

SANYO Semiconductors DATA SHEET

STK433-000N-E series

Thick-Film Hybrid IC

2-4ch class-AB Audio Power IC from 40W to 150W

Overview

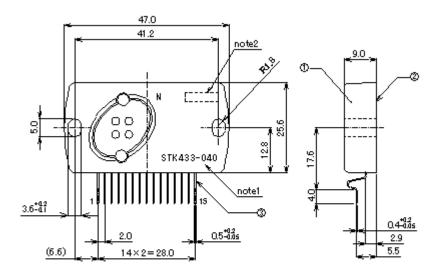
The STK433-000N-E series is a hybrid IC designed to be used in from 40W to 150W x 2,3,4ch class AB audio power amplifiers.

Application

• Audio Power amplifiers

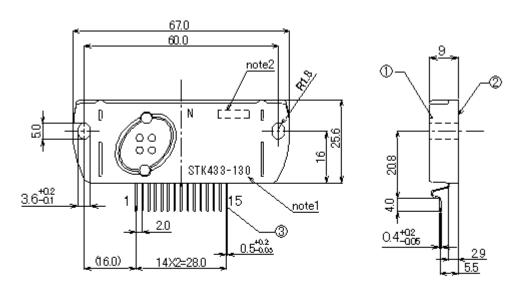
Features

- Pin-to-pin compatible outputs ranging from 40W to 150W.
- Miniature package.
- Output load impedance: RL=6Ω recommended.
- Allowable load shorted time: 0.3 second
- Allows the use of predesigned applications for standby and mute circuit.


Series model

	STK433-040N-E	STK433-060N-E	STK433-130N-E	STK433-330N-E
Output1 (10%/1kHz)	40W × 2ch	50W × 2ch	150W × 2ch	150W × 3ch
Output2 (0.4%/20Hz~20kHz)	25W x 2ch	35W × 2ch	100W × 2ch	100W × 3ch
Maxi.rating Voc (quiescent)	±38V	±46V	±71.5V	±71.5V
Max rating Voc (6Ω)	±36V	±40V	±63V	±63V
Recommended operating Voc (6Ω)	±24V	±27V	±44V	±44V
Dimensions (excluding pin height)	47.0×25	.6×9.0mm	67.0×25.6×9.0mm	64.0×36.6×9.0mm

	STK433-840N-E	STK433-870N-E	STK433-890N-E
Output1 (10%/1kHz)	40W × 4ch	60W × 4ch	80W × 4ch
Output2 (0.4%/20Hz~20kHz)	25W x 4ch	40W × 4ch	50W × 4ch
Maxi. rating Voc (quiescent)	±38V	±50V	±54V
Max rating Voc (6Ω)	±36V	±44V	±47V
Recommended operating Voc (6Ω)	±25V	±30V	±34V
Dimensions (excluding pin height)	64.0×31	.1×9.0mm	78.0×44.1×9.0mm


Package Dimensions (unit : mm typ) RoHS DIRECTIVE PASS

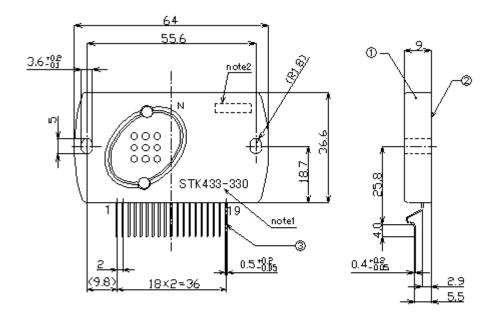
STK433-040N-E/060N-E

notel: This indicates the Product name.
The form of a character in this drawing differs from that of HHO. note2: This indicates the Date code.

STK433-130N-E

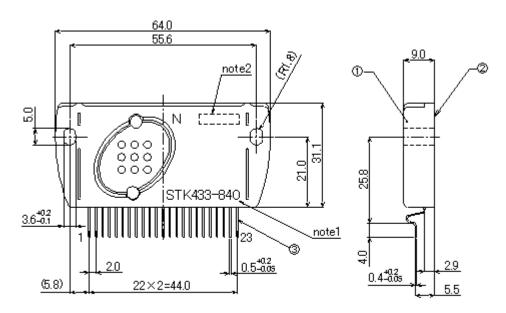
notel: This indicates the Product name.

