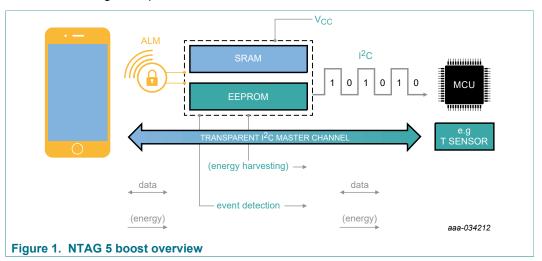
NTA5332

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices


Rev. 1.1 — 2 October 2019 547511

Objective short data sheet COMPANY PUBLIC

1 General description

NTAG 5 boost uses active load modulation (ALM) to deliver robust and reliable communication with NFC phones, bringing a new level of convenience to tiny devices.

NXP's NTAG 5 boost shrinks the NFC footprint while adding AES security, so designers can deliver ultra-compact devices for use in IoT, consumer, and industrial applications. It offers an NFC Forum-compliant contactless interface that delivers exceptional read range, giving tiny devices the ability to interact with the cloud and other NFC-enabled devices, including smartphones.

ALM allows construction of a compact yet highly reliable antenna, creating a significantly smaller footprint without compromising the read range. When operating in ALM mode, the read range is significantly longer than when operating in passive mode.

An energy-efficient design, equipped with a hard power-down mode and a standby current of less than 10 μ A, ensures long battery life.

2048 bytes (16384 bits) of user memory can be divided into three areas, and each area can use a different protection level, varying from no protection to 32-/64-bit password protection or up to 128-bit AES-protected read/write access with mutual authentication. Different parties in the value chain can have their own dedicated memory areas for storing access data.

The NTAG 5 boost comes with pre-programmed proof-of-origin functionality to verify authenticity. The elliptic curve cryptography (ECC) based originality signature can be locked or reprogrammed by the customer.

With NTAG 5 boost, the device can connect to the cloud with a single tap. The connection uses an NFC Forum-compliant data exchange mechanism involving 256 bytes (2048 bits) SRAM to ensure highly interoperable data transfers.

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

2 Features and benefits

- Antenna size reduction by a factor of 40, same read range as in passive load modulation
- Long battery life due to low standby current and hard power-down
- · Adjustable security levels up to mutual AES authentication
- Flexible split between three open and/or protected memory areas
- · Ensured authenticity of product through value chain
- Interoperable data exchange according to NFC Forum standards
- Interoperable and high performance NFC interface
 - ISO/IEC 15693 and NFC Forum Type 5 Tag compliant
 - 64-bit Unique IDentifier
- Reliable and robust memory
 - 2048 bytes (16384 bits) user EEPROM on top of configuration memory
 - 256 bytes (2048 bits) SRAM for frequently changing data and pass-through mode
 - 40 years data retention
 - Write endurance of 1 000 000 cycles
- · Configurable contact interface
 - I²C slave standard (100 kHz) and fast (400 kHz) mode
 - Transparent I²C master channel (for example, read sensors without an MCU)
 - One configurable event detection pin
 - Two GPIOs as multiplexed I²C lines
 - Two Pulse Width Modulation (PWM) channels as multiplexed GPIOs and/or ED pin
 - 1.62 V to 5.5 V supply voltage
- Scaleable security for access and data protection
 - Disable NFC interface temporarily
 - Disable I²C interface temporarily
 - NFC PRIVACY mode
 - Read-only protection as defined in NFC Forum Type 5 Tag Specification
 - Full, read-only, or no memory access based on 32-bit password from both interfaces
 - Optional 64-bit password protection from NFC perspective
 - 128-bit AES authentication as defined in ISO/IEC 15693
 - ECC-based reprogrammable originality signature
- · Multiple fast data transfer mode
 - Pass-through mode with 256 byte SRAM buffer
 - Standardized data transfer mode (PHDC, TNEP)
- · Low-power budget application support
 - Energy harvesting with configurable output voltage up to 30 mW
 - Low-power standby current <10 μA
 - Hard power down current <0.25 µA
- · Very robust architecture
 - -- -40 °C to 85°C
- · Extensive product support package
 - Feature specific application notes
 - Development board including software and source code
 - Hands-on training

