Low Power Transistors

NPN Silicon

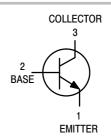
Features

- MIL-PRF-19500/391 Qualified
- Available as JAN, JANTX, and JANTXV

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	80	Vdc
Collector - Base Voltage	V _{CBO}	140	Vdc
Emitter - Base Voltage	V _{EBO}	7.0	Vdc
Collector Current – Continuous	I _C	1.0	Adc
Total Device Dissipation @ T _A = 25°C 2N3019, 2N3019S 2N3700	P _T	800 500	mW
Total Device Dissipation @ T _C = 25°C 2N3019, 2N3019S 2N3700	P _T	5.0 1.0	W
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient 2N3019, 2N3019S 2N3700	$R_{ hetaJA}$	195 325	°C/W
Thermal Resistance, Junction to Case 2N3019, 2N3019S 2N3700	$R_{ heta JC}$	30 150	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

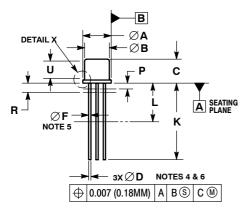
http://onsemi.com

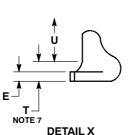
TO-39 CASE 205AB STYLE 1 2N3019S

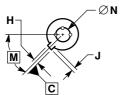
TO-18 CASE 206AA STYLE 1 2N3700

ORDERING INFORMATION

Device	Package	Shipping
JAN2N3019		
JANTX2N3019	TO-5	Bulk
JANTXV2N3019		
JAN2N3019S		
JANTX2N3019S	TO-39	Bulk
JANTXV2N3019S		
JAN2N3700		
JANTX2N3700	TO-18	Bulk
JANTXV2N3700		


ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	<u> </u>	1	1	ı
Collector – Emitter Breakdown Voltage (I _C = 30 mAdc)	V _{(BR)CEO}	80	_	Vdc
Emitter-Base Cutoff Current (V _{EB} = 5.0 Vdc) (V _{EB} = 7.0 Vdc)	I _{EBO}	- -	10 10	nAdc μAdc
Collector–Emitter Cutoff Current (V _{CE} = 90 Vdc)	I _{CEO}	-	10	nAdc
Collector–Base Cutoff Current (V _{CB} = 140 Vdc)	I _{CBO}	-	10	μAdc
ON CHARACTERISTICS (Note 1)	1			l .
DC Current Gain $ \begin{array}{l} (I_C=0.1 \text{ mAdc, } V_{CE}=10 \text{ Vdc)} \\ (I_C=10 \text{ mAdc, } V_{CE}=10 \text{ Vdc)} \\ (I_C=150 \text{ mAdc, } V_{CE}=10 \text{ Vdc)} \\ (I_C=500 \text{ mAdc, } V_{CE}=10 \text{ Vdc)} \\ (I_C=500 \text{ mAdc, } V_{CE}=10 \text{ Vdc)} \\ (I_C=1.0 \text{ Adc, } V_{CE}=10 \text{ Vdc)} \end{array} $	h _{FE}	50 90 100 50 15	300 - 300 300 -	-
Collector – Emitter Saturation Voltage (I_C = 150 mAdc, I_B = 15 mAdc) (I_C = 500 mAdc, I_B = 50 mAdc)	V _{CE(sat)}	- -	0.2 0.5	Vdc
Base – Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE(sat)}	-	1.1	Vdc
SMALL-SIGNAL CHARACTERISTICS	<u> </u>		•	
Magnitude of Small–Signal Current Gain (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	h _{fe}	5.0	20	-
Small–Signal Current Gain ($I_C = 1.0$ mAdc, $V_{CE} = 5$ Vdc, $f = 1$ kHz)	h _{fe}	80	400	-
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz})$	C _{obo}	-	12	pF
Input Capacitance ($V_{EB} = 0.5 \text{ Vdc}, I_C = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$)	C _{ibo}	-	60	pF
Noise Figure (V_{CE} = 10 Vdc, I_{C} = 100 μ Adc, R_{g} = 1 $k\Omega$, PBW = 200 Hz)	NF	-	4.0	dB
Collector–Base Time Constant (V _{CB} = 10 Vdc, I _C = 10 mAdc, f = 79.8 MHz)	r' _b ,C _C	-	400	ps
SWITCHING CHARACTERISTICS	-	•	•	•
Pulse Response (Reference Figure in MIL-PRF-19500/391)	t _{on} + t _{off}	-	30	ns
SWITCHING CHARACTERISTICS Pulse Response	t _{on} + t _{off}	_		ns

