
SECTION 8
DEVELOPMENT SUPPORT

Development tools are used by a microcomputer system developer to debug the
hardware and software of a target system. These tools are used to give the devel-
oper some control over the execution of the target program. In-circuit emulators
and bus state analyzers are the most frequently used debugging tools. In order for
these tools to function properly, they must have full visibility of the microprocessor’s
buses.

Visibility extends beyond the address and data portions of the buses and includes
attribute and handshake signals. In some cases it may also include bus arbitration
signals and signals which cause processor exceptions such as interrupts and re-
sets. The visibility requirements of emulators and bus analyzers are in opposition
to the trend of modern microcomputers and microprocessors where the CPU bus
may be hidden behind a memory management unit or cache or where bus cycles
to internal resources are not visible externally.

The development tool visibility requirements may be reduced if some of the devel-
opment support functions are included in the silicon. For example, if the bus com-
parator part of a bus analyzer or breakpoint generator is included on the chip, it is
not necessary for the entire bus to be visible at all times. In many cases the visibility
requirements may be reduced to instruction fetch cycles for tracking program exe-
cution. If some additional status information is also available to assist in execution
tracking and the development tool has access to the source code, then the only
need for bus visibility is often the destination address of indirect change-of-flow in-
structions (return from subroutine, return from interrupt, and indexed branches and
jumps).

Since full bus visibility reduces available bus bandwidth and processor perfor-
mance, certain development support functions have been included in the MCU.
These functions include the following:

• Controls to limit which internal bus cycles are reflected on the external bus
(show cycles)

• CPU status signals to allow instruction execution tracking with minimal visibil-
ity of the instructions being fetched

• Watchpoint comparators that can generate breakpoints or signal an external
bus analyzer

• A serial development port for general emulation control

8.1 Program Flow Tracking

The exact program flow is visible on the external bus only when the processor is
programmed to show all fetch cycles on the external bus. This mode is selected by
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-1

programming the ISCTL (instruction fetch show cycle control) field in the I-bus
support control register (ICTRL), as shown in Table 8-2. In this mode, the proces-
sor is fetch serialized, and all internal fetch cycles appear on the external bus. Pro-
cessor performance is therefore much lower than when working in regular mode.

The mechanism described below allows tracking of the program instructions flow
with almost no performance degradation. The information provided externally may
be captured and compressed and then parsed by a post-processing program using
the microarchitecture defined below.

The RCPU implements a prefetch queue combined with parallel, out of order, pipe-
lined execution. Instructions progress inside the processor from fetch to retire. An
instruction retires from the machine only after it, and all preceding instructions, fin-
ish execution with no exception. Therefore only retired instructions can be consid-
ered architecturally executed.

These features, together with the fact that most fetch cycles are performed inter-
nally (e.g., from the I-cache), increase performance but make it very difficult to pro-
vide the user with the real program trace.

In order to reconstruct a program trace, the program code and the following addi-
tional information from the MCU are needed:

• A description of the last fetched instruction (stall, sequential, branch not taken,
branch direct taken, branch indirect taken, exception taken).

• The addresses of the targets of all indirect flow change. Indirect flow changes
include all branches using the link and count registers as the target address,
all exceptions, and rfi and mtmsr because they may cause a context switch.

• The number of instructions canceled each clock.

Reporting on program trace during retirement would significantly complicate the
visibility support and increase the die size. (Complications arise because more
than one instruction can retire in a clock cycle, and because it is harder to report
on indirect branches during retirement.) Therefore, program trace is reported dur-
ing fetch. Since not all fetched instructions eventually retire, an indication on can-
celed instructions is reported.

Instructions are fetched sequentially until branches (direct or indirect) or excep-
tions appear in the program flow or some stall in execution causes the machine not
to fetch the next address. Instructions may be architecturally executed, or they may
be canceled in some stage of the machine pipeline.

The following sections define how this information is generated and how it should
be used to reconstruct the program trace. The issue of data compression that could
reduce the amount of memory needed by the debug system is also mentioned.

8.1.1 Indirect Change-of-Flow Cycles

An indirect change-of-flow attribute is attached to all fetch cycles that result from
indirect flow changes. Indirect flow changes include the following types of instruc-
tions or events:
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-2 Revised 1 February 1999 REFERENCE MANUAL

• Assertion or negation of VSYNC.
• Exception taken.
• Indirect branch taken.
• Execution of the following sequential instructions: rfi, isync, mtmsr, and

mtspr to CMPA–CMPF, ICTRL, ECR, and DER.

When a program trace recording is needed, the user can ensure that cycles that
result from an indirect change-of-flow are visible on the external bus. The user can
do this in one of two ways: by setting the VSYNC bit, or by programming the ISCTL
bits in the I-bus support control register. Refer to 8.1.2 Instruction Fetch Show
Cycle Control for more information.

When the processor is programmed to generate show cycles on the external bus
resulting from indirect change-of-flow, these cycles can generate regular bus cy-
cles (address phase and data phase) when the instructions reside in one of the ex-
ternal devices, or they can generate address-only show cycles for instructions that
reside in an internal device such as I-cache or internal ROM.

8.1.1.1 Marking the Indirect Change-of-Flow Attribute

When an instruction fetch cycle that results from an indirect change-of-flow is an
internal access (e.g., access to an internal memory location, or a cache hit during
an access to an external memory address), the indirect change-of-flow attribute is
indicated by the assertion (low) of the WR pin during the external bus show cycle.

When an instruction fetch cycle that results from an indirect change-of-flow is an
access to external memory not resulting in a cache hit, the indirect change-of-flow
attribute is indicated by the value 0001 on the CT[0:3] pins.

Table 8-1 summarizes the encodings that represent the indirect change-of-flow at-
tribute. In all cases the AT1 pin is asserted (high), indicating the cycle is an instruc-
tion fetch cycle.

Refer to 8.1.3 Program Flow-Tracking Pins for more information on the use of
these pins for program flow tracking.

8.1.1.2 Sequential Instructions with the Indirect Change-of-Flow Attribute

Because certain sequential instructions (rfi, isync, mtmsr, and mtspr to CMPA –
CMPF, ICTRL, ECR, and DER) affect the machine in a manner similar to indirect

Table 8-1 Program Trace Cycle Attribute Encodings

CT[0:3] AT1 WR Type of Bus Cycle

0001 1 1 External bus cycle

01xx,
10xx,
110x

1 0 Show cycle on the external bus reflecting
an access to internal register or memory
or a cache hit
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-3

branch instructions, the processor marks these instructions as indirect branch in-
structions (VF = 101, see Table 8-3) and marks the subsequent instruction address
with the indirect change-of-flow attribute, as if it were an indirect branch target.
Therefore, when the processor detects one of these instructions, the address of the
following instruction is visible externally. This enables the reconstructing software
to correctly evaluate the effect of these instructions.

8.1.2 Instruction Fetch Show Cycle Control

Instruction fetch show cycles are controlled by the bits in the ICTRL and the state
of VSYNC, as illustrated in Table 8-2.

Note that when the value of the ISCTL field is changed (with the mtspr instruction),
the new value does not take effect until two instructions after the mtspr instruction.
The instruction immediately following mtspr is under control of the old ISCTL val-
ue.

In order to keep the pin count of the chip as low as possible, VSYNC is not imple-
mented as an external pin; rather, it is asserted and negated using the develop-
ment port serial interface. For more information on this interface refer to 8.3.5 Trap-
Enable Input Transmissions.

The assertion and negation of VSYNC forces the machine to synchronize and the
first fetch after this synchronization to be marked as an indirect change-of-flow cy-
cle and to be visible on the external bus. This enables the external hardware to syn-
chronize with the internal activity of the processor.

When either VSYNC is asserted or the ISCTL bits in the I-bus control register are
programmed to a value of 0b10, cycles resulting from an indirect change-of-flow
are shown on the external bus. By programming the ISCTL bits to show all indirect
flow changes, the user can thus ensure that the processor maintains exactly the
same behavior when VSYNC is asserted as when it is negated. The loss of perfor-
mance the user can expect from the additional external bus cycles is minimal.

For additional information on the ISCTL bits and the ICTRL register, refer to 8.8 De-
velopment Support Registers. For more information on the use of VSYNC during
program trace, refer to 8.1.4 External Hardware During Program Trace.

Table 8-2 Fetch Show Cycles Control

VSYNC ISCTL (Instruction Fetch
Show Cycle Control Bits)

Show Cycles Generated

X 00 All fetch cycles

X 01 All change-of-flow (direct & indirect)

X 10 All indirect change-of-flow

0 11 No show cycles are performed

1 11 All indirect change-of-flow
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-4 Revised 1 February 1999 REFERENCE MANUAL

8.1.3 Program Flow-Tracking Pins

The following sets of pins are used in program flow tracking:

• Instruction queue status pins (VF[0:2]) denote the type of the last fetched in-
struction or how many instructions were flushed from the instruction queue.

• History buffer flushes status pins (VFLS [0:1]) denote how many instructions
were flushed from the history buffer during the current clock cycle.

• Address type pin 1 (AT1) indicates whether the cycle is transferring an instruc-
tion or data.

• The write/read pin (WR), when asserted during an instruction fetch show cy-
cle, indicates the current cycle results from an indirect change-of-flow.

• Cycle type pins (CT[0:3]) indicate the type of bus cycle and are used to deter-
mine the address of an internal memory or register that is being accessed.

8.1.3.1 Instruction Queue Status Pins

Instruction queue status pins VF[0:2] indicate the type of the last fetched instruction
or how many instructions were flushed from the instruction queue. These status
pins are used for both functions because queue flushes occur only during clock cy-
cles in which there is no fetch type information to be reported.

Table 8-3 shows the possible instruction types.

Table 8-4 shows VF[0:2] encodings for instruction queue flush information.

Table 8-3 VF Pins Instruction Encodings

VF[0:2] Instruction Type VF Next Clock Will Hold

000 None More instruction type information

001 Sequential More instruction type information

010 Branch (direct or indirect) not taken More instruction type information

011 VSYNC was asserted/negated and therefore the
next instruction will be marked with the indirect
change-of-flow attribute

More instruction type information

100 Exception taken — the target will be marked with
the program trace cycle attribute

Queue flush information1

NOTES:
1. Unless next clock VF=111. See below.

101 Branch indirect taken, rfi, mtmsr, isync and in
some cases mtspr to CMPA-F, ICTRL, ECR, or
DER — the target will be marked with the indirect
change-of-flow attribute2

2. The sequential instructions listed here affect the machine in a manner similar to indirect branch instructions.
Refer to 8.1.1.2 Sequential Instructions with the Indirect Change-of-Flow Attribute.

Queue flush information1

110 Branch direct taken Queue flush information1

111 Branch (direct or indirect) not taken Queue flush information1
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-5

There is one special case in which although queue flush information is expected
on the VF[0:2] pins (according to the immediately preceding value on these pins),
regular instruction type information is reported. The only instruction type informa-
tion that can appear in this case is VF[0:2] = 111, indicating branch (direct or indi-
rect) not taken. Since the maximum queue flushes possible is five, identifying this
special case is not a problem.

8.1.3.2 History Buffer Flush Status Pins

History buffer flush status pins VFLS[0:1] indicate how many instructions are
flushed from the history buffer this clock. Table 8-4 shows VFLS encodings.

8.1.3.3 Flow-Tracking Status Pins in Debug Mode

When the processor is in debug mode, the VF[0:2] signals are low (000) and the
VFLS[0:1] signals are high (11).

If VSYNC is asserted or negated while the processor is in debug mode, this infor-
mation is reported as the first VF pins report when the processor returns to regular

Table 8-4 VF Pins Queue Flush Encodings

VF[0:2] Queue Flush Information

000 0 instructions flushed from instruction queue

001 1 instruction flushed from instruction queue

010 2 instructions flushed from instruction queue

011 3 instructions flushed from instruction queue

100 4 instructions flushed from instruction queue

101 5 instructions flushed from instruction queue

110 Reserved

111 Instruction type information1

NOTES:
1. Refer to Table 8-3.

Table 8-5 VFLS Pin Encodings

VFLS[0:1] History Buffer Flush Information

00 0 instructions flushed from history queue

01 1 instruction flushed from history queue

10 2 instructions flushed from history queue

11 Used for debug mode indication (FREEZE). Program trace
external hardware should ignore this setting.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-6 Revised 1 February 1999 REFERENCE MANUAL

mode. If VSYNC was not changed while the processor is in debug mode, the first
VF pins report is of an indirect branch taken (VF[0:2] = 101), appropriate for the rfi
instruction that is being issued. In both cases, the first instruction fetch after debug
mode is marked with the program trace cycle attribute and therefore is visible ex-
ternally.

8.1.3.4 Cycle Type, Write/Read, and Address Type Pins

Cycle type pins (CT[0:3]) indicate the type of bus cycle being performed. During
show cycles, these pins are used to determine the internal address being
accessed. Table 8-6 summarizes cycle type encodings.

Table 8-6 Cycle Type Encodings

CT[0:3] Description

0000 Normal external bus cycle

0001 If address type is data (AT1 = 0), this is a data access to the external bus
and the start of a reservation.
If address type is instruction (AT1=1), this cycle type indicates that an
external address is the destination of an indirect change-of-flow.

0010 External bus cycle to emulation memory replacing internal I-bus or L-bus
memory. An instruction access (AT1 = 1) with an address that is the target
of an indirect change-of-flow is indicated as a logic level zero on the WR
output.