The form of a character in this drawing differs from that of H-IC.


note2: This indicates the Date code.

The character specification

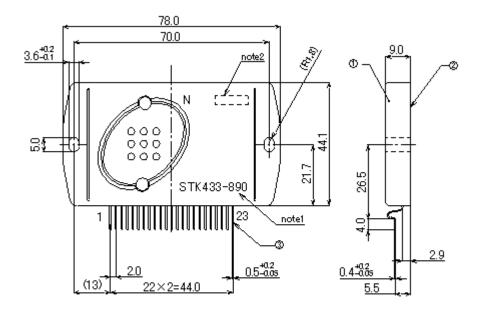
(including the font, etc.) in this drawing differs from that of H-IC.


Package Dimensions (unit : mm typ) RoHS DIRECTIVE PASS

STK433-330N-E

note1: This indicates the Product name
The form of a character in this
drawing differs from that of HHO.
note2: This indicates the Date code
The character specification
(including the font, etc.) in this
drawing differs from that of HHO.

STK433-840N-E



note1: This indicates the Product name.

The form of a character in this
drawing differs from that of H-IC.
note2: This indicates the Date code.

Package Dimensions (unit : mm typ) RoHS DIRECTIVE PASS

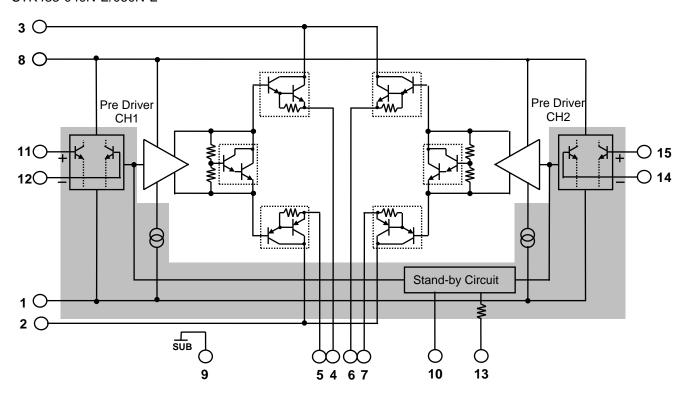
STK433-890N-E

note1: This indicates the Product name.
The form of a character in this drawing differs from that of HHO. note2: This indicates the Date code.

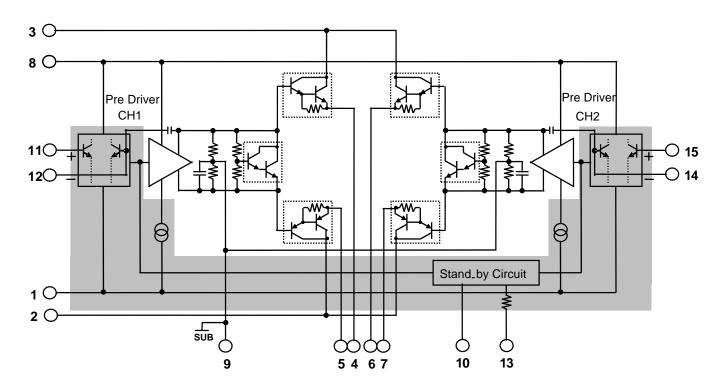
[STK433-000N/-100N/-300N sr Pin Layout]

•	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(Size)47.0*25.6*9.0	 '		J				3/2.0	00mi		10		12	10		10
STK433-040N 40W/JEITA	-	-	+	0	0	0	0	+			Τ	N	S	N	Ι
STK433-060N 50W/JEITA	Р	V	V	U	U	U	U	P	S	G	N	F	Т	F	N
	R	С	С	T	T	Т	T	R	U	N	/	/	Α	/	/
	E	С	С	/	/	/	/	E	В	D	С	С	N	С	С
(Size)67.0*25.6*9.0	ĺ			С	С	С	С				Н	Н	D	Н	Н
STK433-130N 150W/JEITA				Н 1	H 1	H 2	H 2				1	1	- В	2	2
	1			+	-	+	-						Υ		

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
(Size)64.0*36.6*9.0				3ch	cla	ssAl	3/2.0)0mr	n										
STK433-330N 150W/JEITA	-	-	+	0	0	0	0	+			-	N	S	N	ı	- 1	Ν	0	0
	Р	V	V	U	U	U	U	P	S	G	N	F	Т	F	N	N	F	U	U
	R	С	С	T	T	Т	T	R	U	N	/	/	Α	/	/	/	/	Т	Т
	Е	С	С	/	/	/	/	E	В	D	С	C	N	c	С	С	С	/	/
				С	С	С	С				Н	н	D	н	Н	н	Н	С	С
				Н	Н	Н	Н				1	1	-	2	2	3	3	Н	Н
				1	1	2	2						В					3	3
				+	-	+	-						Υ					+	-

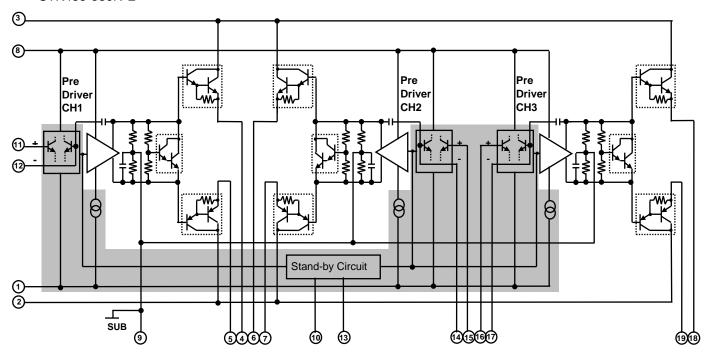

[STK433-000N/-100N/-800Nsr Pin Layout]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(Size)47.0*25.6*9.0				2ch	cla	ssAl	3/2.0)0mi	m						
STK433-040N 40W/JEITA	-	-	+	0	0	0	0	+			ı	N	S	N	_
STK433-060N 50W/JEITA	P	V	V	U	U	U	U	P	S	G	N	F	Т	F	N
	R	С	С	T	T	Т	Т	R	U	N	/	/	Α	/	/
	E	С	С	/	/	/	/	E	В	D	С	С	N	C	С
(Size)67.0*25.6*9.0	1			С	С	C	С				Н	Н	D	Н	Н
STK433-130N 150W/JEITA				H 1	H 1	H 2	H 2				1	1	- В	2	2
	+			+	-	+	-						Υ		
	1														

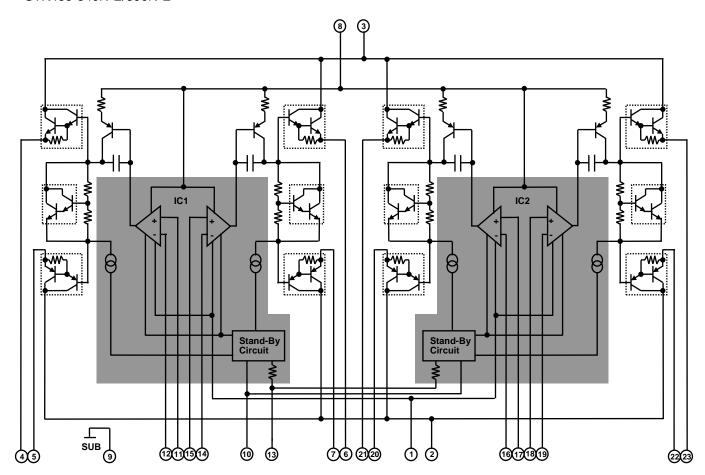

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
(Size)64.0*31.1*9.0				4ch	clas	ssAE	3/2.0)0mr	n														
STK433-840N 40W/JEITA	Р К Е	- V c	+ V c	O U T /	O U T /	O U T	O U T /	+ P R E	S U B	G N D	N / C	N F / C	S T A N	N F / C	I N / C	N F /	I N /	I N /	N F /	O U T	O U T	JOUT	J O
(Size)78.0*44.1*9.0 STK433-890N 80W/JEITA	_	C	C	C H 1 +	C H 1	C H 2 +	C H 2	L	ם	ט	H 1	H 1	D - B Y	H 2	H 2	C H 3	C H 3	C H 4	C H 4	/ C H 3	/ C H 3 +	/ C H 4	/ C H 4 +