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

3 Applications

- Use cases
 - Simple dynamic secure pairing
 - Commissioning
 - Parameterization
 - Diagnosis
 - Firmware download
 - Low BoM and low-power data acquisition for sensors
 - Calibration
 - Trimming
 - Authenticity check and data protection
 - Late "in the box" configuration
 - LED driver configuration
 - NFC Charging
- Applications
 - Lighting
 - Smart home
 - Hearable and Wearable
 - Consumer
 - Industrial
 - Gaming
 - Smart sensor
 - Smart metering

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

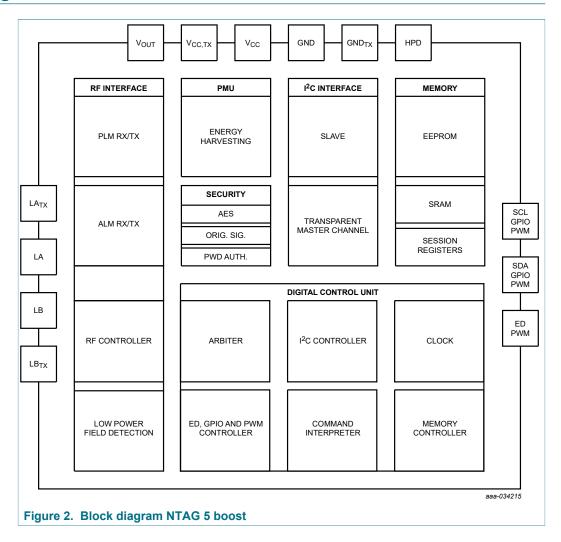
4 Quick reference data

Table 1. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
General						
f _i	input frequency	ISO/IEC 15693	13.553	13.56	13.567	MHz
Operating condition	ns		'			,
T _{amb}	ambient temperature		-40	25	85	°C
V _{CC}	supply voltage	on pin V _{CC}	1.62	-	5.5	V
Current consumption	on		'		·	
I _{VCC}	V _{CC} supply current	V _{CC} = 1.8 V	-	150	-	μA
I _{standby Vcc}	standby current	V _{CC} = 5.5 V wake- up Active NFC level detector and I ² C	-	10	-	μА
Energy harvesting	VOUT pad (passive mode)		1			1
V_{out}	output voltage	load current <= configured output current	1.62	-	3.3	V
C _L	load capacitance	needs to come from calculation	-	1.1	-	μF

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

5 Ordering information


Table 2. Ordering information

Tuna numbar	Package		
Type number	Name	Description	Version
NTA53321G0FHK	XQFN16	NTAG 5 boost with I ² C master/slave interface, AES authentication, ALM and 2048 bytes user EEPROM plastic, extremely thin quad flat package; no leads; 16 terminals	SOT1161-2
NTA53321G0FTT	TSSOP16	NTAG 5 boost with I ² C master/slave interface, AES authentication, ALM and 2048 bytes user EEPROM plastic, thin shrink small outline package; 16 leads; 0.65 mm pitch; 5 mm x 4.4 mm x 1.1 mm body	SOT403-1
NTA53321G0FUA	Wafer	NTAG 5 boost; 8 inch wafer, 150 µm thickness, on film frame carrier, electronic fail die marking according to SECS-II format)	-

REMARK: Wafer specification addendum is available after exchange of a non-disclosure agreement (NDA)