0011 Normal external bus cycle access to a port replacement chip used for
emulation support.

0100 Access to internal I-bus memory. An instruction access (AT1 = 1) with an
address that is the target of an indirect change-of-flow is indicated as a
logic level zero on the WR output.

0101 Access to internal L-bus memory. An instruction access (AT1 = 1) with an
address that is the target of an indirect change-of-flow is indicated as a
logic level zero on the WR output.

0110 Cache hit on external memory address not controlled by chip selects. An
instruction access (AT1 = 1) with an address that is the target of an indirect
change-of-flow is indicated as a logic level zero on the WR output.

0111 Access to an internal register.

1000
1001
1010
1011
1100
1101

Cache hit on external memory address controlled by CSBOOT.
Cache hit on external memory address controlled by CS1.
Cache hit on external memory address controlled by CS2.
Cache hit on external memory address controlled by CS3.
Cache hit on external memory address controlled by CS4.
Cache hit on external memory address controlled by CS5.

An instruction access (AT1 = 1) with an address that is the target of an
indirect change-of-flow is indicated as a logic level zero on the WR output.

1110 Reserved

1111
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-7

Notice in Table 8-6 that during an instruction fetch (AT1 = 1) to internal memory or
to external memory resulting in a cache hit, a logic level of zero on the WR pin in-
dicates that the cycle is the result of an indirect change-of-flow. The indirect
change-of-flow attribute is also indicated by a cycle type encoding of 0001 when
AT1 = 1. Refer to 8.1.1.1 Marking the Indirect Change-of-Flow Attribute for ad-
ditional information.

8.1.4 External Hardware During Program Trace

When program trace is needed, external hardware needs to record the status pins
(VF[0:2] and VFLS[0:1]) of each clock and record the address of all cycles marked
with the indirect change-of-flow attribute.

Program trace can be used in various ways. Two types of traces that can be imple-
mented are the back trace and the window trace.

8.1.4.1 Back Trace

A back trace provides a record of the program trace before some event occurred.
An example of such an event is some system failure.

When a back trace is needed, the external hardware should start sampling the sta-
tus pins and the address of all cycles marked with the indirect change-of-flow at-
tribute immediately after reset is negated. Since the ISCTL field in the ICTRL has
a value of is 0b00 (show all cycles) out of reset, all cycles marked with the indirect
change-of-flow attribute are visible on the external bus. VSYNC should be asserted
sometime after reset and negated when the programmed event occurs. VSYNC
must be asserted before the ISCTL encoding is changed to 0b11 (no show cycles),
if such an encoding is selected.

Note that in case the timing of the programmed event is unknown, it is possible to
use cyclic buffers.

After VSYNC is negated, the trace buffer will contain the program flow trace of the
program executed before the programmed event occurred.

8.1.4.2 Window Trace

Window trace provides a record of the program trace between two events. VSYNC
should be asserted between these two events.

After VSYNC is negated, the trace buffer will contain information describing the
program trace of the program executed between the two events.

8.1.4.3 Synchronizing the Trace Window to Internal CPU Events

In order to synchronize the assertion or negation of VSYNC to an event internal to
the processor, internal breakpoints can be used together with debug mode. This
method is available only when debug mode is enabled. (Refer to 8.4 Debug Mode
Functions.)

The following steps enable the user to synchronize the trace window to events in-
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-8 Revised 1 February 1999 REFERENCE MANUAL

ternal to the processor:

1. Enter debug mode, either immediately out of reset or using the debug mode
request.

2. Program the hardware to break on the event that marks the start of the trace
window using the control registers defined in 8.8 Development Support
Registers.

3. Enable debug mode entry for the programmed breakpoint in the debug en-
able register (DER).

4. Return to the regular code run.
5. The hardware generates a breakpoint when the programmed event is de-

tected, and the machine enters debug mode.
6. Program the hardware to break on the event that marks the end of the trace

window.
7. Assert VSYNC.
8. Return to the regular code run. The first report on the VF pins is a VSYNC

(VF[0:2] = 011).
9. The external hardware starts sampling the program trace information upon

the report on the VF pins of VSYNC.
10. The hardware generates a breakpoint when the programmed event is de-

tected, and the machine enters debug mode.
11. Negate VSYNC.
12. Return to the regular code run. The first report on the VF pins is a VSYNC

(VF[0:2] = 011).
13. The external hardware stops sampling the program trace information upon

the report on the VF pins of VSYNC.

A second method allows the trace window to be synchronized to internal processor
events without stopping execution and entering debug mode at the two events.

1. Enter debug mode, either immediately out of reset or using the debug mode
request.

2. Program a watchpoint for the event that marks the start of the trace window
using the control registers defined in 8.8 Development Support Registers.

3. Program a second watchpoint for the event that marks the end of the trace
window.

4. Return to regular code execution by exiting debug mode.
5. The watchpoint logic signals the starting event by asserting the appropriate

watchpoint pin.
6. Upon detecting the first watchpoint, assert VSYNC using the development

port serial interface.
7. The external program trace hardware starts sampling the program trace in-

formation upon the report on the VF pins of VSYNC.
8. The watchpoint logic signals the ending event by asserting the appropriate

watchpoint pin.
9. Upon detecting the second watchpoint, negate VSYNC using the develop-

ment port serial interface.
10. The external program trace hardware stops sampling the program trace in-

formation upon the report on VF[0:1] of VSYNC.
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-9

The second method is not as precise as the first method because of the delay be-
tween the assertion of the watchpoint pins and the assertion or negation of VSYNC
using the development port serial interface. It has the advantage, however, of al-
lowing the program to run in quasi-real time (slowed only by show cycles on the
external bus), instead of stopping execution at the starting and ending events.

8.1.4.4 Detecting the Trace Window Starting Address

For a back trace, the value of the status pins (VF[0:2] and VFLS[0:1]) and the ad-
dress of the cycles marked with the indirect change-of-flow attribute should be
latched starting immediately after the negation of reset. The starting address is the
first address in the program trace cycle buffer.

For a window trace, the value of the status pins and the address of the cycles
marked with the indirect change-of-flow attribute should be latched beginning im-
mediately after the first VSYNC is reported on the VF pins. The starting address of
the trace window should be calculated according to the first two VF pin reports.

Assume VF1 and VF2 are the two first VF pin reports and T1 and T2 are the ad-
dresses of the first two cycles marked with the indirect change-of-flow attribute that
were latched in the trace buffer. Use Table 8-7 to calculate the trace window start-
ing address.

8.1.4.5 Detecting the Assertion or Negation of VSYNC

Since the VF pins are used for reporting both instruction type information and
queue flush information, the external hardware must take special care when trying
to detect the assertion or negation of VSYNC. A VF[0:2] encoding of 011 indicates
the assertion or negation of VSYNC only if the previous VF[0:2] pin values were
000, 001, or 010.

8.1.4.6 Detecting the Trace Window Ending Address

The information on the VF and VFLS status pins changes every clock. Cycles
marked with the indirect change-of-flow are generated on the external bus only
when possible (when the SIU wins the arbitration over the external bus). Therefore,

Table 8-7 Detecting the Trace Buffer Starting Point

VF1 VF2 Starting Point Description

011
VSYNC

001
Sequential

T1 VSYNC asserted followed by a sequential
instruction. The starting address is T1.

011
VSYNC

110
Branch direct
taken

T1 – 4 +
offset(T1 – 4)

VSYNC asserted followed by a taken direct branch.
The starting address is the target of the direct
branch.

011
VSYNC

101
Branch indirect
taken

T2 VSYNC asserted followed by a taken indirect
branch. The starting address is the target of the
indirect branch.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-10 Revised 1 February 1999 REFERENCE MANUAL

there is some delay between the time it is reported on the status pins that a cycle
marked as program trace cycle will be performed on the external bus and the actual
time that this cycle can be detected on the external bus.

When the user negates VSYNC, the processor delays the report of the assertion
or negation of VSYNC on the VF pins until all addresses marked with the indirect
change-of-flow attribute have been made visible externally. Therefore, the external
hardware should stop sampling the value of the status pins (VF and VFLS) and the
address of the cycles marked with the program trace cycle attribute immediately
after the VSYNC report on the VF pins.

CAUTION

The last two instructions reported on the VF pins are not always valid.
Therefore, at the last stage of the reconstruction software, the last
two instructions should be ignored.

8.1.5 Compress

In order to store all the information generated on the pins during program trace (5
bits per clock + 30 bits per show cycle) a large memory buffer may be needed.
However, since this information includes events that were canceled, compression
can be very effective. External hardware can be added to eliminate all canceled in-
structions and report only on branches (taken and not taken), indirect flow change,
and the number of sequential instructions after the last flow change.

8.2 Watchpoint and Breakpoint Support

The RCPU provides the ability to detect specific bus cycles, as defined by a user
(watchpoints). It also provides the ability to conditionally respond to these watch-
points by taking an exception (internal breakpoints). Breakpoints can also be
caused by an event or state in a peripheral or through the development port (exter-
nal breakpoints, (i.e., breakpoints external to the processor)).

When a watchpoint is detected, it is reported to external hardware on dedicated
pins. Watchpoints do not change the timing or flow of the processor. Because bus
cycles on the internal MCU buses are not necessarily visible on the external bus,
the watchpoints are a convenient way to signal an external instrument (such as a
bus state analyzer or oscilloscope) that the internal bus cycle occurred.

An internal breakpoint occurs when a particular watchpoint is enabled to generate
a breakpoint. A watchpoint may be enabled to generate a breakpoint from a soft-
ware monitor or by using the development port serial interface. A watchpoint output
may also be counted. When the counter reaches zero, an internal breakpoint is
generated.

An external breakpoint occurs when a development system or external peripheral
requests a breakpoint through the development port serial interface. In addition, if
an on-chip peripheral requests a breakpoint, an external breakpoint is generated.
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-11

All internal breakpoints are masked by the MSR[RI] bit unless the non-masked con-
trol bit (BRKNOMSK) in LCTRL2 is set. The development port maskable break-
point and breakpoints from internal peripherals are masked by the MSR[RI] bit. The
development port non-maskable breakpoint is not masked by this bit.

Figure 8-1 is a diagram of watchpoint and breakpoint support in the RCPU.

Figure 8-1 Watchpoint and Breakpoint Support in the RCPU

8.2.1 Watchpoints

Watchpoints are based on eight comparators on the I-bus and L-bus, two counters,
and two AND-OR logic structures. There are four comparators on the instruction
address bus (I-address), two comparators on the load/store address bus (L-ad-
dress), and two comparators on the load/store data bus (L-data).

BREAKPOINT

NON-MASKABLE BREAKPOINT

MSRRI

WATCHPOINTS

TO WATCHPOINTS

MASKABLE BREAKPOINT

DEVELOPMENT PORT TRAP ENABLE BITS

COUNTERS

(NON-MASKED CONTROL BIT)

SOFTWARE TRAP ENABLE BITS

TO CPU

INTERNAL

PERIPHERALS

X
X

X BIT WISE AND

BIT WISE ORXX

INTERNAL

WATCHPOINTS

LOGIC

DEVELOPMENT

PORT

LCTRL2

MSR

DEVELOPMENT

SYSTEM OR

EXTERNAL

PERIPHERALS

PINS

WATCH/BREAK SUPPORT
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-12 Revised 1 February 1999 REFERENCE MANUAL

The comparators are able to detect the following conditions: equal, not equal,
greater than, and less than. Greater than or equal and less than or equal are easily
obtained from these four conditions. (For more information refer to 8.2.1.3 Gener-
ating Six Compare Types.) Using the AND-OR logic structures, in range and out
of range detection (on address and on data) are supported. Using the counters, it
is possible to program a breakpoint to be generated after an event is detected a
predefined number of times.

The L-data comparators can operate on integer data, floating-point single-preci-
sion data, and the integer value stored using the stfiwx instruction. Integer com-
parisons can be performed on bytes, half words, and words. The operands can be
treated as signed or unsigned values.

The comparators generate match events. The I-bus match events enter the I-bus
AND-OR logic, where the I-bus watchpoints and breakpoint are generated. When
asserted, the I-bus watchpoints may generate the I-bus breakpoint. Two of them
may decrement one of the counters. When a counter that is counting one of the
I-bus watchpoints expires, the I-bus breakpoint is asserted.

The I-bus watchpoints and the L-bus match events (address and data) enter the
L-bus AND-OR logic where the L-bus watchpoints and breakpoint are generated.
When asserted, the L-bus watchpoints may generate the L-bus breakpoint, or they
may decrement one of the counters. When a counter that is counting one of the
L-bus watchpoints expires, the L-bus breakpoint is asserted.

L-bus watchpoints can be qualified by I-bus watchpoints. If qualified, the L-bus
watchpoint occurs only if the L-bus cycle was the result of executing an instruction
that caused the qualifying I-bus watchpoint.

A watchpoint progresses in the machine along with the instruction that caused it
(fetch or load/store cycle). Watchpoints are reported on the external pins when the
associated instruction is retired.

8.2.1.1 Restrictions on Watchpoint Detection

There are cases when the same watchpoint can be detected more than once dur-
ing the execution of a single instruction. For example, the processor may detect an
L-bus watchpoint on more than one transfer when executing a load/store multiple
or string instruction or may detect an L-bus watchpoint on more than one byte when
working in byte mode. In these cases only one watchpoint of the same type is re-
ported for a single instruction. Similarly, only one watchpoint of the same type can
be counted in the counters for a single instruction.

Since watchpoint events are reported upon the retirement of the instruction that
caused the event, and more than one instruction can retire from the machine in one
clock, separate watchpoint events may be reported in the same clock. Moreover,
the same event, if detected on more than one instruction (e.g., tight loops, range
detection), in some cases is reported only once. However, the internal counters still
count correctly.
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-13

8.2.1.2 Byte and Half-Word Working Modes

Watchpoint and breakpoint support enables the user to detect matches on bytes
and half words even when accessed using a load/store instruction of larger data
widths, e.g. when loading a table of bytes using a series of load word instructions.

To use this feature the user needs to program the byte mask for each of the L-data
comparators and to write the needed match value to the correct half word of the
data comparator when working in half word mode and to the correct bytes of the
data comparator when working in byte mode.

Since bytes and half words can be accessed using a larger data width instruction,
the user cannot predict the exact value of the L-address lines when the requested
byte or half word is accessed. For example, if the matched byte is byte two of the
word and it is accessed using a load word instruction, the L-address value will be
of the word (byte zero). Therefore the processor masks the two least significant bits
of the L-address comparators whenever a word access is performed and the least
significant bit whenever a half word access is performed. Address range is support-
ed only when aligned according to the access size.

The following examples illustrate how to detect matches on bytes and half words.

1. A fully supported scenario:
Looking for:

Data size: Byte
Address: 0x0000 0003
Data value: greater than 0x07 and less than 0x0C

Programming option:
One L-address comparator = 0x0000 0003 and program for equal
One L-data comparator = 0xXXXX XXX7 and program for greater than
One L-data comparator = 0xXXXX XXXC and program for less than
Both byte masks = 0b0001
Both L-data comparators program to byte mode

Result: The event will be detected regardless of the instruction the compiler
chooses for this access

2. A fully supported scenario:
Looking for:

Data size: Half word
Address: greater than 0x0000 0000 and less than 0x0000 000C
Data value: greater than 0x4E20 and less than 0x9C40

Programming option:
One L-address comparator = 0x0000 0000 and program for greater than
One L-address comparator = 0x0000 000C and program for less than
One L-data comparator = 0x4E20 4E20 and program for greater than
One L-data comparator = 0x9C40 9C40 and program for less than
Both byte masks = 0b1111
Both L-data comparators program to half word mode

Result: The event will be detected correctly provided that the compiler does not use
a load/store instruction with data size of byte.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-14 Revised 1 February 1999 REFERENCE MANUAL

3. A partially supported scenario:
Looking for:

Data size: Half word
Address: greater than 0x0000 0002 and less than 0x0000 000E
Data value: greater than 0x4E20 and less than 0x9C40

Programming option:
One L-address comparator = 0x0000 0002 and program for greater than
One L-address comparator = 0x0000 000E and program for less than
One L-data comparator = 0x4E20 4E20 and program for greater than
One L-data comparator = 0x9C40 9C40 and program for less than
Both byte masks = 0b1111
Both L-data comparators program to half word mode or to word mode

Result: The event will be detected correctly if the compiler chooses a load/store
instruction with data size of half word. If the compiler chooses load/store instruc-
tions with data size greater than half word (word, multiple), there might be some
false detections. These can be ignored only by the software that handles the break-
points. Figure 8-2 illustrates this partially supported scenario.

Figure 8-2 Partially Supported Watchpoint/Breakpoint Example

8.2.1.3 Generating Six Compare Types

Using the four basic compare types (equal, not equal, greater than, less than), it is
possible to generate two additional compare types: “greater than or equal” and
“less than or equal.”

The “greater than or equal” compare type can be generated using the greater than
compare type and programming the comparator to the needed value minus one.

The “less than or equal” compare type can be generated using the less than com-
pare type and programming the comparator to the needed value plus one.

This method does not work for the following boundary cases:

• Less than or equal of the largest unsigned number (1111...1)
• Greater than or equal of the smallest unsigned number (0000...0)

WATCH/BREAK EXAMPLE

0x0000_0000
0x0000_0004
0x0000_0008
0x0000_000c
0x0000_0010

POSSIBLE FALSE DETECT ON THESE
HALF WORDS WHEN USING WORD/MULTIPLE
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-15

• Less than or equal of the maximum positive number when in signed mode
(0111...1)

• Greater than or equal of the maximum negative number when in signed mode
(1000...)

These boundary cases need no special support because they all mean “always
true” and can be programmed using the ignore option of the L-bus watchpoint pro-
gramming (refer to 8.8 Development Support Registers).

8.2.1.4 I-Bus Support Detailed Description

There are four I-bus address comparators (comparators A,B,C,D). Each is 30 bits
long and generates two output signals: equal and less than. These signals are
used to generate one of the following four events: equal, not equal, greater than,
less than. Figure 8-3 shows the general structure of I-bus support.

Figure 8-3 I-Bus Support General Structure

The I-bus watchpoints and breakpoint are generated using these events and ac-
cording to the user’s programming of the CMPA, CMPB, CMPC, CMPD, and IC-

COMPARATOR

EQ

LT

COMPARE TYPE

COMPARATOR

EQ

LT

COMPARATOR

EQ

LT

COMPARATOR

EQ

LT

E
V

E
N

T
S

 G
E

N
E

R
A

T
O

R

AND-OR

LOGIC

CONTROL BITS

A

B

(A&B)

(A | B)

C

D

(C&D)

(C | D)

I-WATCHPOINT 0

I-WATCHPOINT 1

I-BREAKPOINT

I-WATCHPOINT 2

I-WATCHPOINT 3

COMPARE

TYPE

LOGIC

COMPARE

TYPE

LOGIC

COMPARE

TYPE

LOGIC

COMPARE

TYPE

LOGIC
B

C

D

A

I-BUS SUPPORT
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-16 Revised 1 February 1999 REFERENCE MANUAL

TRL registers. Table 8-8 shows how watchpoints are determined from the
programming options. Note that using the OR option enables “out of range” detec-
tion.

8.2.1.5 L-Bus Support Detailed Description

There are two L-bus address comparators (comparators E and F). Each compares
the 32 address bits and the cycle’s read/write attribute. The two least significant
bits are masked (ignored) whenever a word is accessed, and the least significant
bit is masked whenever a half word is accessed. (For more information refer to
8.2.1.2 Byte and Half-Word Working Modes). Each comparator generates two
output signals: equal and less than. These signals are used to generate one of the
following four events (one from each comparator): equal, not equal, greater than,
less than.

There are two L-bus data comparators (comparators G and H). Each is 32 bits wide
and can be programmed to treat numbers either as signed values or as unsigned
values. Each data comparator operates as four independent byte comparators.
Each byte comparator has a mask bit and generates two output signals, equal and
less than, if the mask bit is not set. Therefore, each 32-bit comparator has eight
output signals.

These signals are used to generate the “equal and less than” signals according to
the compare size programmed by the user (byte, half word, word). In byte mode all
signals are significant. In half word mode only four signals from each 32-bit com-
parator are significant. In word mode only two signals from each 32-bit comparator
are significant.

From the new “equal and less than” signals, depending on the compare type pro-
grammed by the user, one of the following four match events is generated: equal,
not equal, greater than, less than. Therefore from the two 32-bit comparators, eight
match indications are generated: Gmatch[0:3], Hmatch[0:3].

According to the lower bits of the address and the size of the cycle, only match in-
dications that were detected on bytes that have valid information are validated; the

Table 8-8 I-bus Watchpoint Programming Options

Name Description Programming Options

IW0 First I-bus watchpoint Comparator A
Comparators (A&B)

IW1 Second I-bus watchpoint Comparator B
Comparator (A | B)

IW2 Third I-bus watchpoint Comparator C
Comparators (C&D)

IW3 Fourth I-bus watchpoint Comparator D
Comparator (C | D)
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-17

rest are negated. Note that if the cycle executed has a smaller size than the com-
pare size (e.g., a byte access when the compare size is word or half word) no
match indication is asserted.

Figure 8-4 shows the general structure of L-bus support.

Figure 8-4 L-Bus Support General Structure

Using the match indication signals, four L-bus data events are generated as shown
in Table 8-9.

COMPARATOR G

BYTE 0
EQ

LT

COMPARE SIZECOMPARE TYPE

BYTE 1
EQ

LT

BYTE 2
EQ

LT

BYTE 3
EQ

LT

EQ

LT

EQ

LT

EQ

LT

EQ

LT

COMPARATOR H

BYTE 0
EQ

LT

BYTE 1
EQ

LT

BYTE 2
EQ

LT

BYTE 3
EQ

LT

EQ

LT

EQ

LT

EQ

LT

EQ

LT

A
D

D
(3

0:
31

)

L-
B

U
S

 C
Y

C
LE

 S
IZ

E

C
O

M
P

A
R

E
 S

IZ
E

V
A

LI
D

 0

V
A

LI
D

 1

V
A

LI
D

 2
V

A
LI

D
 3

G

H

(G&H)

(G | H)

I-
B

U
S

 W
A

T
C

H
P

O
IN

T
S

L-WATCHPOINT 0

L-WATCHPOINT 1

L-BREAKPOINT

SIZE

LOGIC

COMPARE BYTE

QUALIFIER

LOGIC
E

V
E

N
T

S
 G

E
N

E
R

A
T

O
R

AND-OR LOGICSIZE

LOGIC

BYTE

QUALIFIER

LOGIC

C
O

N
T

R
O

L
B

IT
S

E F
(E

&
F

)

(E
 |

F
)

EVENTS

GENERATOR

LT EQ LT EQ

COMPARE TYPE

TYPE

LOGIC

COMPARE

TYPE

LOGIC

BYTE MASK

BYTE MASK

COMPARATOR E

TYPE LOGIC

COMPARATOR F

TYPE LOGIC

L-BUS SUPPORT
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-18 Revised 1 February 1999 REFERENCE MANUAL

The four L-bus data events together with the match events of the L-bus address
comparators and the I-bus watchpoints are used to generate the L-bus watchpoints
and breakpoint according to the user’s programming of the CMPE, CMPF, CMPG,
CMPH, LCTRL1, and LCTRL2 registers. Table 8-10 shows how the watchpoints
are determined from the programming options.

8.2.1.6 Treating Floating-Point Numbers

The data comparators can detect match events on floating-point single precision
values in floating point load/store instructions. When floating point values are com-
pared, the comparators must be programmed to operate in signed word mode.

During the execution of a load/store instruction of a floating-point double operand,
the L-data comparators never generate a match. If L-data events are programmed
for don’t care (i.e., LCTRL2[LWOLADC] = 0), L-bus watchpoint and breakpoint
events can be generated from the L-address events, even if the instruction is a
load/store double instruction.

Table 8-9 L-Bus Data Events

Event name Event Function1

NOTES:
1. ‘&’ denotes a logical AND, ‘|’ denotes a logical OR

G (Gmatch0 | Gmatch1 | Gmatch2 | Gmatch3)

H (Hmatch0 | Hmatch1 | Hmatch2 | Hmatch3)

(G&H) ((Gmatch0 & Hmatch0) | (Gmatch1 & Hmatch1) | (Gmatch2 & Hmatch2) | (Gmatch3 &
Hmatch3))

(G | H) ((Gmatch0 | Hmatch0) | (Gmatch1 | Hmatch1) | (Gmatch2 | Hmatch2) | (Gmatch3 | Hmatch3))

Table 8-10 L-Bus Watchpoints Programming Options

Name Description I-bus events
programming

options

L-address events
programming options

L-data events
programming options

LW0 First
L-bus

watchpoint

IW0, IW1, IW2, IW3
or don’t care

Comparator E
Comparator F

Comparators (E&F)
Comparators (E | F)

or don’t care

Comparator G
Comparator H

Comparators (G&H)
Comparators (G | H)

or don’t care

LW1 Second
L-bus

watchpoint

IW0, IW1, IW2, IW3
or don’t care

Comparator E
Comparator F

Comparators (E&F)
Comparators (E | F)

or don’t care

Comparator G
Comparator H

Comparators (G&H)
Comparators (G | H)

or don’t care
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-19

8.2.2 Internal Breakpoints

Internal breakpoints are generated from the watchpoints. The user may enable a
watchpoint to create a breakpoint by setting the associated software trap enable bit
in the ICTRL or LCTRL2 register. This can be done by a software monitor program
executed by the MCU. An external development tool can also enable internal
breakpoints from watchpoints by setting the associated development port trap en-
able bit using the development port serial interface.

Internal breakpoints can also be generated by assigning a breakpoint counter to a
particular watchpoint. The counter counts down for each watchpoint, and a break-
point is generated when the counter reaches zero.

An internal breakpoint progresses in the machine along with the instruction that
caused it (fetch or load/store cycle). When a breakpoint reaches the top of the his-
tory buffer, the machine processes the breakpoint exception.

An instruction that causes an I-bus breakpoint is not retired. The processor branch-
es to the breakpoint exception routine before it executes the instruction. An instruc-
tion that causes an L-bus breakpoint is executed. The processor branches to the
breakpoint exception routine after it executes the instruction. The address of the
load/store cycle that generated the L-bus breakpoint is stored in the breakpoint ad-
dress register (BAR).

8.2.2.1 Breakpoint Counters

There are two 16-bit down counters. Each counter is able to count one of the I-bus
watchpoints or one of the L-bus watchpoints. Both generate the corresponding
breakpoint when they reach zero. If the instruction associated with the watchpoint
is not retired, the counter is adjusted back so that it reflects actual execution.

In the masked mode, the counters do not count watchpoints detected when
MSR[RI] = 0. See 8.2.4 Breakpoint Masking.

When counting watchpoints programmed on the actual instructions that alter the
counters, the counters will have unpredictable values. A sync instruction should be
inserted before a read of an active counter.

8.2.2.2 Trap-Enable Programming

The trap enable bits can be programmed by regular, supervisor-level software (by
writing to the ICTRL or LCTRL2 with the mtspr instruction) or “on the fly” using the
development port interface. For more information on the latter method, refer to
8.3.5 Trap-Enable Input Transmissions.

The value used by the breakpoints generation logic is the bit-wise OR of the soft-
ware trap enable bits (the bits written using the mtspr) and the development port
trap enable bits (the bits serially shifted using the development port).

All bits, the software trap-enable bits and the development port trap enable bits,
can be read from ICTRL and the LCTRL2 using mfspr. For the exact bits place-
ment refer to Table 8-30 and Table 8-32.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-20 Revised 1 February 1999 REFERENCE MANUAL

8.2.2.3 Ignore First Match

In order to facilitate the debugger utilities of “continue” and “go from x”, the option
to ignore the first match is supported for the I-bus breakpoints. When an I-bus
breakpoint is first enabled (as a result of the first write to the I-bus support control
register or as a result of the assertion of the MSR[RI] bit in masked mode), the first
instruction will not cause an I-bus breakpoint if the IFM (ignore first match) bit in the
I-bus support control register (ICTRL) is set (used for “continue”). This allows the
processor to be stopped at a breakpoint and then later to “continue” from that point
without the breakpoint immediately stopping the processor again before executing
the first instruction.

When the IFM bit is cleared, every matched instruction can cause an I-bus break-
point (used for “go from x,” where x is an address that would not cause a break-
point).

The IFM bit is set by the software and cleared by the hardware after the first I-bus
breakpoint match is ignored.

Since L-bus breakpoints are treated after the instruction is executed, L-bus break-
points and counter-generated I-bus breakpoints are not affected by this mode.

8.2.3 External Breakpoints

Breakpoints external to the processor can come from either an on-chip peripheral
or from the development port. For additional information on breakpoints from on-
chip peripherals, consult the user’s manual for the microcontroller of interest or the
reference manual for the peripheral of interest.

The development port serial interface can be used to assert either a maskable or
non-maskable breakpoint. Refer to 8.3.5 Trap-Enable Input Transmissions for
more information about generating breakpoints from the development port. The de-
velopment port breakpoint bits remain asserted until they are cleared; however,
they cause a breakpoint only when they change from cleared to set. If they remain
set, they do not cause an additional breakpoint until they are cleared and set again.

External breakpoints are not referenced to any particular instruction; they are ref-
erenced to the current or following L-bus cycle. The breakpoint is taken as soon as
the processor completes an instruction that uses the L-bus.

8.2.4 Breakpoint Masking

The processor responds to two different types of breakpoints. The maskable
breakpoint is taken only if the processor is in a recoverable state. This means that
taking the breakpoint will not destroy any of the internal machine context. The pro-
cessor is defined to be in a recoverable state when the MSR[RI] (recoverable ex-
ception) bit is set. Maskable breakpoints are generated by the internal breakpoint
logic, modules on the IMB2, and the development port.

Non-maskable breakpoints cause the processor to stop without regard to the state
of the MSR[RI] bit. If the processor is in a non-recoverable state when the break-
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-21

point occurs, the state of the SRR0, SRR1, and the DAR may have been overwrit-
ten by the breakpoint. It will not be possible to restart the processor, since the
restart address and MSR context may not be available in SRR0 and SRR1.

Only the development port and the internal breakpoint logic are capable of gener-
ating a non-maskable breakpoint. This allows the user to stop the processor in cas-
es where it would otherwise not stop, but with the penalty that it may not be
restartable. The value of the MSR[RI] bit as saved in the SRR1 register indicates
whether the processor stopped in a recoverable state or not.

Internal breakpoints are made maskable or non-maskable by clearing or setting the
BRKNOMSK bit of the LCTRL2 register. Refer to 8.8.7 L-Bus Support Control
Register 2.

8.3 Development Port

The development port provides a full duplex serial interface for communications
between the internal development support logic, including debug mode, and an ex-
ternal development tool.

The relationship of the development support logic to the rest of the MCU is shown
in Figure 8-5. Although the development port is implemented as part of the system
interface unit (SIU), it is used in conjunction with RCPU development support fea-
tures and is therefore described in this section.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-22 Revised 1 February 1999 REFERENCE MANUAL

Figure 8-5 Development Port Support Logic

8.3.1 Development Port Signals

The following development port signals are provided:

• Development serial clock (DSCK)
• Development serial data in (DSDI)
• Development serial data out (DSDO)

The development port signal DSDO shares a pin with the PLLL signal.

8.3.1.1 Development Serial Clock

In clocked mode (see 8.3.3 Development Port Clock Mode Selection), the de-
velopment serial clock (DSCK) is used to shift data into and out of the development

DEVELOPMENT PORT

DEVELOPMENT PORT

RCPU

9

TECR

CONTROL LOGIC

SHIFT REGISTER
DSDI

DSCK

BKPT, TE,

VSYNC

PLLL/
DSDO

VFLS
(FRZ)

EXT
BUS

I-CACHE

L-BUS

I-BUS

32

32
SIU/
EBI

DEV SUPPORT LOGIC

DEV SUPPORT SPRs

BREAKPOINT LOGIC

SIU BUS

DEV
PORT
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-23

port shift register. The DSCK and DSDI inputs are synchronized to the on-chip sys-
tem clock, thereby minimizing the chance of propagating metastable states into the
serial state machine. The values of the pins are sampled during the low phase of
the system clock. At the rising edge of the system clock, the sampled values are
latched internally. One quarter clock later, the latched values are made available
to the development support logic.

In clocked mode, detection of the rising edge of the synchronized clock causes the
synchronized data from the DSDI pin to be loaded into the least significant bit of
the shift register. This transfer occurs one quarter clock after the next rising edge
of the system clock. At the same time, the new most significant bit of the shift reg-
ister is presented at the PLLL/DSDO pin. Future references to the DSCK signal im-
ply the internal synchronized value of the clock. The DSCK input must be driven
either high or low at all times and not allowed to float. A typical target environment
would pull this input low with a resistor.

To allow the synchronizers to operate correctly, the development serial clock fre-
quency must not exceed one half of the system clock frequency. The clock may be
implemented as a free-running clock. The shifting of data is controlled by ready and
start signals so the clock does not need to be gated with the serial transmissions.
(Refer to 8.3.5 Trap-Enable Input Transmissions and 8.3.6 CPU Input Trans-
missions.)

The DSCK pin is also used during reset to enable debug mode and immediately
following reset to optionally cause immediate entry into debug mode following re-
set. This is described in section 8.4.1 Enabling Debug Mode and 8.4.2 Entering
Debug Mode.

8.3.1.2 Development Serial Data In

Data to be transferred into the development port shift register is presented at the
development serial data in (DSDI) pin by external logic. To be sure that the correct
value is used internally, transitions on the DSDI pin should occur at least a setup
time ahead of the rising edge of the DSCK signal (if in clocked mode) or a setup
time ahead of the rising edge of the system clock, whichever is greater. This will
allow operation of the development port either asynchronously or synchronously
with the system clock. The DSDI input must be driven either high or low at all times
and not allowed to float. A typical target environment would pull this input low with
a resistor.

When the processor is not in debug mode (freeze not indicated on VFLS[0:1] pins)
the data received on the DSDI pin is transferred to the trap enable control register.
When the processor is in debug mode, the data received on the DSDI pin is pro-
vided to the debug mode interface. Refer to 8.3.5 Trap-Enable Input Transmis-
sions and 8.3.6 CPU Input Transmissions for additional information.

The DSDI pin is also used at reset to control overall chip reset configuration and
immediately following reset to determine the development port clock mode. See
8.3.3 Development Port Clock Mode Selection for more information.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-24 Revised 1 February 1999 REFERENCE MANUAL

8.3.1.3 Development Serial Data Out

When the processor is not in reset, the development port shifts data out of the de-
velopment port shift register using the development serial data out (PLLL/DSDO)
pin. When the processor is in reset, the PLLL/DSDO pin indicates the state of lock
of the system clock phase-locked loop. This can be used to determine when a reset
is caused by a loss of lock on the system clock PLL.

8.3.2 Development Port Registers

 The development port consists of two registers: the development port shift register
and the trap enable control register. These registers are described in the following
paragraphs. Figure 8-6 illustrates the development port registers and data paths.

Figure 8-6 Development Port Registers and Data Paths

DEV PORT REGISTER

LENGTH/STATUS0

CONTROL/STATUS1

SHIFT REGISTER (35 BITS)

INPUT AND OUTPUT 3-STATE BUFFERS (32 BITS)

START/READY

DSDI (INTERNAL)

D
S

C
K

D
S

D
I

P
LL

L/
D

S
D

O

D
E

V
E

LO
P

M
E

N
T

 P
O

R
T

 B
U

S

(TO SIU)

DSDO (INTERNAL)

SHIFT

32

32 (DATA)

(DEVELOPMENT PORT PINS)

TRAP ENABLES, VSYNC, BREAKPOINTS (9 BITS)

6 2

TRAP ENABLES [0:5] BREAKPOINTS

(TO RCPU)

7

H
A

N
D

S
H

A
K

E
 A

N
D

 B
U

S
 I

N
T

E
R

F
A

C
E

 S
IG

N
A

L
S

32

DEBUG BUS CONTROL
(OEs AND WEs)

32

VSYNC

SHIFT CONTROL

AND COUNTER

CLOCK
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-25

8.3.2.1 Development Port Shift Register

The development port shift register is a 35-bit shift register. Instructions and data
are shifted into it serially from DSDI. These instructions or data are then transferred
in parallel to the processor or the trap enable control register (TECR).

When the processor enters debug mode, it fetches instructions from the develop-
ment port shift register. These instructions are serially loaded into the shift register
from DSDI.

When the processor is in debug mode, data is transferred to the CPU by shifting it
into the shift register. The processor then reads the data as the result of executing
a “move from special purpose register DPDR” (development port data register) in-
struction.

In debug mode, data is also parallel loaded into the development port shift register
from the CPU by executing a “move to special purpose register DPDR” instruction.
It is then shifted out serially to PLLL/DSDO.

8.3.2.2 Trap Enable Control Register

The trap enable control register (TECR) is a nine-bit register that is loaded from the
development port shift register. The contents of the TECR are used to drive the six
trap enable signals, the two breakpoint signals, and the VSYNC signal to the pro-
cessor. Trap-enable transmissions to the development port cause the appropriate
bits of the development port shift register to be transferred to the control register.

8.3.3 Development Port Clock Mode Selection

All of the development port serial transmissions are clocked transmissions. The
transmission clock can be either synchronous or asynchronous with the system
clock (CLKOUT). The development port supports three methods for clocking the
serial transmissions. The first method allows the transmission to occur without be-
ing externally synchronized with CLKOUT but at more restricted data rates. The
two faster communication methods require the clock and data to be externally syn-
chronized with CLKOUT.

The first clock mode is called asynchronous clocked since the input clock (DSCK)
is asynchronous with CLKOUT. The input synchronizers on the DSCK and DSDI
pins sample the inputs to ensure that the signals used internally have no metasta-
ble oscillations. To be sure that data on DSDI is sampled correctly, transitions on
DSDI must occur a setup time ahead of the rising edge of DSCK. Data on DSDI
must also be held for one CLKOUT cycle plus one hold time after the rising edge
of DSCK. This ensures that after the signals have passed through the input syn-
chronizers, the data will be valid at the rising edge of the serial clock even if DSCK
and DSDI do not meet the setup and hold time requirements of the pins.

Asynchronous clocked mode allows communications with the port from a develop-
ment tool that does not have access to the CLKOUT signal or where the CLKOUT
signal has been delayed or skewed. Because of the asynchronous nature of the
inputs and the setup and hold time requirements on DSDI, this clock mode must
be clocked at a frequency less than or equal to one third of CLKOUT.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-26 Revised 1 February 1999 REFERENCE MANUAL

The second clock mode is called synchronous clocked because the input clock and
input data meet all setup and hold time requirements with respect to CLKOUT.
Since the input synchronizers must sample the input clock in both the high and low
state, DSCK cannot be faster than one half of CLKOUT.

The third clock mode is called synchronous self-clocked because it does not re-
quire an input clock. Instead, the port is clocked by the system clock. The DSDI in-
put is required to meet all setup and hold time requirements with respect to
CLKOUT. The data rate for this mode is always the same as the system clock rate,
which is at least twice as fast as in synchronous clocked mode. In this mode, an
undelayed CLKOUT signal must be available to the development tool, and extra
care must be taken to avoid noise and crosstalk on the serial lines.

The selection of clocked or self-clocked mode is made immediately following reset.
The state of the DSDI input is latched eight clocks after RESETOUT is negated. If
it is latched low, external clocked mode is enabled. If it is latched high then self
clocked mode is enabled. When external clocked mode is enabled, the use of
asynchronous or synchronous mode is determined by the design of the external
development tool.

Since DSDI is used during reset to configure the MCU and to select the develop-
ment port clocking scheme, it is necessary to prevent any transitions on DSDI dur-
ing this time from being recognized as the start of a serial transmission. The port
does not begin scanning for the start bit of a serial transmission until 16 clocks after
the negation of RESETOUT. If DSDI is asserted 16 clocks after RESETOUT nega-
tion, the port will wait until DSDI is negated to begin scanning for the start bit.

The selection of clocked/self clocked mode is shown in Figure 8-7. The timing di-
agrams in Figure 8-8, Figure 8-9, and Figure 8-10 show the serial communica-
tions for both trap enable mode and debug mode for all clocking schemes.
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-27

Figure 8-7 Enabling Clock Mode Following Reset

Examples of serial communications using the three clock modes are shown in Fig-
ure 8-8, Figure 8-9, and Figure 8-10.

CLOCK MODE AFTER RESET TIM

DSDI

OUT
CLK

SRESET

 DSDI PRIOR TO RESETOUT DETERMINES PART CONFIGURATION MODE.

 DSDI NEGATES FOLLOWING RESETOUT NEGATION TO ENABLE CLOCKED MODE.

CLKEN

INTERNAL CLOCK ENABLE SIGNAL ASSERTS 8 CLOCKS AFTER RESETOUT NEGATION

RESET

BECAUSE DSDI IS NEGATED. THIS ENABLES CLOCKED MODE.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-28 Revised 1 February 1999 REFERENCE MANUAL

Figure 8-8 Asynchronous Clocked Serial Communications

In Figure 8-8, the frequency on the DSCK pin is equal to CLKOUT frequency di-
vided by three. This is the maximum frequency allowed for the asynchronous
clocked mode. DSCK and DSDI transitions are not required to be synchronous with
CLKOUT.

ASYNC SER COM TIM

DSCK

DSDI

PLLL/

LENGTH CNTRL DI<0>

S<0> S<1> DO<0>

START

READY

OUT
CLK

DSDO

SYNC
DSCK

SYNC LENGTH CNTRL DI<0>STARTDSDI

NT S/R
CLK

DEBUG PORT DRIVES “READY” BIT ONTO PLLL/DSDO WHEN READY FOR A NEW TRANSMISSION.

DEBUG PORT DETECTS THE “START” BIT ON DSDI AND FOLLOWS
THE “READY” BIT WITH TWO STATUS BITS AND N OUTPUT DATA BITS.

DEVELOPMENT TOOL DRIVES THE “START” BIT ON DSDI (AFTER DETECTING “READY” BIT
PLLL/DSDO WHEN IN DEBUG MODE). THE “START” BIT IS IMMEDIATELY FOLLOWED BY
A LENGTH BIT AND A CONTROL BIT AND THEN N (7 OR 32) INPUT DATA BITS.

DI DI DI
<N><N-1><N-2>

DI DI DI
<N><N-1><N-2>

DO DO DO
<N><N-1><N-2>
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-29

Figure 8-9 Synchronous Clocked Serial Communications

In Figure 8-9, the frequency on the DSCK pin is equal to CLKOUT frequency di-
vided by two. DSDI and DSCK transitions must meet setup and hold timing require-
ments with respect to CLKOUT.

SYNC SER COM TIM

DEBUG PORT DRIVES “READY” BIT ONTO PLLL/DSDO WHEN READY FOR A NEW TRANSMISSION.

DSCK

DSDI

PLLL/

LENGTH CNTRL DI<0>

S<0> S<1> DO<0>

START

READY

DI DI DI

DO DO DO

DEBUG PORT DETECTS THE “START” BIT ON DSDI AND FOLLOWS
THE “READY” BIT WITH TWO STATUS BITS AND N (7OR 32) OUTPUT

OUT
CLK

DO<1>
DSDO

SYNC
DSCK

SYNC LENGTH CNTRL DI<0>START
DI DI DI

DSDI

DI<1>

NT S/R
CLK

DI
DI<1>

DI <N><N-1><N-2>
I

<N><N-1><N-2><N-3>

<N><N-1><N-2>
DO

<N-3>

<-3>

DEVELOPMENT TOOL DRIVES THE “START” BIT ON DSDI (AFTER DETECTING “READY” BIT
PLLL/DSDO WHEN IN DEBUG MODE). THE “START” BIT IS IMMEDIATELY FOLLOWED BY
A LENGTH BIT AND A CONTROL BIT AND THEN N (7 OR 32) INPUT DATA BITS.

BITS.DATA
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-30 Revised 1 February 1999 REFERENCE MANUAL

Figure 8-10 Synchronous Self-Clocked Serial Communications

In Figure 8-10, the DSCK pin is not used, and the transmission is clocked by CLK-
OUT. DSDI transitions must meet setup and hold timing requirements with respect
to CLKOUT.

8.3.4 Development Port Transmissions

The development port starts communications by setting PLLL/DSDO (the ready bit,
or MSB of the 35 bit development port shift register) low to indicate that all activity
related to the previous transmission is complete and that a new transmission may
begin. The start of a serial transmission from an external development tool to the
development port is signaled by a start bit on the DSDI pin.

The start bit also signals the development port that it can begin driving data on the
DSDO pin. While data is shifting into the LSB of the shift register from the DSDI pin,
it is simultaneously shifting out of the MSB of the shift register onto the DSDO pin.

A length bit defines the transmission as being to either the trap-enable register
(length bit = 1, indicating 7 data bits) or the CPU (length bit = 0, indicating 32 data
bits). Transmissions of data and instructions to the CPU are allowed only when the
processor is in debug mode. The two types of transmissions are discussed in 8.3.5
Trap-Enable Input Transmissions and 8.3.6 CPU Input Transmissions.

SYNC S SER COM T

OUT
CLK 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 342 3 14

DEVELOPMENT TOOL DRIVES THE “START” BIT ON DSDI (AFTER DETECTING “READY” BIT ON

DEBUG PORT DRIVES “READY” BIT ONTO PLLL/DSDO WHEN CPU READY FOR A NEW

DSDI

PLLL/ S<0> S<1> DO<0>READY DO DO DO

DEBUG PORT DETECTS THE “START” BIT ON DSDI AND FOLLOWS
THE “READY” BIT WITH TWO STATUS BITS AND N (7 OR 32) OUTPUT

DO
DSDO

SYNC LENGTHCNTRL DI<0>START DI DI DI
DSDI DI<1>

NT S/R
CLK

DI

DO

LENGTHCNTRL DI<0>START DI DI DIDI<1> DI

DO<

1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 342 31

<N><N-1><N-2><N-3><N-4>

<N><N-1><N-2><N-3><-4>

<N><N-1><N-2><N-3>DI<

PLLL/DSDO WHEN IN DEBUG MODE). THE “START” BIT IS IMMEDIATELY FOLLOWED BY
A LENGTH BIT AND A CONTROL BIT AND THEN N (7 OR 32) INPUT DATA BITS.

DATA BITS.

TRANSMISSION.
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-31

8.3.5 Trap-Enable Input Transmissions

If the length bit is set, the input transmission will only be 10 bits long. These trap-
enable transmissions into the development port include a start bit, a length bit, a
control bit, and seven data bits. Only the seven data bits are shifted into the 35-bit
shift register. These seven bits are then latched into the TECR. The control bit de-
termines whether the data is latched into the trap enable and VSYNC bits of the
TECR or into the breakpoints bits of the TECR, as shown in Table 8-11 and Table
8-12.

8.3.6 CPU Input Transmissions

If the length bit in the serial input sequence is cleared, the transmission is an input
to the CPU. This transmission type is legal only when the processor is in debug
mode.

For transmissions to the CPU, the 35 bits of the development port shift register are
interpreted as a start bit, a length bit, a control bit, and 32 bits of instructions or da-
ta. The encoding of data shifted into the development port shift register (through
the DSDI pin) is shown in Table 8-13.

Table 8-11 Trap Enable Data Shifted Into Development Port Shift Register

Start Length Control 1st 2nd 3rd 4th 1st 2nd

V
S

Y
N

C

Usage

I-bus L-bus

Watchpoint Trap Enables

1 1 0 0 = disabled; 1 = enabled
Input data for trap enable

control register

Table 8-12 Breakpoint Data Shifted Into Development Port Shift Register

Start Length Control Non-
Maskable

Maskable Reserved bits Usage

Breakpoints

1 1 1
0 = negate; 1 = assert

1 1 1 1 1
Input data for trap enable

control register

Table 8-13 CPU Instructions/Data Shifted into Shift Register

Start Length Control Instruction/Data (32 Bits) Usage

1 0 0 CPU Instruction Input instruction for the CPU

1 0 1 CPU Data Input data for the CPU
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-32 Revised 1 February 1999 REFERENCE MANUAL

The control bit differentiates between instructions and data and allows the devel-
opment port to detect that an instruction was entered when the CPU was expecting
data and vice versa. If this occurs, a sequence error indication is shifted out in the
next serial transmission.

8.3.7 Serial Data Out of Development Port — Non-Debug Mode

The encoding of data shifted out of the development port shift register when the
processor is not in debug mode is shown in Table 8-14.

When the processor is not in debug mode, the sequencing error encoding indicates
that the transmission from the external development tool was a transmission to the
CPU (length = 0). When a sequencing error occurs, the development port ignores
the data being shifted in while the sequencing error is shifting out.

The null output encoding is used to indicate that the previous transmission did not
have any associated errors.

When the processor is not in debug mode, the ready bit is asserted at the end of
each transmission. If debug mode is not enabled and transmission errors can be
guaranteed not to occur, the status output is not needed, and the DSDO pin can
be used for untimed I/O.

8.3.8 Serial Data Out of Development Port — Debug Mode

The encoding of data shifted out of the development port shift register when the
processor is in debug mode is shown in Table 8-14.

Table 8-14 Status Shifted Out of Shift Register — Non-Debug Mode

Ready Status [0:1] Data (7 or 32 Bits1)

NOTES:
1. Depending on input mode.

Indication

(0) 0 1 Ones Sequencing Error

(0) 1 1 Ones Null
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-33

8.3.8.1 Valid Data Output

The valid data encoding is used when data has been transferred from the CPU to
the development port shift register. This is the result of executing an instruction in
debug mode to move the contents of a general purpose register to the develop-
ment port data register (DPDR).

The valid data encoding has the highest priority of all status outputs and is reported
even if an exception occurs at the same time. Any exception that is recognized dur-
ing the transmission of valid data is not related to the execution of an instruction.
Therefore, a status of valid data is output and the CPU exception status is saved
for the next transmission. Since it is not possible for a sequencing error to occur
and for valid data to be received on the same transmission, there is no conflict be-
tween a valid data status and the sequencing error status.

8.3.8.2 Sequencing Error Output

The sequencing error encoding indicates that the inputs from the external develop-
ment tool are not what the development port or the CPU was expecting. Two cases
could cause this error:

1) the processor was trying to read instructions and data was shifted into the
development port, or

2) the processor was trying to read data and an instruction was shifted into the
development port.

When a sequencing error occurs, the port terminates the CPU read or fetch cycle
with a bus error. This bus error causes the CPU to signal the development port that
an exception occurred. Since a status of sequencing error has a higher priority than
a status of exception, the port reports the sequencing error. The development port
ignores the data being shifted in while the sequencing error is shifting out. The next
transmission to the port should be a new instruction or trap enable data.

Table 8-16 illustrates a typical sequence of events when a sequencing error oc-
curs. This example begins with CPU data being shifted into the shift register (con-
trol bit = 1) when the processor is expecting an instruction. During the next

Table 8-15 Status/Data Shifted Out of Shift Register

Ready Status [0:1] Data (7 or 32 Bits1)

NOTES:
1. Depending on input mode.

Indication

(0) 0 0 Data Valid Data from CPU

(0) 0 1 Ones Sequencing Error

(0) 1 0 Ones CPU Exception

(0) 1 1 Ones Null
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-34 Revised 1 February 1999 REFERENCE MANUAL

transmission, a sequencing error is shifted out of the development port, and the
data shifted into the shift register is thrown away. During the third transmission, the
“CPU exception” status is output, and again the data shifted into the shift register
is thrown away. During the fourth transmission, an instruction is again shifted into
the development port and fetched by the CPU for execution. Notice in this example
that the development port throws away the first two input transmissions following
the one causing the sequencing error.

8.3.8.3 CPU Exception Output

The CPU exception encoding is used to indicate that the CPU encountered an ex-
ception during the execution of the previous instruction in debug mode. Exceptions
may occur as the result of instruction execution (such as unimplemented opcode
or arithmetic error), because of a memory access fault, or from an external inter-
rupt. The exception is recognized only if the associated bit in the DER is set. When
an exception occurs, the development port ignores the data being shifted in while
the CPU exception status is shifting out. The port terminates the current CPU ac-
cess with a bus error. The next transmission to the port should be a new instruction
or trap enable data.

8.3.8.4 Null Output

Finally, the null encoding is used to indicate that no data has been transferred from
the CPU to the development port shift register. It also indicates that the previous
transmission did not have any associated errors.

8.3.9 Use of the Ready Bit

To minimize the overhead required to detect and correct errors, the external devel-
opment system should wait for the ready bit on DSDO before beginning each input
transmission. This ensures that all CPU activity (if any) relative to the previous
transmission has been completed and that any errors have been reported.

Table 8-16 Sequencing Error Activity

Trans # Input to
Development

Port

Output from
Development

Port

Port Action CPU Action

1 CPU Data
(Control bit = 1)

Depends on
previous
transmissions

Cause bus error, set
sequence error latch

Fetch instruction, take
exception because of bus
error

2 X (Thrown away) Sequencing Error Set exception latch, clear
sequencing error latch

Signal exception to port,
begin new fetch from port

3 X (Thrown away) CPU Exception Clear exception latch Continue to wait for
instruction from port

4 CPU instruction Null Send instruction to CPU
at end of transmission

Fetch instruction from port
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-35

When the ready bit is used to pace the transmissions, the error status is reported
during the transmission following the error. Since any transmission into the port
which occurs while shifting out an error status is ignored by the port, the error han-
dler in the external development tool does not need to undo the effects of an inter-
vening instruction.

To improve system performance, however, an external development system may
begin transmissions before the ready bit is asserted. If the next transmission does
not wait until the port indicates ready, the port will not assert ready again until this
next transmission completes and all activity associated with it has finished. Trans-
missions that begin before ready is asserted on DSDI are subject to the following
limitations and problems.

First, if the previous transmission results in a sequence error, or the CPU reports
an exception, that status may not be reported until two transmissions after the
transmission that caused the error. (When the ready bit is used, the status is re-
ported in the following transmission.) This is because an error condition which oc-
curs after the start of a transmission cannot be reported until the next transmission.

Second, if a transmitted instruction causes the CPU to write to the DPDR and the
transmission that follows does not wait for the assertion of ready, the CPU data
may not be latched into the development port shift register, and the valid data sta-
tus is not output. Despite this, no error is indicated in the status outputs.To ensure
that the CPU has had enough time to write to the DPDR, there must be at least four
CLKOUT cycles between when the last bit of the instruction (move to SPR) is
clocked into the port and the time the start bit for the next transmission is clocked
into the port.

8.4 Debug Mode Functions

In debug mode, the CPU fetches all instructions from the development port. In ad-
dition, data can be read from and written to the development port. This allows
memory and registers to be read and modified by an external development tool
(emulator) connected to the development port.

8.4.1 Enabling Debug Mode

Debug mode is enabled by asserting the DSCK pin during reset. The state of this
pin is sampled immediately before the negation of RESETOUT. If the DSCK pin is
sampled low, debug mode is disabled until a subsequent reset when the DSCK pin
is sampled high. When debug mode is disabled, the internal watchpoint/breakpoint
hardware is still operational and can be used by a software monitor program for de-
bugging purposes.

The DSCK pin is sampled again eight clock cycles following the negation of
RESETOUT. If DSCK is negated following reset, the processor jumps to the reset
vector and begins normal execution. If DSCK is asserted following reset and debug
mode is enabled, the processor enters debug mode before executing any instruc-
tions.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-36 Revised 1 February 1999 REFERENCE MANUAL

A timing diagram for enabling debug mode is shown in Figure 8-11.

Figure 8-11 Enabling Debug Mode at Reset

8.4.2 Entering Debug Mode

Debug mode is entered whenever debug mode is enabled, an exception occurs,
and the corresponding bit is set in the debug enable register (DER).The processor
performs normal exception processing, i.e., saving the next instruction address
and the current state of MSR in SRR0 and SRR1 and modifying the contents of the
MSR. The processor then enters debug mode and fetches the next instruction from
the development port instead of from the vector address. The exception cause reg-
ister (ECR) shows which event caused entry into debug mode. The freeze indica-
tion is encoded on the VFLS pins to show that the CPU is in debug mode.

Debug mode may also be entered immediately following reset. If the DSCK pin
continues to be asserted following reset (after debug mode is enabled), the proces-
sor takes a breakpoint exception and enters debug mode directly after fetching (but
not executing) the reset vector. To avoid entering debug mode following reset, the
DSCK pin must be negated no later than seven clock cycles after RESETOUT is
negated.

A timing diagram for entering debug mode following reset is shown in Figure 8-12.

DEBUG MODE AT RESET TIM

DSCK

OUT
CLK

SRESET

DSCK ASSERTED PRIOR TO RESETOUT NEGATION ENABLES

DEBUG MODE IS ENABLED IF DSCK IS HIGH

DSCK IS NEGATED WITHIN 8 CLOCKS FOLLOWING RESETOUT NEGATION TO AVOID ENTRY INTO

DM_EN

NMBKPT

INTERNAL BREAKPOINT SIGNAL DOES NOT ASSERT BECAUSE DSCK IS NEGATED LESS THAN 8 CLOCKS

RESET

AFTER RESETOUT NEGATION (THEREFORE CPU DOES NOT ENTER DEBUG MODE FOLLOWING RESET).

BEFORE RESETOUT NEGATES.

DEBUG MODE.

IMMEDIATELY

DEBUG MODE.
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-37

Figure 8-12 Entering Debug Mode Following Reset

8.4.3 Debug Mode Operation

In debug mode, the CPU fetches instructions from the development port. It can also
read and write data at the development port. In debug mode the prefetch mecha-
nism in the CPU is disabled. This forces all data accesses to the development port
to occur immediately following the fetch of the associated instruction.

In debug mode, if an exception occurs during the execution of an instruction, nor-
mal exception processing does not result. (That is, the processor does not save the
MSR and instruction address and does not branch to the exception handler.) In-
stead, a flag is set that results in a CPU exception status indication in the data shift-
ed out of the development port shift register. The same thing happens if the
processor detects an external interrupt. (This can occur only when the associated
DER bit is clear and MSR[EE] is set.) When the data in the development port shift
register is shifted out, the exception status is detected by the external development
tool. The cause of the exception can be determined by reading the ECR.

DEBUG MODE AFTER RESET TIM

DSCK

OUT
CLK

SRESET

DSCK ASSERTED PRIOR TO RESETOUT NEGATION ENABLES

DEBUG MODE IS ENABLED IF DSCK IS ASSERTED

DSCK STAYS ASSERTED FOR AT LEAST 8 CLOCK CYCLES FOLLOWING RESETOUT NEGATION

DM_EN

NMBKPT

INTERNAL BREAKPOINT SIGNAL ASSERTS BECAUSE DSCK STAYS ASSERTED FOR AT LEAST

RESET

8 CLOCK CYCLES AFTER RESETOUT NEGATION (THEREFORE CPU WILL ENTER DEBUG MODE

IMMEDIATELY BEFORE RESETOUT NEGATES.

VFLS
[0:1]

DEBUG MODE ENTRY IS INDICATED BY VFLS [0:1] BOTH HIGH

TO CAUSE ENTRY INTO DEBUG MODE.

FOLLOWING RESET).

DEBUG MODE.
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-38 Revised 1 February 1999 REFERENCE MANUAL

8.4.4 Freeze Function

While the processor is in debug mode, the freeze indication is broadcast through-
out the MCU. This signal is generated by the CPU when debug mode is entered,
or when a software debug monitor program is entered as the result of an exception
and the associated bit in the DER is set. The software monitor can only assert
freeze when debug mode is not enabled. Refer to 8.7 Software Monitor Support
for more information.

Freeze is indicated by the value 11 on the VFLS[0:1] pins. This encoding is not
used for pipeline tracking and is left on the VFLS[0:1] pins when the processor is
in debug mode. Figure 8-14 shows how the internal freeze signal is generated.

8.4.5 Exiting Debug Mode

Executing the rfi instruction in debug mode causes the processor to leave debug
mode and return to normal execution. The freeze indication on the VFLS pins is
negated to indicate that the CPU has exited debug mode.

Software must read the ECR (to clear it) before executing the rfi instruction. Oth-
erwise, if a bit in the ECR is asserted and its corresponding enable bit in the DER
is also asserted, the processor re-enters debug mode and re-asserts the freeze
signal immediately after executing the rfi instruction.

8.4.6 Checkstop State and Debug Mode

When debug mode is disabled, the processor enters the checkstop state if, when
a machine check exception is detected, the machine check exception is disabled
(MSR[ME] = 0). However, when debug mode is enabled, if a machine check ex-
ception is detected when MSR[ME] = 0 and the checkstop enable bit in the DER is
set, the processor enters debug mode rather than the checkstop state. This allows
the user to determine why the checkstop state was entered. Table 8-17 shows
what happens when a machine check exception occurs under various conditions.
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-39

8.5 Development Port Transmission Sequence

The following sections describe the sequence of events for communication with the
development port in both debug and normal mode and provide specific sequences
for prologues, epilogues, and poking and peeking operations.

8.5.1 Port Usage in Debug Mode

The sequence of events for communication with the development port in debug
mode (freeze is indicated on the VFLS pins) is shown in Table 8-18. The sequence
starts with the processor trying to read an instruction in step one. The sequence
ends when the processor is ready to read the next instruction. Reading an instruc-
tion is the first action the processor takes after entering debug mode. The proces-
sor and development port activity is determined by the instruction or data shifted
into the shift register. The instruction or data shifted into the shift register also de-
termines the status shifted out during the next transmission. The next step column
indicates which step has the appropriate status response.

Table 8-17 Checkstop State and Debug Mode

MSR[ME] Debug
Mode

Enable

CHSTPE1

NOTES:
1. Checkstop enable bit in the DER

MCIE2

2. Machine check interrupt enable bit in the DER

Action Performed
when CPU Detects a

Machine Check Interrupt

ECR Value

0 0 X X Enter the checkstop state 0x2000 0000

0 1 0 X Enter the checkstop state 0x2000 0000

0 1 1 X Enter debug mode 0x2000 0000

1 0 X X Take machine check exception 0x1000 0000

1 1 X 0 Take machine check exception 0x1000 0000

1 1 X 1 Enter debug mode 0x1000 0000
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-40 Revised 1 February 1999 REFERENCE MANUAL

Table 8-18 Debug Mode Development Port Usage

This
Step

Serial Data Shifted In
(DSDO indicates

“READY”)

Shifted Out
This

Transmission

Development Port Activity;
Processor Activity

Next
Step

1 CPU instruction (non-
DPDR)

Null Port transfers instruction to CPU;
CPU executes instruction, fetches next
instruction

1

CPU instruction (DPDR
read)

Port transfers instruction to CPU;
CPU executes instruction, reads DPDR

2

CPU instruction (DPDR
write)

Port transfers instruction to CPU;
CPU writes DPDR, fetches next instruction

3

CPU instruction
(instruction execution
causes exception)

Port transfers instruction to CPU;
CPU signals exception to port, fetches
next instruction

4

Data for CPU Port ignores data, terminates fetch with
error, latches sequence error;
CPU signals exception to port, fetches
next instruction

5

Data for Trap Enable
Control Register

Port updates Trap Enable Control
Register;
CPU waits (continues fetch)

1

2 Any CPU instruction Null Port ignores data, terminates DPDR read
with error;
latches sequence error;
CPU signals exception to port, fetches
next instruction

5

Data for CPU Port transfers data to CPU;
CPU reads data from DPDR, fetches next
instruction

1

Data for trap enable
control register

Port updates TECR
CPU waits (continue data read)

2

RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-41

8.5.2 Debug Mode Sequence Diagram

The sequence of activity shown in Table 8-18 is summarized below in Figure 8-
13. The numbers in the large circles correspond to the steps in Table 8-18. The
letters in the large circles indicate the status that will be shifted out during the trans-
mission. The letters in the small circles show the activity of the development port
and the CPU as a result of the transmission.

3 CPU instruction (non-
DPDR)

CPU data Port transfers instruction to CPU;
CPU executes instruction, fetches next
instruction

1

CPU instruction (DPDR
read)

Port transfers instruction to CPU;
CPU executes instruction, reads DPDR

2

CPU instruction (DPDR
write)

Port transfers instruction to CPU;
CPU writes DPDR, fetches next instruction

3

CPU instruction (with
exception)

Port transfers instruction to CPU;
CPU signals exception to port, fetches
next instruction

4

Data for CPU Port ignores data, terminates fetch with
error, latches sequence error;
CPU signals exception to port, fetches
next instruction

5

Data for trap enable
control register

7 MSB of CPU
data

Port updates TECR;
CPU waits (continues fetch)

1

4 Any (ignored by port) Exception Port ignores data;
CPU waits (continues fetch)

1

5 Any (ignored by port) Sequence
Error

Port ignores data;
CPU waits (continues fetch)

4

Table 8-18 Debug Mode Development Port Usage (Continued)

This
Step

Serial Data Shifted In
(DSDO indicates

“READY”)

Shifted Out
This

Transmission

Development Port Activity;
Processor Activity

Next
Step
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-42 Revised 1 February 1999 REFERENCE MANUAL

Figure 8-13 General Port Usage Sequence Diagram

8.5.3 Port Usage in Normal (Non-Debug) Mode

The sequence of events for communication with the development port when the
CPU is not in debug mode (freeze is not indicated on the VFLS pins) is shown be-
low in Table 8-18. Note that any instructions or data for the CPU result in a se-
quence error status response when the processor is not in debug mode. Only data
for the trap enable control register is allowed.

2 3 5

1

TRAP ENABLE
CPU

CPU DATA

DPDR READ

DPDR WRITE
INSTRUCTION ANY INSTRUCTION

WITH EXCEPTION

CPU
INSTR

INSTRUCTION

CPU
DATA

TRAP
ENABLE

NON DPDR
INSTRUCTION

4

CPU
INSTR

CPU
DATA

INSTRUCTION

DATA

DATA

TRAP
ENABLE

DATA

N - SHIFT OUT NULL STATUS

I - TRANSFER INSTR TO CPU
R - TRANSFER DATA TO CPU (READ)

E - TERMINATE CPU READ WITH ERROR

T - TRANSFER DATA TO TECR

L - LATCH SEQUENCE ERROR

D - SHIFT OUT DATA FROM CPU

X - SHIFT OUT EXCEPTION STATUS
S - SHIFT OUT SEQUENCE ERROR STATUS

N

N D X S

T I EL

TTR

PORT USAGE STATE
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-43

8.6 Examples of Debug Mode Sequences

The tables that follow show typical sequences of instructions that are used in a de-
velopment activity. They assume that no bus errors or sequence errors occur and
that no writes occur to the trap enable control register.

8.6.1 Prologue Instruction Sequence

The prologue sequence of instructions is used to unload the machine context when
entering debug mode. The sequence starts by unloading two general-purpose reg-
isters (R0 and R1) to be used as a data transfer register and an address pointer.
Since SRR0 and SRR1 are not changed while in debug mode except by explicitly
writing to them, there is no need to save and restore these registers. Finally, the
ECR is unloaded to determine the cause of entry into debug mode. Any registers
that will be used while in debug mode in addition to R0 and R1 will also need to be
saved.

8.6.2 Epilogue Instruction Sequence

The epilogue sequence of instructions is used to restore the machine context when

Table 8-19 Non-Debug Mode Development Port Usage

This
Step

Serial Data Shifted Into
DPDI (not in Debug Mode)

Shifted Out Of
DPDO This

Transmission

Development Port Activity Next
Step

6 Any CPU instruction or data Null Port ignores data and latches sequence error 7

Data for trap enable control
register

Port updates trap enable control register 6

7 Any (ignored by port) Sequence
Error

Port ignores data 6

Table 8-20 Prologue Events

Development Port
Activity

Instruction Processor Activity Purpose

Shift in instruction mtspr DPDR, R0 Transfer R0 to DPDR Save R0 so the register can
be used

Shift out R0 data,
shift in instruction

mfspr R0, ECR Transfer ECR to R0 Read the debug mode cause
register

Shift in instruction mtspr DPDR, R0 Transfer from R0 to
DPDR

Output reason for debug
mode entry

Shift out stop cause data,
shift in instruction

mtspr DPDR, R1 Transfer R1 to DPDR Save R1 so the register can
be used

Shift out R1 data,
shift in instruction

First instruction of next
sequence

Execute next instruction Continue instruction
processing
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-44 Revised 1 February 1999 REFERENCE MANUAL

leaving debug mode. It restores the two general-purpose registers and then issues
the rfi instruction. If additional registers were used while in debug mode, they also
need to be restored before the rfi instruction is executed.

8.6.3 Peek Instruction Sequence

The peek sequence of instructions is used to read a memory location and transfer
the data to the development port. It starts by moving the memory address into R1
from the development port. Next the location is read and the data loaded into R0.
Finally, R0 is transferred to the development port.

8.6.4 Poke Instruction Sequence

The poke sequence of instructions is used to write data entered at the development
serial port to a memory location. It starts by moving the memory address into R1
from the development port. Next the data is moved into R0 from the development
port. Finally, R0 is written to the address in R1.

Table 8-21 Epilogue Events

Development Port
Activity

Instruction Processor Activity Purpose

Shift in instruction,
shift in saved R0

mfspr R0, DPDR Transfer from DPDR to
R0

Restores value of R0 when
stopped

Shift in instruction,
shift in saved R1

mfspr R1, DPDR Transfer from DPDR to
R1

Restores value of R1 when
stopped

Shift in instruction rfi Return from exception Restart execution

Table 8-22 Peek Instruction Sequence

Development Port
Activity

Instruction Processor Activity Purpose

Shift in instruction mfspr R1,DPDR Transfer address from
DPDR to R1

Point to memory address

Shift in instruction lwzu R0,D(R1) Load data from memory
address (R1) into R0

Read data from memory

Shift in instruction mtspr DPDR,R0 Transfer data from R0 to
DPDR

Write memory data to the port

Shift in instruction,
shift out memory data

First instruction of next
sequence

Execute next instruction Output memory data
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-45

8.7 Software Monitor Support

When debug mode is disabled, a software monitor debugger can make use of all
of the processor’s development support features. With debug mode disabled, all
events result in regular exception handling, (i.e., the processor resumes execution
in the appropriate exception handler). The ECR and the DER only influence the as-
sertion and negation of the freeze indication.

The internal freeze signal is connected to all relevant internal modules. These mod-
ules can be programmed to stop all operations in response to the assertion of the
freeze signal. In order to enable a software monitor debugger to broadcast the fact
that the debug software is now executing, it is possible to assert and negate the
internal freeze signal when debug mode is disabled. (The freeze signal can be as-
serted externally only when the processor enters debug mode.)

The internal freeze signal is asserted whenever an enabled event occurs, regard-
less of whether debug mode is enabled or disabled. To enable an event to cause
freeze assertion, software needs to set the relevant bit in the DER. To clear the
freeze signal, software needs to read the ECR to clear the register and then per-
form an rfi instruction.

If the ECR is not cleared before the rfi instruction is executed, freeze is not negat-
ed. It is therefore possible to nest inside a software monitor debugger without af-
fecting the value of the freeze signal, even though rfi is performed. Only before the
last rfi does the software need to clear the ECR.

Figure 8-14 shows how the ECR and DER control the assertion and negation of
the freeze signal and the internal debug mode signal.

Table 8-23 Poke Instruction Sequence

Development Port
Activity

Instruction Processor Activity Purpose

Shift in instruction mfspr R1,DPDR Transfer address from
DPDR to R1

Point to memory address

Shift in instruction,
shift in memory data

mfspr R0, DPDR Transfer data from DPDR
to R0

Read memory data from the
port

Shift in instruction stwu R0,D(R1) Store data from R0 to
memory address (R1)

Write data to memory
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-46 Revised 1 February 1999 REFERENCE MANUAL

Figure 8-14 Debug Mode Logic

8.8 Development Support Registers

Table 8-24 lists the registers used for development support. The registers are ac-
cessed with the mtspr and mfspr instructions.

DECODER

EXCEPTION CAUSE REGISTER (ECR)

DEBUG ENABLE REGISTER (DER)

EVENT

RESET

5

EVENT VALID

SET

Q

RFI

FREEZE

DEBUG MODE ENABLE

RMCU DEBUG LOGIC

INTERNAL DEBUG
MODE SIGNAL
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-47

8.8.1 Register Protection

Table 8-25 and Table 8-26 summarize protection features of development support
registers during read and write accesses, respectively.

Table 8-24 Development Support Programming Model

SPR Number
(Decimal)

Mnemonic Name

144 CMPA Comparator A Value Register

145 CMPB Comparator B Value Register

146 CMPC Comparator C Value Register

147 CMPD Comparator D Value Register

148 ECR Exception Cause Register

149 DER Debug Enable Register

150 COUNTA Breakpoint Counter A Value and Control Register

151 COUNTB Breakpoint Counter B Value and Control Register

152 CMPE Comparator E Value Register

153 CMPF Comparator F Value Register

154 CMPG Comparator G Value Register

155 CMPH Comparator H Value Register

156 LCTRL1 L-Bus Support Control Register 1

157 LCTRL2 L-Bus Support Control Register 2

158 ICTRL I-Bus Support Control Register

159 BAR Breakpoint Address Register

630 DPDR Development Port Data Register
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-48 Revised 1 February 1999 REFERENCE MANUAL

Table 8-25 Development Support Registers Read Access Protection

MSR[PR] Debug
Mode

Enable

In Debug
Mode

Result

0 0 X Read is performed.
ECR is cleared when read.
Reading DPDR yields indeterminate data.

0 1 0 Read is performed.
ECR is not cleared when read.
Reading DPDR yields indeterminate data.

0 1 1 Read is performed.
ECR is cleared when read.

1 X X Program exception is generated.
Read is not performed.
ECR is not cleared when read.

Table 8-26 Development Support Registers Write Access Protection

MSR[PR] Debug
Mode

Enable

In Debug
Mode

Result

0 0 X Write is performed.
Write to ECR is ignored.
Writing to DPDR is ignored.

0 1 0 Write is not performed.
Writing to DPDR is ignored.

0 1 1 Write is performed.
Write to ECR is ignored.

1 X X Write is not performed.
Program exception is generated.
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-49

8.8.2 Comparator A–D Value Registers (CMPA–CMPD)

The reset state of these registers is undefined.

8.8.3 Comparator E–F Value Registers

The reset state of these registers is undefined.

CMPA–CMPD — Comparator A–D Value Register SPR 144 – SPR 147

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CMPAD

RESET: UNDEFINED

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CMPAD RESERVED

RESET: UNDEFINED

Table 8-27 CMPA-CMPD Bit Settings

Bits Mnemonic Description

0:29 CMPAD Address bits to be compared

30:31 — Reserved

CMPE–CMPF — Comparator E–F Value Registers SPR 152, 153

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CMPEF

RESET: UNDEFINED

Table 8-28 CMPE-CMPF Bit Settings

Bits Mnemonic Description

[0:31] CMPV Address bits to be compared
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-50 Revised 1 February 1999 REFERENCE MANUAL

8.8.4 Comparator G–H Value Registers (CMPG–CMPH)

The reset state of these registers is undefined.

8.8.5 I-Bus Support Control Register

CMPG–CMPH — Comparator G–H Value Registers SPR 154, 155

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CMPGH

RESET: UNDEFINED

Table 8-29 CMPG-CMPH Bit Settings

Bits Mnemonic Description

[0:31] CMPGH Data bits to be compared

ICTRL — I-Bus Support Control Register SPR 158

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CTA CTB CTC CTD IW0 IW1

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IW2 IW3 SIW0
EN

SIW1
EN

SIW2
EN

SIW3
EN

DIW0
EN

DIW1
EN

DIW2
EN

DIW3
EN

IIFM SER ISCTL

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-51

Table 8-30 ICTRL Bit Settings

Bits Mnemonic Description Function

[0:2] CTA Compare type of comparator A 0xx = not active (reset value)
100 = equal
101 = less than
110 = greater than
111 = not equal

[3:5] CTB Compare type of comparator B

[6:8] CTC Compare type of comparator C

[9:11] CTD Compare type of comparator D

[12:13] IW0 I-bus 1st watchpoint programming 0x = not active (reset value)
10 = match from comparator A
11 = match from comparators (A&B)

[14:15] W1 I-bus 2nd watchpoint
programming

0x = not active (reset value)
10 = match from comparator B
11 = match from comparators (A | B)

[16:17] IW2 I-bus 3rd watchpoint programming 0x = not active (reset value)
10 = match from comparator C
11 = match from comparators (C&D)

[18:19] IW3 I-bus 4th watchpoint programming 0x = not active (reset value)
10 = match from comparator D
11 = match from comparators (C | D)

20 SIW0EN Software trap enable selection of
the 1st I-bus watchpoint

0 = trap disabled (reset value)
1 = trap enabled

21 SIW1EN Software trap enable selection of
the 2nd I-bus watchpoint

22 SIW2EN Software trap enable selection of
the 3rd I-bus watchpoint

23 SIW3EN Software trap enable selection of
the 4th I-bus watchpoint

24 DIW0EN Development port trap enable
selection of the 1st I-bus
watchpoint (read only bit)

0 = trap disabled (reset value)
1 = trap enabled

25 DIW1EN Development port trap enable
selection of the 2nd I-bus
watchpoint (read only bit)

26 DIW2EN Development port trap enable
selection of the 3rd I-bus
watchpoint (read only bit)

27 DIW3EN Development port trap enable
selection of the 4th I-bus
watchpoint (read only bit)

28 IIFM Ignore first match, only for I-bus
breakpoints

0 = Do not ignore first match, used for “go to x”
(reset value)

1 = Ignore first match (used for “continue”)

29 SER Serialize 0 = Fetch serialize the machine
1 = Normal operation
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-52 Revised 1 February 1999 REFERENCE MANUAL

The ICTRL is cleared following reset. Note that the machine is fetch serialized
whenever SER = 0b0 or ISCTL = 0b00.

8.8.6 L-Bus Support Control Register 1

[30:31] ISCTL Instruction fetch show cycle
control

00 = Show cycle will be performed for all fetched
instructions (reset value). When in this
mode, the machine is fetch serialized.

01 = Show cycle will be performed for all chang-
es in the program flow.

10 = Show cycle will be performed for all indirect
changes in the program flow.

11 = No show cycles will be performed for
fetched instructions

When the value of this field is changed (with the
mtspr instruction), the new value does not take
effect until two instructions after the mtspr in-
struction. The instruction immediately following
mtspr is under control of the old ISCTL value.

LCTRL1 — L-Bus Support Control Register 1 SPR 156

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CTE CTF CTG CTH CRWE CRWF

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CSG CSH SUSG SUSH CGBMSK CHBMSK UNUSED

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8-30 ICTRL Bit Settings (Continued)

Bits Mnemonic Description Function
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-53

LCTRL1 is cleared following reset.