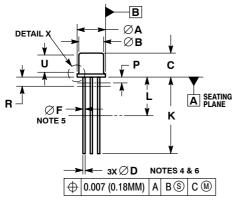

^{1.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

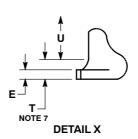
PACKAGE DIMENSIONS

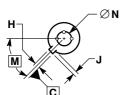
TO-53-Lead CASE 205AA **ISSUE B**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
- CONTROLLING DIMENSION: INCHES.
 DIMENSION J MEASURED FROM DIAMETER A TO EDGE.
- LEAD TRUE POSITION TO BE DETERMINED AT THE GUAGE PLANE DEFINED BY DIMENSION R.
- DIMENSION F APPLIES BETWEEN DIMENSION P AND L
 DIMENSION D APPLIES BETWEEN DIMENSION L AND K.
 BODY CONTOUR OPTIONAL WITHIN ZONE DEFINED BY DIMEN-
- SIONS A, B, AND T.

 8. DIMENSION B SHALL NOT VARY MORE THAN 0.010 IN ZONE P.


	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	8.89	9.40	0.350	0.370
В	8.00	8.51	0.315	0.335
С	6.10	6.60	0.240	0.260
D	0.41	0.53	0.016	0.021
E	0.23	3.18	0.009	0.125
F	0.41	0.48	0.016	0.019
Н	0.71	0.86	0.028	0.034
J	0.73	1.02	0.029	0.040
K	38.10	44.45	1.500	1.750
L	6.35		0.250	
M	45°BSC		45 °BSC	
N	5.08 BSC		0.200 BSC	
P		1.27		0.050
R	1.37 BSC		0.054 BSC	
T		0.76		0.030
U	2.54		0.100	


STYLE 1:


PIN 1. EMITTER

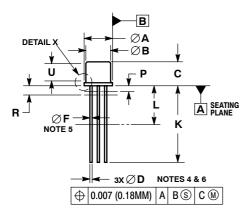
- BASE
- COLLECTOR

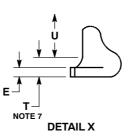
TO-39 3-Lead CASE 205AB **ISSUE A**

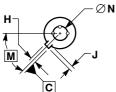
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
- DIMENSION J MEASURED FROM DIAMETER A TO EDGE. LEAD TRUE POSITION TO BE DETERMINED AT THE GUAGE
- PLANE DEFINED BY DIMENSION R.
 DIMENSION F APPLIES BETWEEN DIMENSION P AND L.
- DIMENSION D APPLIES BETWEEN DIMENSION L AND K.
 BODY CONTOUR OPTIONAL WITHIN ZONE DEFINED BY DIMEN-
- SIONS A, B, AND T.
 DIMENSION B SHALL NOT VARY MORE THAN 0.010 IN ZONE P.

DINIENSION D SHALL NOT VART WORL TH					
	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	8.89	9.40	0.350	0.370	
В	8.00	8.51	0.315	0.335	
С	6.10	6.60	0.240	0.260	
D	0.41	0.48	0.016	0.019	
E	0.23	3.18	0.009	0.125	
F	0.41	0.48	0.016	0.019	
Н	0.71	0.86	0.028	0.034	
J	0.73	1.02	0.029	0.040	
K	12.70	14.73	0.500	0.580	
L	6.35		0.250		
M	45°	45 °BSC		BSC	
N	5.08	BSC	0.200	BSC	
P		1.27		0.050	
R	1.37	1.37 BSC		0.054 BSC	
T		0.76		0.030	
U	2.54		0.100		


STYLE 1:


EMITTER PIN 1.


BASE COLLECTOR 3.

PACKAGE DIMENSIONS

TO-18 3-Lead CASE 206AA **ISSUE A**

DETAIL

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
- CONTROLLING DIMENSION: INCHES.
- DIMENSION J MEASURED FROM DIAMETER A TO EDGE.
 LEAD TRUE POSITION TO BE DETERMINED AT THE GUAGE
- PLANE DEFINED BY DIMENSION R.
 DIMENSION F APPLIES BETWEEN DIMENSION P AND L.
- DIMENSION D APPLIES BETWEEN DIMENSION L AND K. BODY CONTOUR OPTIONAL WITHIN ZONE DEFINED BY DIMEN-
- SIONS A, B, AND T.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	5.31	5.84	0.209	0.230
В	4.52	4.95	0.178	0.195
С	4.32	5.33	0.170	0.210
D	0.41	0.53	0.016	0.021
Е		0.76		0.030
F	0.41	0.48	0.016	0.019
Н	0.91	1.17	0.036	0.046
J	0.71	1.22	0.028	0.048
K	12.70	19.05	0.500	0.750
L	6.35		0.250	
M	45°BSC		45 °BSC	
N	2.54	BSC	0.100 BSC	
Р		1.27		0.050
R	1.37 BSC		0.054 BSC	
T		0.76		0.030
U	2.54		0.100	

STYLE 1:

PIN 1. EMITTER

BASE

COLLECTOR

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking, ited. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative