception Model Implementation
for additional information.

An instruction retires from the machine after it finishes execution without exception
and all preceding instructions have already retired from the machine.

Figure 7-1 illustrates the instruction flow in the RCPU.
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-1



Figure 7-1  Instruction Flow

7.1.1 Instruction Sequencer Data Path

Figure 7-2 illustrates the instruction sequencer data path.

EXECUTION UNITS

HISTORY BUFFER

INSTRUCTION BRANCH
UNIT

ISSUE

RETIRE

FETCH

WRITE BACK

RISCPU INST FLOW

QUEUE
PRE-FETCH
 MOTOROLA INSTRUCTION TIMING RCPU

7-2 Revised 1 February 1999 REFERENCE MANUAL



Figure 7-2  Instruction Sequencer Data Path

7.1.2 Instruction Issue

The sequencer attempts to issue a sequential (non-branch) instruction on each
clock, if possible. In order for an instruction to be issued, the execution unit must
be available and it must determine that the required source data is available and
that no other instruction still in execution targets the same destination register. The
sequencer broadcasts the presence of the instruction on the instruction bus, and
each execution unit decodes the instruction. The execution unit responsible for ex-
ecuting the instruction determines whether the operands and target registers are
free and informs the sequencer that it accepts the instruction for execution.

7.1.3 Basic Instruction Pipeline

The RCPU instruction pipeline has four stages:

INSTRUCTION ADDRESS GENERATOR

CC UNIT

32

32

R
E

A
D

 W
R

IT
E

 B
U

S
S

E
S

BRANCH

INSTRUCTION BUFFER

32

INSTRUCTION 
PREFETCH 

QUEUE

INSTRUCTION MEMORY SYSTEM

EXECUTION UNITS AND REGISTERS FILES

CONDITION
EVALUATION

RCPU INST SEQ
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-3



1. The dispatch stage is implemented using a distributed mechanism. The
central dispatch unit broadcasts the instruction to all units. In addition,
scoreboard information (regarding data dependencies) is broadcast to each
execution unit. Each execution unit decodes the instruction. If the instruction
is not implemented, a program exception is taken. If the instruction is legal
and no data dependency is found, the instruction is accepted by the appro-
priate execution unit, and the data found in the destination register is copied
to the history buffer. If a data dependency exists, the machine is stalled until
the dependency is resolved.

2. In the execute stage, each execution unit that has an executable instruction
executes the instruction (perhaps over multiple cycles).

3. In the writeback stage, the execution unit writes the result to the destination
register and reports to the history buffer that the instruction is completed.

4. In the retirement stage, the history buffer retires instructions in architectural
order. An instruction retires from the machine if it completes execution with
no exceptions and if all instructions preceding it in the instruction stream
have finished execution with no exceptions. As many as six instructions can
be retired in one clock.

The history buffer maintains the correct architectural machine state. An exception
is taken only when the instruction is ready to be retired from the machine (i.e., after
all previously-issued instructions have already been retired from the machine).
When an exception is taken, all instructions following the excepting instruction are
canceled, (i.e., the values of the affected destination registers are restored using
the values saved in the history buffer during the dispatch stage).

Figure 7-3 illustrates the basic instruction pipeline timing.
 MOTOROLA INSTRUCTION TIMING RCPU

7-4 Revised 1 February 1999 REFERENCE MANUAL



Figure 7-3  Basic Instruction Pipeline

7.2 Execution Unit Timing Details

The following sections describe instruction timing considerations within each
RCPU execution unit.

7.2.1 Integer Unit (IU)

The integer unit executes all integer processor instructions, except the integer stor-
age access instructions, which are implemented by the load/store unit. The IU con-
sists of two execution units:

• The IMUL-IDIV executes the integer multiply and divide instructions.
• The ALU-BFU unit executes all integer logic, add, and subtract instructions,

and bit-field instructions.

All instructions executed by the ALU-BFU, except for integer trap instructions, have
a latency of one clock cycle. Instructions executed by the IMUL-IDIV unit have la-
tencies of more than one clock cycle. The IMUL-IDIV unit is pipelined for multiply
instructions, but not for divide instructions. Therefore, the instruction sequencer
can issue one instruction to the IU each clock cycle, except when an integer divide
instruction is preceded or followed by an integer divide or multiply instruction.

I1 I2

I1

I1

I1

I1

LOAD

I1

STORE

I1

I1

I3

I2

I2

I2

FETCH

DECODE

READ AND EXECUTE

WRITEBACK (TO DEST REG)

L ADDRESS DRIVE

L DATA

LOAD WRITEBACK

BRANCH DECODE

BRANCH EXECUTE

RCPU INST PL
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-5



7.2.1.1 Update of the XER During Divide Instructions

Integer divide instructions have a relatively long latency. However, these instruc-
tions can update XER[OV], the overflow bit in the integer exception register, after
one cycle. Data dependency on the XER is therefore limited to one cycle although
the latency of an integer divide instruction can be up to eleven clock cycles.

7.2.2 Floating Point Unit (FPU)

The floating-point unit contains a double-precision multiply array, the floating-point
status and control register (FPSCR), and the FPRs. The multiply-add array allows
the processor to efficiently implement floating-point operations such as multiply,
multiply-add, and divide.

The RCPU depends on a software envelope to fully implement the IEEE floating-
point specification. Overflows, underflows, NaNs, and denormalized numbers
cause floating-point assist exceptions that invoke a software routine to deliver (with
hardware assistance) the correct IEEE result. Refer to 6.11.10 Floating-Point As-
sist Exception (0x00E00) for additional information.

To accelerate time-critical operations and make them more deterministic, the
RCPU provides a mode of operation that avoids invoking the software envelope
and attempts to deliver results in hardware that are adequate for most applications,
if not in strict conformance with IEEE standards. In this mode, denormalized num-
bers, NaNs, and IEEE invalid operations are treated as legitimate, returning default
results rather than causing floating-point assist exceptions.

7.2.3 Load/Store Unit (LSU)

The load-store unit handles all data transfer between the integer and floating-point
register files and the chip-internal load/store bus (L-bus). The load/store unit is im-
plemented as an independent execution unit so that stalls in the memory pipeline
do not cause the master instruction pipeline to stall (unless there is a data depen-
dency). The unit is fully pipelined so that memory instructions of any size may be
issued on back-to-back cycles.

There is a 32-bit wide data path between the load/store unit and the integer register
file and a 64-bit wide data path between the load/store unit and the floating-point
register file. 

Single-word accesses to on-chip data RAM require one clock cycle, resulting in two
clock cycles latency. Double-word accesses require two clock cycles, resulting in
three clock cycles latency. Since the L-bus is 32 bits wide, double-word transfers
require two bus accesses.

The LSU interfaces with the external bus interface for all instructions that access
memory. Addresses are formed by adding the source one register operand speci-
fied by the instruction (or zero) to either a source two register operand or to a 16-
bit, immediate value embedded in the instruction. 
 MOTOROLA INSTRUCTION TIMING RCPU

7-6 Revised 1 February 1999 REFERENCE MANUAL



7.2.3.1 Load/Store Instruction Issue

When a load or store instruction is encountered, the LSU checks the scoreboard to
determine if all the operands are available. These operands include:

• Address registers operands
• Source data register operands (for store instructions)
• Destination data register operands (for load instructions)
• Destination address register operands (for load/store with update instructions)

If all operands are available, the LSU takes the instruction and enables the se-
quencer to issue a new instruction. Using a dedicated interface, the LSU notifies
the IU to calculate the effective address.

All load and store instructions are executed and terminated in order. If there are no
prior instructions waiting in the address queue, the load or store instruction is is-
sued to the L-bus as soon as the instruction is taken. Otherwise, if there are still
prior instructions whose address are still to be issued to the L-bus, the instruction
is inserted into the address queue, and data (for store instructions) is inserted into
the respective store data queue. Note that for load/store with update instructions,
the destination address register is written back on the following clock cycle, regard-
less of the state of the address queue.

A new store instruction is not issued to the L-bus until all prior instructions have ter-
minated without an exception. This is done in order to implement the PowerPC pre-
cise exception model. In case of a load instruction followed by a store instruction,
a delay of one clock cycle is inserted between the termination of the load bus cycle
and the issuing of the store cycle.

7.2.3.2 Load/Store Synchronizing Instructions

For certain LSU instructions, the instruction is not taken (as defined in the glossary)
until all previous instructions have terminated. These instructions are:

• Load/Store Multiple instructions — lmw, stmw
• Storage Synchronization instructions — lwarx, stwcx, sync
• String instructions — lswi, lswx, stswi, stswx
• Move to internal special registers and move to external-to-processor special

purpose registers

Issuing of further instructions is stalled until the following load/store instructions ter-
minate:

• Load/Store Multiple insturctions — lmw, stmw
• Storage Synchronization instructions — lwarx, stwcx, sync
• String instructions — lswi, lswx, stswi, stswx

7.2.3.3 Load/Store Instruction Timing Summary

Table 7-1 summarizes the timing of load/store instructions, assuming a parked bus
and zero wait state memory references. The parameter “N” denotes the number of
registers transferred.
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-7



7.2.3.4 Bus Cycles for String Instructions

String instructions are broken into a series of aligned bus accesses. Figure 7-4 il-
lustrates the maximum number of bus cycles needed for string instruction execu-
tion. This is the case where the beginning and end of the string are unaligned.

Figure 7-4  Number of Bus Cycles Needed for String Instruction Execution

7.2.3.5 Stalls During Floating-Point Store Instructions

In the following sequence there is a delay of one clock cycle before the second
floating-point store instruction is executed:

1. Load instruction
2. First floating-point store instruction
3. Second floating-point store instruction

Table 7-1  Load/Store Instructions Timing 

Instruction Type Latency Cleared from Load/Store Unit

Internal Memory External 
Memory

Internal Memory External 
Memory

Fixed-Point Single Target 
Register Load
Floating-Point Single-Precision 
Load

2 clocks 4 clocks 2 clocks 4 clocks

Fixed-Point Single Target 
Register Store
Floating-Point Single-Precision 
Store

1 clock 1 clock 2clock 4 clock

Floating-Point Double-Precision 
Load1

NOTES:
1. Double-precision load and store instructions are pipelined on the bus.

3 clocks 5 clocks 3 clocks 5 clocks

Floating-Point Double-Precision 
Store1

1 clock 1 clock 3 clocks 5 clocks

Load Multiple 1 + N 3 + N + [(N + 1)/3] 1 + N 3 + N + [(N + 1)/3]

0x00 00 01 02 03
0x04 04 05 06 07
0x08 08 09 0a 0b
0x0C 0c 0d 0e 0f
0x10 10 11 12 13
0x14 14 15 16 17

2 bus cycles

word transfers

2 bus cycles
0x18 18 19 1a 1b

3 bus cycles

BUS CYC/STR EX
 MOTOROLA INSTRUCTION TIMING RCPU

7-8 Revised 1 February 1999 REFERENCE MANUAL



If the accesses are to zero-wait-state L-bus memory and the instructions are issued
on consecutive clock cycles, the second floating-point store instruction is stalled for
one clock cycle.

7.2.4 Branch Processing Unit (BPU)

The sequencer maintains a prefetch queue that can hold up to four instructions.
This prefetch queue enables branches to be issued in parallel with sequential in-
structions. In the ideal case, a sequential instruction is issued every clock cycle,
even when branches are present in the code. This feature is possible because of
branch folding, the removal of branch instructions from the pre-fetch queue.

All instructions are fetched into the instruction prefetch queue, but only sequential
instructions are issued to the execution units upon reaching the head of the queue.
(Branches are placed into the instruction prefetch queue to enable watchpoint
marking — refer to SECTION 8 DEVELOPMENT SUPPORT for more information.)
Since branches do not prevent the issue of sequential instructions unless they
come in pairs, the performance impact of entering branches in the instruction
prefetch queue is negligible.

In addition to branch folding, the RCPU implements a branch reservation station
and static branch prediction to allow branches to issue as early as possible. The
reservation station allows a branch instruction to be issued even before its condi-
tion is ready. With the branch issued and out of the way, instruction pre-fetch can
continue while the branch operand is being computed and the condition is being
evaluated. Static branch prediction is used to determine which instruction stream
is pre-fetched while the branch is being resolved. When the branch operand be-
comes available, it is forwarded to the branch unit and the condition is evaluated.

Refer to 4.6.2 Conditional Branch Control for more information on static branch
prediction.

7.3 Serialization

The RCPU has multiple execution units, each of which may be executing different
instructions at the same time. This concurrence is normally transparent to the user
program. In certain circumstances, however (e.g., debugging, I/O control, and
multi-processor synchronization), it may be necessary to force the machine to se-
rialize. 

Two types of serialization are defined for the RCPU: execution serialization and
fetch serialization.

7.3.1 Execution Serialization

Execution serialization (also referred to as serialization or execution synchroniza-
tion) causes the issue of subsequent instructions to be halted until all instructions
currently in progress have completed execution, (i.e., all internal pipeline stages
and instruction buffers have emptied and all outstanding memory transactions are
completed).
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-9



An attempt to issue a serializing instruction causes the machine to serialize before
the instruction issues. Notice that only the sync instruction guarantees serialization
across PowerPC implementations.

7.3.2 Fetch Serialization

Fetch serialization (also referred to as “fetch synchronization”) causes instruction
fetch to be halted until all instructions currently in the processor (i.e., all issued in-
structions as well as the pre-fetched instructions waiting to be issued) have com-
pleted execution.

Fetch of an isync instruction causes fetch serialization. This means that no instruc-
tions following isync in the instruction stream are pre-fetched until isync and all
previous instructions have completed execution. In addition, when the SER (seri-
alize mode) bit in the ICTRL is asserted, or when the processor is in debug mode,
all instructions cause fetch serialization.

7.4 Context Synchronization

The system call (sc) and return from interrupt (rfi) instructions are context-synchro-
nizing. Execution of one of these instructions ensures the following:

• No higher priority exception exists (sc).
• All previous instructions have completed to a point where they can no longer

cause an exception.
• Previous instructions complete execution in the context (privilege and protec-

tion) under which they were issued.
• The instructions following the context-synchronizing instruction execute in the

context established by the instruction.

7.5 Implementation of Special-Purpose Registers

Most special-purpose registers supported by the RCPU are physically implement-
ed within the processor. The following SPRs, however, are physically implemented
outside of the processor (i.e., in another module, such as the system interface unit,
of the microcontroller):

• Instruction cache control registers (ICCST, ICADR, and IDDAT)
• Time base (TB) and decrementer (DEC)
• Development port data register (DPDR)

These registers are read or written with the mtspr and mfspr instructions. The reg-
isters are physically accessed, however, via the internal L-bus or I-bus as appro-
priate. 

The following encodings are reserved in the RCPU for SPRs not located within the
processor:
 MOTOROLA INSTRUCTION TIMING RCPU

7-10 Revised 1 February 1999 REFERENCE MANUAL



Many of the encodings in Table 7-2 are not used in the RCPU. If the processor at-
tempts to access to an unimplemented external-to-the-processor SPR, or if an er-
ror occurs during an access of an external-to-the-processor SPR, an implemen-
tation-dependent software emulation exception is taken (rather than a program ex-
ception).

An mtspr instruction to an external-to-the-processor register is not taken until all
preceding instructions have terminated. Refer to 7.6 Instruction Execution Tim-
ing for more information.

7.6 Instruction Execution Timing

Table 7-3 lists the instruction execution timing in terms of latency and blockage of
the appropriate execution unit. Latency refers to the interval from the time an in-
struction begins execution until it produces a result that is available for use by a
subsequent instruction. Blockage refers to the interval from the time an instruction
begins execution until its execution unit is available for a subsequent instruction.
Note that a serializing instruction has the effect of blocking all execution units.

Table 7-2 Encodings of External-to-the-Processor SPRs 

SPR Instruction Field Encoding Reserved for

SPR[5:9] SPR[0:4]

100xx xxxxx External-to-the-processor SPRs

100xx x0xxx System interface unit (SIU) route from 
L-bus to I-bus/internal SIU registers

100xx x1xxx Peripherals control unit registers

10011 x0xxx SIU internal registers

0xxxx xxxxx DEC or TB, if this encoding appears on the 
L-bus

10000 x0xxx Reserved for IBAT

10000 x1xxx Reserved for DBAT

10001 x00xx I-cache registers

10001 x1xxx Reserved for D-cache
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-11



Table 7-3 Instruction Execution Timing 

Instructions Latency Blockage Execution 
Unit

Serializing 
Instruction

Branch Instructions: b, ba, bl, bla, bc, 
bca, bcl, bcla, bclr, bclrl, bcctr, bcctl

Taken 2 2 BPU No

Not taken 1 1

sc, rfi Serialize + 2 Serialize + 2 BPU Yes

CR logical instructions: crand, crxor, 
cror, crnand, crnor, crandc, creqv, 
crorc, mcrf

1 1 BPU No

Fixed-point trap instructions: twi, tw Taken 
Serialize + 3

Serialize + 3 ALU/BFU After

Not taken 1 1 No

mtspr to LR, CTR 1 1 BPU No

mtspr to XER, external-to-the-
processor SPRs1

Serialize + 1 Serialize + 1 LSU Refer to Table 7-4

mtspr (to other registers) Serialize + 1 Serialize + 1 BPU Refer to Table 7-4

 mfspr from external-to-the-processor 
SPRs1 

Serialize + 
load latency

Serialize + 1 LSU No

mfspr (from other registers) 1 1 BPU Refer to Table 7-4

mftb, mftbu Serialize + 
load latency

Serialize + 1 LSU No

 mtcrf, mtmsr Serialize + 1 Serialize + 1 BPU Yes

mfcr, mfmsr Serialize + 1 Serialize + 1 BPU No

mffs[.] 1 1 FPU No

 mcrxr Serialize + 1 Serialize + 1 LSU, BPU Yes

mcrfs Serialize + 1 Serialize + 1 FPU, BPU Yes

Other move FPSCR:mtfsfi[.], mtfsf[.], 
mtfsb0[.], mtfsb1[.]

Serialize + 1 Serialize + 1 FPU Yes

 mcrxr Serialize + 1 Serialize + 1 LSU Yes (Before)

Integer arithmetic: addi, add[o][.], 
addis, subf[o][.], addic, subfic, 
addic., addc[o][.], adde[o][.],
subfc[o][.], subfe[o][.], addme[o][.], 
addze[o][.], subfme[o][.], subfze[o][.], 
neg[o][.] 

1 1 ALU/BFU No

Integer arithmetic (divide instructions): 
divw[o][.], divwu[o][.]

Min 2
Max 112

Min 2
Max 113

IMUL/IDIV No

Integer arithmetic (multiply instructions): 
mulli, mull[o][.], mulhw[.], mulhwu[.]

2 1-24 IMUL/IDIV No
 MOTOROLA INSTRUCTION TIMING RCPU

7-12 Revised 1 February 1999 REFERENCE MANUAL



Integer compare: cmpi, cmp, cmpli, 
cmpl

1 1 ALU/BFU No

Integer logical: andi., andis., ori, oris, 
xori, xoris, and[.], or[.], xor[.], nand[.], 
nor[.], eqv[.], andc[.], orc[.], extsb[.], 
extsh[.], cntlzw[.]

1 1 ALU/BFU No

Integer rotate and shift: rlwinm[.], 
rlwnm[.], rlwimi[.], slw[.], srw[.], 
srawi[.], sraw[.]

1 1 ALU/BFU No

Floating point move: fmr[.], fneg[.], 
fabs[.], fnabs[.]

1 1 FPU No

Floating point add/subtract: fadd[.], 
fadds[.], fsub[.], fsubs[.]

4 4 FPU No

Floating point multiply single: fmuls[.] 4 4 FPU No

Floating point multiply double: fmul[.] 5 5 FPU No

Floating point divide single: fdivs[.] 10 10 FPU No

Floating point divide double: fdiv[.] 17 17 FPU No

Floating point multiply-add single: 
fmadds[.], fmsubs[.], fnmadds[.], 
fnmsubs[.] 

6 6 FPU No

Floating point multiply-add double: 
fmadd[.], fmsub[.], fnmadd[.], 
fnmsub[.]

7 7 FPU No

Floating round to single-precision: 
frsp[.]

2 2 FPU No

Floating convert to integer: fctiw[.], 
fctiwz[.]

3 3 FPU No

Floating point compare: fcmpu, fcmpo 1 1 FPU No

Integer load instructions: lbz, lbzu, 
lbzx, lbzux, lhz, lhzu, lhzx, lhzux, lha, 
lhau, lhax, lhaux, lwz, lwzu, lwzx, 
lwzux, lhbrx, lwbrx, lhbrx

25 1 LSU No

Integer store instructions: stb, stbu, 
stbx, stbux, sth, sthu, sthx, sthux, 
stw, stwu, stwbrx

16 1 LSU No

Integer load and store multiple 
instructions: lmw, smw

Serialize + 1 
+ Number of 
registers 

Serialize + 1 + 
Number of 
registers 

LSU Yes

Synchronize: sync Serialize + 1 Serialize + 1 LSU Yes

Order storage access: eieio Load/Store 
Serialize + 1

1 LSU No

Table 7-3 Instruction Execution Timing  (Continued)

Instructions Latency Blockage Execution 
Unit

Serializing 
Instruction
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-13



Storage synchronization instructions: 
lwarx, stwcx.

Serialize + 2 Serialize + 2 LSU Yes

Floating-point load single instructions: 
lfs, lfsu, lfsx, lfsux

2 1 LSU No

Floating-point load double instructions: 
lfd, lfdu, lfdx, lfdux

3 1 LSU No

Floating-point store single instructions: 
stfs, stfsu, stfsx, stfsux, stfiwx

1 1 LSU No

Floating-point store double instructions: 
stfd, stfdu, stfdx, stfdux

1 1 LSU No

String instructions: lswi, lswx, stswi, 
stswx

Serialize + 1 
+ Number of 
words 
accessed

Serialize + 1 + 
Number of 
words 
accessed

LSU Yes 

Storage control instructions: isync serialize serialize BPU Yes

eieio 1 1 LSU Next load or store is 
serialized relative to 
all prior load or store

Cache control: icbi 1 1 LSU, I-cache No

NOTES:
1. SPRs that are physically implemented outside of the RCPU are the time base, decrementer, ICCST, ICADR, IC-

DAT, AND DPDR.

2. 

Where:  

3. DivisionBlockage = DivisionLatency
4. Blockage of the multiply instruction is dependent on the subsequent instruction

for subsequent multiply instruction the blockage is one clock.
for subsequent divide instruction the blockage is two clocks.

5. Assuming non-speculative aligned access, on chip memory and available bus. 
6. Although stores issued to the LSU buffers free the CPU pipeline, next load or store will not actually be performed

on the bus until the bus is free.

Table 7-3 Instruction Execution Timing  (Continued)

Instructions Latency Blockage Execution 
Unit

Serializing 
Instruction

DivisionLatency
NoOverflow 3 34 divisorLength–

4
----------------------------------------------------+⇒

Overf low 2⇒
=

Overflow x
0
--- 

  or MaxNegativeNumber
1–

-------------------------------------------------------------- 
 =
 MOTOROLA INSTRUCTION TIMING RCPU

7-14 Revised 1 February 1999 REFERENCE MANUAL



Table 7-4 Control Registers and Serialized Access 

SPR Number 
(Decimal)

Name Serialize Access

1 XER Write: full serialization
Read: serialization relative to load/store operations

8 LR No

9 CTR No

18 DSISR Write: full serialization
Read: serialization relative to load/store operations

19 DAR Write: full serialization
Read: serialization relative to load/store operations

22 DEC Write

26 SRR0 Write

27 SRR1 Write

80 EIE Write

81 EID Write

82 NRI Write

144 – 147 CMPA – CMPD Fetch serialized on write

148 ECR Fetch serialized on write

149 DER Fetch serialized on write

150 COUNTA Fetch serialized on write

151 COUNTB Fetch serialized on write

152 – 155 CMPE – CMPH Write: fetch serialized
Read: serialized relative to load/store operations

156 LCTRL1 Write: fetch serialized
Read: serialized relative to load/store operations

157 LCTRL2 Write: fetch serialized
Read: serialized relative to load/store operations

158 ICTRL Fetch serialized on write

159 BAR Write: fetch serialized
Read: serialized relative to load/store operations

268 TBL read1 Write — as a store

269 TBU read1 Write — as a store

272 – 275 SPRG0 – SPRG3 Write

284 TBL write2 Write — as a store

285 TBU write2 Write — as a store

287 PVR No (read only register)
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-15



7.7 Instruction Execution Timing Examples

This section contains a number of examples illustrating the operation of the instruc-
tion pipeline. All examples assume an instruction cache hit.

7.7.1 Load from Internal Memory Example

This is an example of a load from an internal memory module with zero wait
states.The subf instruction is dependent on the value loaded by the lwz to r12.
This causes one bubble to occur in the instruction stream. See 7.7.3 Load with
Private Write-Back Bus for an example in which no such dependency exists.

lwz r12,64(r0)

subf r3,r12,r3

addic r4,r14,1

mulli r5,r3,3

addi r4,r0,3

560 ICCST Write — as a store

561 ICADR Write — as a store

562 ICDAT Write — as a store

630 DPDR Read and write

1022 FPECR Write

— MSR Fetch serialized on write

— CR Serialized for mtcrf only

NOTES:
1. Any write (mtspr) to this address results in an implementation-dependent software emulation ex-

ception.
2. Any read (mftb) of this address results in an implementation-dependent software emulation excep-

tion.

Table 7-4 Control Registers and Serialized Access  (Continued)

SPR Number 
(Decimal)

Name Serialize Access
 MOTOROLA INSTRUCTION TIMING RCPU

7-16 Revised 1 February 1999 REFERENCE MANUAL



 

Figure 7-5  Load from Internal Memory Example

7.7.2 Write-Back Arbitration Examples

In the first example, the addic is dependent on the mulli result. Since the single
cycle instruction subf has priority on the writeback bus over the mulli, the mulli
write back is delayed one clock and causes a bubble in the execution stream.

mulli r12,r4,3

subf r3,r15,r3

addic r4,r12,1

 

Figure 7-6  Write-Back Arbitration Example I

In the following example, the addic is dependent on the subf rather then on the
mulli. Although the write back of the mulli is delayed two clocks, there is no bubble
in the execution stream.