Table 8-31 LCTRL1 Bit Settings

Bits Mnemonic Description Function

[0:2] CTE Compare type, comparator E 0xx = not active (reset value)
100 = equal
101 = less than
110 = greater than
111 = not equal

[3:5] CTF Compare type, comparator F

[6:8] CTG Compare type, comparator G

[9:11] CTH Compare type, comparator H

[12:13] CRWE Select match on read/write of
comparator E

0X = don’t care (reset value)
10 = match on read
11 = match on write

[14:15] CRWF Select match on read/write of
comparator F

[16:17] CSG Compare size, comparator G 00 = reserved
01 = word
10 = half word
11 = byte
(Must be programmed to word for floating

point compares)

[18:19] CSH Compare size, comparator H

20 SUSG Signed/unsigned operating mode
for comparator G

0 = unsigned
1 = signed
(Must be programmed to signed for floating

point compares)21 SUSH Signed/unsigned operating mode
for comparator H

[22:25] CGBMSK Byte mask for 1st L-data
comparator

0000 = all bytes are not masked
0001 = the last byte of the word is masked
.
.
.
1111 = all bytes are masked

[26:29] CHBMSK Byte mask for 2nd L-data
comparator

[30:31] — Reserved —
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-54 Revised 1 February 1999 REFERENCE MANUAL

8.8.7 L-Bus Support Control Register 2

LCTRL2 — L-Bus Support Control Register 2 SPR 157

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LW0E
N

LW0IA LW0
IADC

LW0LA LW0
LADC

LW0LD LW0
LDDC

LW1E
N

LW1IA LW1
IADC

LW1LA

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LW1
LADC

LW1LD LW1
LDDC

BRK
NOM-

SK

RESERVED SLW0
EN

SLW1
EN

DLW0
EN

DLW1
EN

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8-32 LCTRL2 Bit Settings

Bits Mnemonic Description Function

0 LW0EN 1st L-bus watchpoint enable
bit

0 = watchpoint not enabled (reset value)
1 = watchpoint enabled

[1:2] LW0IA 1st L-bus watchpoint I-addr
watchpoint selection

00 = first I-bus watchpoint
01 = second I-bus watchpoint
10 = third I-bus watchpoint
11 = fourth I-bus watchpoint

3 LW0IADC 1st L-bus watchpoint
care/don’t care I-addr events

0 = Don’t care
1 = Care

[4:5] LW0LA 1st L-bus watchpoint
L-addr events selection

00 = match from comparator E
01 = match from comparator F
10 = match from comparators (E&F)
11 = match from comparators (E | F)

6 LW0LADC 1st L-bus watchpoint
care/don’t care L-addr events

0 = Don’t care
1 = Care

[7:8] LW0LD 1st L-bus watchpoint
L-data events selection

00 = match from comparator G
01 = match from comparator H
10 = match from comparators (G&H)
11 = match from comparators (G | H)

9 LW0LDDC 1st L-bus watchpoint
care/don’t care L-data events

0 = Don’t care
1 = Care

10 LW1EN 2nd L-bus watchpoint enable
bit

0 = watchpoint not enabled (reset value)
1 = watchpoint enabled
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-55

LCTRL2 is cleared following reset.

For each watchpoint, three control register fields (LWxIA, LWxLA, LWxLD) must be
programmed. For a watchpoint to be asserted, all three conditions must be detect-
ed.

[11:12] LW1IA 2nd L-bus watchpoint I-addr
watchpoint selection

00 = first I-bus watchpoint
01 = second I-bus watchpoint
10 = third I-bus watchpoint
11 = fourth I-bus watchpoint

13 LW1IADC 2nd L-bus watchpoint
care/don’t care I-addr events

0 = Don’t care
1 = Care

[14:15] LW1LA 2nd L-bus watchpoint
L-addr events selection

00 = match from comparator E
01 = match from comparator F
10 = match from comparators (E&F)
11 = match from comparators (E | F)

16 LW1LADC 2nd L-bus watchpoint
care/don’t care L-addr events

0 = Don’t care
1 = Care

[17:18] LW1LD 2nd L-bus watchpoint
L-data events selection

00 = match from comparator G
01 = match from comparator H
10 = match from comparators (G&H)
11 = match from comparator (G | H)

19 LW1LDDC 2nd L-bus watchpoint
care/don’t care L-data events

0 = Don’t care
1 = Care

20 BRKNOMSK Internal breakpoints non-mask
bit

0 = masked mode; breakpoints are recognized
only when MSR[RI]=1 (reset value)

1 = non-masked mode; breakpoints are always
recognized

[21:27] — Reserved —

28 SLW0EN Software trap enable selection
of the 1st L-bus watchpoint

0 = trap disabled (reset value)
1 = trap enabled

29 SLW1EN Software trap enable selection
of the 2nd L-bus watchpoint

30 DLW0EN Development port trap enable
selection of the 1st L-bus
watchpoint
(read only bit)

31 DLW1EN Development port trap enable
selection of the 2nd L-bus
watchpoint
(read only bit)

Table 8-32 LCTRL2 Bit Settings (Continued)

Bits Mnemonic Description Function
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-56 Revised 1 February 1999 REFERENCE MANUAL

8.8.8 Breakpoint Counter A Value and Control Register

COUNTA[16:31] are cleared following reset; COUNTA[0:15] are undefined.

COUNTA — Breakpoint Counter A Value and Control Register SPR 150

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CNTV

RESET: UNDEFINED

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RESERVED CNTC

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8-33 Breakpoint Counter A Value and Control Register (COUNTA)

Bit(s) Name Description

[0:15] CNTV Counter preset value

[16:29
]

— Reserved

[30:31
]

CNTC Counter source select

00 = not active (reset value)
01 = I-bus first watchpoint
10 = L-bus first watchpoint
11 = Reserved
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-57

8.8.9 Breakpoint Counter B Value and Control Register

COUNTB[16:31] are cleared following reset; COUNTB[0:15] are undefined.

8.8.10 Exception Cause Register (ECR)

The ECR indicates the cause of entry into debug mode. All bits are set by the hard-
ware and cleared when the register is read when debug mode is disabled, or if the
processor is in debug mode. Attempts to write to this register are ignored. When
the hardware sets a bit in this register, debug mode is entered only if debug mode
is enabled and the corresponding mask bit in the DER is set.

All bits are cleared to zero following reset.

COUNTB — Breakpoint Counter B Value and Control Register SPR 151

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CNTV

RESET: UNDEFINED

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RESERVED CNTC

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8-34 Breakpoint Counter B Value and Control Register (COUNTB)

Bit(s) Name Description

[0:15] CNTV Counter preset value

[16:29
]

— Reserved

[30:31
]

CNTC Counter source select

00 = not active (reset value)
01 = I-bus second watchpoint
10 = L-bus second watchpoint
11 = Reserved
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-58 Revised 1 February 1999 REFERENCE MANUAL

ECR — Exception Cause Register SPR 148

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RESERVED CHST
P

MCE DSE ISE EXTI ALE PRE FPUV
E

DECE RESERVED SYSE TR FPAS
E

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 SEE RESERVED LBRK IBRK EBRK
D

DPI

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8-35 ECR Bit Settings

Bit(s) Name Description

[0:1] — Reserved

2 CHSTP Checkstop bit. Set when the processor enters checkstop state.

3 MCE Machine check interrupt bit. Set when a machine check exception (other than one caused by a
data storage or instruction storage error) is asserted.

4 DSE Data storage exception bit. Set when a machine check exception caused by a data storage er-
ror is asserted.

5 ISE Instruction storage exception bit. Set whena machine check exception caused by an instruction
storage error is asserted.

6 EXTI External interrupt bit. Set when the external interrupt is asserted.

7 ALE Alignment exception bit. Set when the alignment exception is asserted.

8 PRE Program exception bit. Set when the program exception is asserted.

9 FPUVE Floating point unavailable exception bit. Set when the program exception is asserted.

10 DECE Decrementer exception bit. Set when the decrementer exception is asserted.

[11:12
]

— Reserved

13 SYSE System call exception bit. Set when the system call exception is asserted.

14 TR Trace exception bit. Set when in single-step mode or when in branch trace mode.

15 FPASE Floating point assist exception bit. Set when the floating-point assist exception is asserted.

16 — Reserved

17 SEE Software emulation exception. Set when the software emulation exception is asserted.

[18:27
]

Reserved
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-59

8.8.11 Debug Enable Register (DER)

This register enables the user to selectively mask the events that may cause the
processor to enter into debug mode.

28 LBRK L-bus breakpoint exception bit. Set when an L-bus breakpoint is asserted.

29 IBRK I-bus breakpoint exception bit. Set when an I-bus breakpoint is asserted.

30 EBRK External breakpoint exception bit. Set when an external breakpoint is asserted (by an on-chip
IMB or L-bus module, or by an external device or development system through the develop-
ment port).

31 DPI Development port interrupt bit. Set by the development port as a result of a debug station non-
maskable request or when debug mode is entered immediately out of reset.

DER — Debug Enable Register SPR 149

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RESERVED CHST
PE

MCEE DSEE ISEE EXTIE ALEE PREE FPU-
VEE

DE-
CEE

RESERVED SY-
SEE

TRE FPA-
SEE

RESET:

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 SEEE RESERVED LBRK
E

IBRKE EBRK
E

DPIE

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Table 8-35 ECR Bit Settings (Continued)

Bit(s) Name Description
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-60 Revised 1 February 1999 REFERENCE MANUAL

Table 8-36 DER Bit Settings

Bit(s) Name Description

[0:1] — Reserved

2 CHSTPE Checkstop enable bit

0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

3 MCEE Machine check exception enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

4 DSEE Data storage exception (type of machine check exception) enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

5 ISEE Instruction storage exception (type of machine check exception) enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

6 EXTIE External interrupt enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

7 ALEE Alignment exception enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

8 PREE Program exception enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

9 FPUVEE Floating point unavailable exception enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

10 DECEE Decrementer exception enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

[11:12
]

— Reserved

13 SYSEE System call exception enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

14 TRE Trace exception enable bit

0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

15 FPASEE Floating point assist exception enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

16 — Reserved
RCPU DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL Revised 1 February 1999 8-61

17 SEEE Software emulation exception enable bit

0 = Debug mode entry disabled (reset value)
1 = Debug mode entry enabled

[18:27
]

— Reserved

28 LBRKE L-bus breakpoint exception enable bit

0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

29 IBRKE I-bus breakpoint exception enable bit

0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

30 EBRKE External breakpoint exception enable bit

0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

31 DPIE Development port interrupt enable bit

0 = Debug mode entry disabled
1 = Debug mode entry enabled (reset value)

Table 8-36 DER Bit Settings (Continued)

Bit(s) Name Description
 MOTOROLA DEVELOPMENT SUPPORT RCPU

8-62 Revised 1 February 1999 REFERENCE MANUAL

	SECTION 8 DEVELOPMENT SUPPORT
	8.1 Program Flow Tracking
	8.1.1 Indirect Change-of-Flow Cycles
	8.1.1.1 Marking the Indirect Change-of-Flow Attribute
	8.1.1.2 Sequential Instructions with the Indirect Change-of-Flow Attribute

	8.1.2 Instruction Fetch Show Cycle Control
	8.1.3 Program Flow-Tracking Pins
	8.1.3.1 Instruction Queue Status Pins
	8.1.3.2 History Buffer Flush Status Pins
	8.1.3.3 Flow-Tracking Status Pins in Debug Mode
	8.1.3.4 Cycle Type, Write/Read, and Address Type Pins

	8.1.4 External Hardware During Program Trace
	8.1.4.1 Back Trace
	8.1.4.2 Window Trace
	8.1.4.3 Synchronizing the Trace Window to Internal CPU Events
	8.1.4.4 Detecting the Trace Window Starting Address
	8.1.4.5 Detecting the Assertion or Negation of VSYNC
	8.1.4.6 Detecting the Trace Window Ending Address

	8.1.5 Compress

	8.2 Watchpoint and Breakpoint Support
	8.2.1 Watchpoints
	8.2.1.1 Restrictions on Watchpoint Detection
	8.2.1.2 Byte and Half-Word Working Modes
	8.2.1.3 Generating Six Compare Types
	8.2.1.4 I-Bus Support Detailed Description
	8.2.1.5 L-Bus Support Detailed Description
	8.2.1.6 Treating Floating-Point Numbers

	8.2.2 Internal Breakpoints
	8.2.2.1 Breakpoint Counters
	8.2.2.2 Trap-Enable Programming
	8.2.2.3 Ignore First Match

	8.2.3 External Breakpoints
	8.2.4 Breakpoint Masking

	8.3 Development Port
	8.3.1 Development Port Signals
	8.3.1.1 Development Serial Clock
	8.3.1.2 Development Serial Data In
	8.3.1.3 Development Serial Data Out

	8.3.2 Development Port Registers
	8.3.2.1 Development Port Shift Register
	8.3.2.2 Trap Enable Control Register

	8.3.3 Development Port Clock Mode Selection
	8.3.4 Development Port Transmissions
	8.3.5 Trap-Enable Input Transmissions
	8.3.6 CPU Input Transmissions
	8.3.7 Serial Data Out of Development Port — Non-Debug Mode
	8.3.8 Serial Data Out of Development Port — Debug Mode
	8.3.8.1 Valid Data Output
	8.3.8.2 Sequencing Error Output
	8.3.8.3 CPU Exception Output
	8.3.8.4 Null Output

	8.3.9 Use of the Ready Bit

	8.4 Debug Mode Functions
	8.4.1 Enabling Debug Mode
	8.4.2 Entering Debug Mode
	8.4.3 Debug Mode Operation
	8.4.4 Freeze Function
	8.4.5 Exiting Debug Mode
	8.4.6 Checkstop State and Debug Mode

	8.5 Development Port Transmission Sequence
	8.5.1 Port Usage in Debug Mode
	8.5.2 Debug Mode Sequence Diagram
	8.5.3 Port Usage in Normal (Non-Debug) Mode

	8.6 Examples of Debug Mode Sequences
	8.6.1 Prologue Instruction Sequence
	8.6.2 Epilogue Instruction Sequence
	8.6.3 Peek Instruction Sequence
	8.6.4 Poke Instruction Sequence

	8.7 Software Monitor Support
	8.8 Development Support Registers
	8.8.1 Register Protection
	8.8.2 Comparator A–D Value Registers (CMPA–CMPD)
	8.8.3 Comparator E–F Value Registers
	8.8.4 Comparator G–H Value Registers (CMPG–CMPH)
	8.8.5 I-Bus Support Control Register
	8.8.6 L-Bus Support Control Register 1
	8.8.7 L-Bus Support Control Register 2
	8.8.8 Breakpoint Counter A Value and Control Register
	8.8.9 Breakpoint Counter B Value and Control Register
	8.8.10 Exception Cause Register (ECR)
	8.8.11 Debug Enable Register (DER)