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

6 Block diagram

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

7 Pinning Information

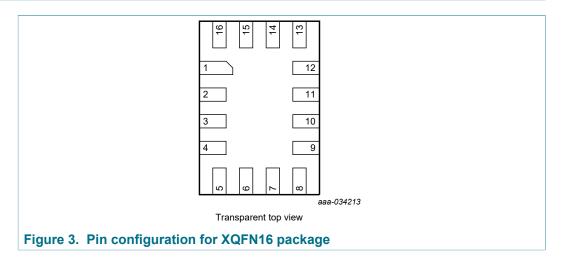


Table 3. Pin description for XQFN16

Pin	Symbol	Description	When unused
1	GND	Ground	connect to GND
2	GND_TX	Ground for ALM	connect to GND
3	$V_{CC,TX}$	External power supply for ALM	keep floating
4	N.C.	not connected	keep floating
5	N.C.	not connected	keep floating
6	SDA/GPIO1/PWM1	Multiplexed serial data I ² C, GPIO1 and PWM1	keep floating
7	SCL/GPIO0/PWM0	Multiplexed serial clock I ² C, GPIO0 and PWM0	keep floating
8	ED/PWM0	Multiplexed event detection and PWM0	keep floating
9	V _{CC}	External power supply	keep floating
10	HPD	Hard power down	keep floating
11	GND	Ground	connect to GND
12	V _{OUT}	Energy harvesting voltage output	keep floating
13	LB _{TX}	Antenna connection TX	keep floating
14	LB	Antenna connection	keep floating
15	LA	Antenna connection	keep floating
16	LA _{TX}	Antenna connection TX	keep floating

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

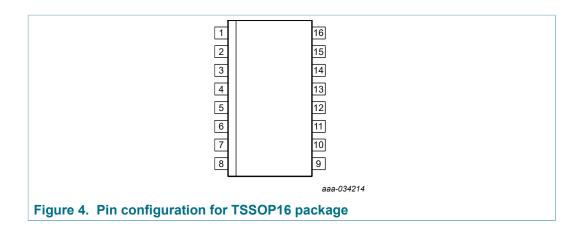
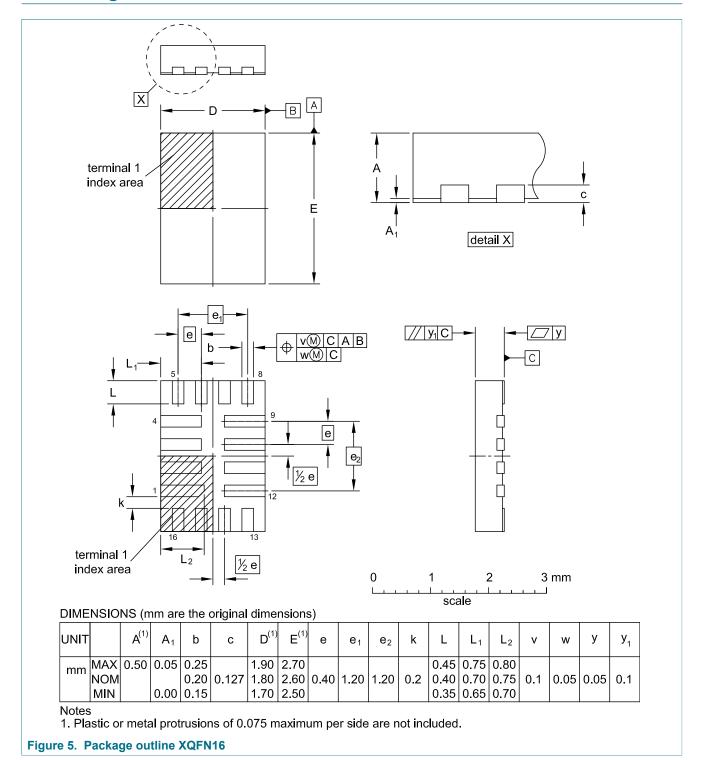


Table 4. Pin description for TSSOP16

Pin	Symbol	Description	When unused
1	LA	Antenna connection	keep floating
2	LA _{TX}	Antenna connection TX	keep floating
3	GND	Ground	connect to GND
4	GND_TX	Ground for ALM Ground	connect to GND
5	V _{CC,TX}	External power supply for ALM	keep floating
6	N.C.	not connected	keep floating
7	N.C.	not connected	keep floating
8	SDA/GPIO1/PWM1	Multiplexed serial data I ² C, GPIO1 and PWM1	keep floating
9	SCL/GPIO0/PWM0	Multiplexed serial clock I ² C, GPIO0 and PWM0	keep floating
10	ED/PWM0	Multiplexed event detection and PWM0	keep floating
11	V _{CC}	External power supply	keep floating
12	HPD	Hard power down	keep floating
13	GND	Ground	connect to GND
14	V _{OUT}	Energy harvesting voltage output	keep floating
15	LB _{TX}	Antenna connection TX	keep floating
16	LB	Antenna connection	keep floating

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

Limiting values


Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
T _{stg}	storage temperature	all packages	-65	+150	°C
Tj	junction temperature		-	+95	°C
V _{ESD}	electrostatic discharge voltage	Charge Device Model [1]	-2	2	kV
		Human Body Model [2]	-2	2	kV
V _{CC}	supply voltage	on pin V _{CC}	-0.5	7.15	V
V _{CC}	supply voltage	on pin V _{CC_TX}	-0.5	7.15	V
V _i	input voltage	on pin SDA, SCL,ED, HPD	-0.5	7.15	V
V _{I (RF)}	RF input voltage	on pin LA/LB	-0.5	5.2	Vp
Vi	input voltage	on pin LA; LB is 0 V; sine wave of 13.56 MHz	-0.5	5.2	Vp
		on pin LB; LA is 0 V; sine wave of 13.56 MHz	-0.5	5.2	Vp
V _i	input voltage	on pin LA_TX, LB_TX	-0.5	4.7	V
I _{i(max)}	maximum input current	La/Lb; peak	-168	168	mA

^[1] CDM: ANSI/ESDA/JEDEC JS-002[2] HBM: ANSI/ESDA/JEDEC JS-001

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

9 Package outline

NTA5332_SDS

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm SOT403-1 Q detail X 2.5 5 mm scale **DIMENSIONS** (mm are the original dimensions) D (1) E (2) Z (1) UNIT Q θ A_2 A₃ bp ΗE L Lp у max. 0.30 6.6 6.2 8° 0° 0.15 0.95 0.2 5.1 4.5 0.75 0.4 0.40 mm 0.25 0.80 0.05 0.19 0.1 4.9 4.3 0.50 0.3 0.06 Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE			REFER	ENCES	EUROPEAN	ISSUE DATE
	VERSION	IEC	JEDEC	JEITA	PROJECTION	1330E DATE
	SOT403-1		MO-153			-99-12-27 03-02-18

Figure 6. Package outline TSSOP16

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

10 Handling information

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the *ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A* or equivalent standards.

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

11 References

- [1] NFC Forum specification, Type 5 Tag Technical Specification Version 1.0 2018-04-27 [T5T] NFC ForumTM
 https://nfc-forum.org/product-category/specification/
- [2] ISO/IEC 15693 https://www.iso.org/ics/35.240.15/x/
- [3] UM10204 I2C-bus specification and user manual https://www.nxp.com/docs/en/user-guide/UM10204.pdf

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

12 Revision history

Table 6. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
NTA5332_SDS v.1.1	20191002	Objective short data sheet		v.1.0
NTA5332_SDS v.1.0	20190528	Objective short data sheet		-
	 Initial version 			

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

13 Legal information

13.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

13.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

 $\ensuremath{\mathbf{Applications}}$ — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

NTA5332_SDS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2019. All rights reserved

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — While NXP Semiconductors has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP Semiconductors accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

13.4 Licenses

Purchase of NXP ICs with NFC technology

Purchase of an NXP Semiconductors IC that complies with one of the Near Field Communication (NFC) standards ISO/IEC 18092 and ISO/IEC 21481 does not convey an implied license under any patent right infringed by implementation of any of those standards. Purchase of NXP Semiconductors IC does not include a license to any NXP patent (or other IP right) covering combinations of those products with other products, whether hardware or software.

13.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

NTAG — is a trademark of NXP B.V.

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

Tables

Tab. 1.	Characteristics4	Tab. 5.	Limiting values In accordance with the	
Tab. 2.	Ordering information5		Absolute Maximum Rating System (IEC	
	Pin description for XQFN167		60134)	9
Tab. 4.	Pin description for TSSOP168	Tab. 6.	Revision history1	4

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

Figures

Fig. 1.	NTAG 5 boost overview1	Fig. 4.	Pin configuration for TSSOP16 package	.8
Fig. 2.	Block diagram NTAG 5 boost 6	Fig. 5.	Package outline XQFN161	10
Fig. 3.	Pin configuration for XQFN16 package7	Fig. 6.	Package outline TSSOP161	1

NTAG 5 boost - NFC Forum-compliant I²C bridge for tiny devices

Contents

1	General description	1
2	Features and benefits	2
3	Applications	3
4	Quick reference data	4
5	Ordering information	5
6	Block diagram	
7	Pinning Information	7
8	Limiting values	
9	Package outline	
10	Handling information	12
11	References	
12	Revision history	14
13	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.