LOAD SUB

LOAD

LOAD

LD

LD

LD

SUB

SUB

SUB

MULLI

ADDIC

ADDIC

ADD

BUBBLE

ADDIADDICFETCH

DECODE

READ &EXECUTE

WRITE BACK

L ADDRESS DRIVE

L DATA

LOAD WRITE BACK

INT MEM LOAD EX

MULLI SUB

MULLI

MULLI

SUB

SUB, MULL

SUB

ADDIC

ADDIC

ADD

BUBBLE

ADDIC

MUL

FETCH

DECODE

READ &EXECUTE

WRITE BACK

WR BK ARB EX 1
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-17



mulli r12,r4,3

subf r3,r15,r3

addic r4,r3,1

 

Figure 7-7  Write-Back Arbitration Example II

7.7.3 Load with Private Write-Back Bus

In this example, the load and the and write back in the same clock cycle, since they
use the writeback bus during separate ticks.

lwz r12,64(r0)

subf r5,r3,r5

addic r4,r14,1

and r3,r4,r5

or r6,r12,r3

MULLI SUB

MULLI

MULLI

SUB

ADDIC

SUB

MULLI

ADDIC

ADD

ADDIADDICFETCH

DECODE

READ & EXECUTE

WRITE BACK

WR BK ARB EX 2

SUB,MULL

MUL
 MOTOROLA INSTRUCTION TIMING RCPU

7-18 Revised 1 February 1999 REFERENCE MANUAL



 

Figure 7-8  Load with Private Write-Back Bus Example

7.7.4 Fastest External Load Example

In this example, the subf is dependent on the value read by the load. It causes
three bubbles in the instruction execution stream.

NOTE

The external clock is shifted 90° relative to the internal clock.

lwz r12,64(r0)

subf r3,r12,r3

addic r4,r14,1

LOAD SUB

LOAD

LOAD

LD

LD

LD

SUB

SUB

SUB

ADDIC

ADDIC

AD

ADDIC

LOAD

LD

AND ORI

AND

AND

AND

ORI

ORI

ORI

READ &EXECUTE

WRITE BACK

L ADDRESS DRIVE

L DATA

LOAD WRITE BACK

E ADDRESS

E DATA

INTERNAL

EXTERNAL
CLOCK

CLOCK

FETCH

DECODE

LD WR BK BUS EX
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-19



 

Figure 7-9  External Load Example

7.7.5 History Buffer Full Example

This example demonstrates the condition of a full history buffer. The floating-point
history buffer is full by the fadd and two of the three lfds.

NOTE

Following writeback of the fadd instruction, one additional bubble is
required before instruction issue resumes. During this bubble, the
history buffer retires the fadd instruction (as well as the two lfd in-
structions).

fadd fr5,fr6,fr7

lfd fr12,0(r2)

lfd fr13,8(r2)

lfd fr14,16(r2)

subf r5,r3,r5

LOAD SUB

LOAD

LOAD

LD

LD

LD

SUB

BUBBLE BUBBLE

ADDIC

LOAD

LD

AND ORI

BUBBLE SUB

SUB

READ &EXECUTE

WRITE BACK

L ADDRESS DRIVE

L DATA

LOAD WRITE BACK

E ADDRESS

E DATA

INTERNAL

EXTERNAL
CLOCK

CLOCK

FETCH

DECODE

EXT LOAD EX

ADDIC

ADDIC

AD
 MOTOROLA INSTRUCTION TIMING RCPU

7-20 Revised 1 February 1999 REFERENCE MANUAL



 

Figure 7-10  History Buffer Full Example

7.7.6 Store and Floating-Point Example

In this example the stw access on the L-bus is delayed until the fadd instruction is
written back.

NOTE

In contrast to full serialization cases, the issue and execution of fol-
lowing instructions continue unaffected.

fadd fr5,fr6,fr7

stw r12,64(SP)

subf r5,r5,r3

addic r4,r14,1

fmul fr3,fr4,fr5

or r6,r12,r3

FADD LFD

FADD

FADD

FA

LFD

LFD,FADD

LFD

LFD

LFD,FADD

LFD

LFD LFD SUB

LFD

BUBBLE BUBBLE

LFD

READ &EXECUTE

FX WRITE BACK

L ADDRESS DRIVE

L DATA

FP WRITE BACK

FP LOAD WRITE BACK

INTERNAL
CLOCK

FETCH

DECODE

REORDER BUF FULL EX

LFD

SUB

LFD LFD

LFDLFD
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-21



 

Figure 7-11  Store and Floating-Point Example

7.7.7 Branch Folding Example

In this example, the lwz instruction accesses internal storage with one wait state.
The instruction prefetch queue and the parallel operation of the branch unit allow
the two bubbles caused by the bl issue and execution to overlap the two bubbles
caused by the lwz instruction. 

lwz r12,64(SP)

subf r3,r12,r3

addic r4,r14,1

bl func

...

func: mulli r5,r3,3

addi r4,r0,3

FADD STW

FADD

FADD

FA

STW

STW, FA

LFD

SUB

SUB, FA

SUB

SUB

ADDIC

ADDIC,FA FMULREAD &EXECUTE

FX WRITE BACK

L ADDRESS DRIVE

L DATA

FP WRITE BACK

INTERNAL
CLOCK

FETCH

DECODE

STORE/FP EX

OR

LFD

STW

ADDIC FMUL OR

FMUL OR

AD FM OR

STW
 MOTOROLA INSTRUCTION TIMING RCPU

7-22 Revised 1 February 1999 REFERENCE MANUAL



 

Figure 7-12  Branch Folding Example

7.7.8 Branch Prediction Example

In this example the blt instruction is dependent on the cmpi. The branch unit still
predicts the correct path and allows the bubbles caused by the blt instruction to
overlap the bubbles caused by the ld instruction, as in the previous example. 

When the cmpi instruction is written back, the branch unit re-evaluates the deci-
sion. If the branch was correctly predicted, execution continues without interrup-
tion. The fetched instructions on the predicted path are not allowed to execute
before the condition is finally resolved. Instead, they are stacked in the instruction
prefetch queue.

while: mulli r3,r12,4

addi r4,r0,3

...

lwz r12,64(r2)

cmpi r12,3

addic r6,r5,1

blt while

...

LOAD SUB

LOAD

LOAD BUBBLE

LD

BUBBLE

SUB

SUB ADDICREAD &EXECUTE

WRITE BACK

L ADDRESS DRIVE

L DATA

LOAD WRITE BACK

INTERNAL
CLOCK

FETCH

DECODE

BR FOLD EX

MULLI

LD

STW

ADDIC MULLI

SUB ADD

STW

BRANCH DECODE

BRANCH EXECUTE

ADDIC BL BUBBLE MULLI ADDI

LD

BL

BL
RCPU INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 7-23



 

Figure 7-13  Branch Prediction Example

LOAD CMPI

LOAD

LOAD

LD

LD

LD

BLT

BLT

CMPI

CMPI

CMP

BUBBLE MULLI

ADDIC

ADDIC

ADD

MULLI

MULLIBUBBLE BUBBLE

ADDIADDIC

BLT

BLT

READ & EXECUTE

WRITEBACK

L ADDRESS DRIVE

L DATA

LOAD WRITEBACK

INTERNAL
CLOCK

FETCH

DECODE

BRANCH DECODE

BRANCH EXECUTE

BRANCH FINAL
DECISION

RCPU BR PRED EX
 MOTOROLA INSTRUCTION TIMING RCPU

7-24 Revised 1 February 1999 REFERENCE MANUAL


	SECTION 7 INSTRUCTION TIMING
	7.1 Instruction Flow
	7.1.1 Instruction Sequencer Data Path
	7.1.2 Instruction Issue
	7.1.3 Basic Instruction Pipeline

	7.2 Execution Unit Timing Details
	7.2.1 Integer Unit (IU)
	7.2.1.1 Update of the XER During Divide Instructions

	7.2.2 Floating Point Unit (FPU)
	7.2.3 Load/Store Unit (LSU)
	7.2.3.1 Load/Store Instruction Issue
	7.2.3.2 Load/Store Synchronizing Instructions
	7.2.3.3 Load/Store Instruction Timing Summary
	7.2.3.4 Bus Cycles for String Instructions
	7.2.3.5 Stalls During Floating-Point Store Instructions

	7.2.4 Branch Processing Unit (BPU)

	7.3 Serialization
	7.3.1 Execution Serialization
	7.3.2 Fetch Serialization

	7.4 Context Synchronization
	7.5 Implementation of Special-Purpose Registers
	7.6 Instruction Execution Timing
	7.7 Instruction Execution Timing Examples
	7.7.1 Load from Internal Memory Example
	7.7.2 Write-Back Arbitration Examples
	7.7.3 Load with Private Write-Back Bus
	7.7.4 Fastest External Load Example
	7.7.5 History Buffer Full Example
	7.7.6 Store and Floating-Point Example
	7.7.7 Branch Folding Example
	7.7.8 Branch Prediction Example