Equivalent Circuit

STK433-040N-E/060N-E



STK433-130N-E



Equivalent Circuit

STK433-330N-E

STK433-840N-E/890N-E

STK433-040N-E

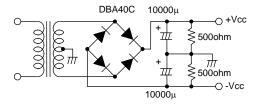
Specifications

Absolute maximum ratings at Ta=25°C, Tc=25°C unless otherwise specified

Parameter	Symbol	Conditions	Ratings	Unit
Maximum Power Supply Voltage	Vcc max(0)	Non- signal	±38	V
Maximum Power Supply Voltage	Vcc max(1)	Signal, RL≥6Ω	±36	V
Maximum Power Supply Voltage	Vcc max(2)	Signal, RL=4Ω	±30	V
Minimum Operation Supply Voltage	Vcc min		±10	V
#13 Operating Voltage *5	VST OFF max	#13 voltage	-0.3 to +5.5	V
Thermal Resistance	Өј-с	Per one power transistor	4.2	°C/W
Junction Temperature	Tj max	Should satisfy Tj max and Tc max	150	°C
Operating Substrate Temperature	Tc max	Should satisfy 1) max and 10 max	125	°C
Storage Temperature	Tstg		-30 to +125	°C
Allowable Time for Load Short-circuit *4	ts	Vcc=±24V, RL=6Ω, f=50Hz Po=25W, 1ch drive	0.3	S

Operating Characteristics at Tc=25°C, RL= 6Ω (Non-inductive Load), Rg= 600Ω , VG=30dB

				condition		,	_	Ratings		
Parameter	Symbol	Vcc [V]	f [Hz]	Po [W]	THD [%]		min	typ	max	Unit
	Po 1	±24	20 to20k		0.4		23	25		
Output Power *1	Po 2	±24	1k		10			40		W
	Po 3	±20	1k		1	RL=4Ω		25		
THD *1	THD 1	±24	20 to20k	F 0		//C 204D			0.4	%
THD *1	THD 2	±24	1k	5.0		VG=30dB		0.02		%
Frequency Characteristics *1	fL, fH	±24		1.0		+0 -3dB		20 to 50k		Hz
Input Impedance	ri	±24	1k	1.0				55		kΩ
Output Noise Voltage *3	VNO	±29				Rg=2.2kΩ			1.0	mVrms
Quiescent Current	Icco	±29				No load	15	30	70	mA
Quiescent Current at Stand-by	ICST	±29							1.0	mA
Output Neutral Voltage	VN	±29					-70	0	+70	mV
#13 Stand-By ON Threshold *5	VST ON	±24				Stand-by		0	0.6	V
#13 Stand-By OFF Threshold *5	VST OFF	±24				Operation	2.5	3.0	5.5	V


Note

- *1. 1 channel Operation.
- *2. All tests are measured using a constant-voltage supply unless otherwise specified
- *3. The output noise voltage is peak value of an average-reading meter with a rms value scale (VTVM).

 A regulated AC supply (50Hz) should be used to eliminate the effects of AC primary line flicker noise
- *4. Allowable time for load short-circuit and output noise voltage are measured using the specified transformer power supply.
- *5. Please connect PreVcc pin (#1 pin) with the stable minimum voltage. and connect so that current does not flow in by reverse bias.
- *6. In case of heat sink design, we request customer to design in the condition to have assumed market.
- * The case of this Hybrid-IC is using thermosetting silicon adhesive(TSE322SX).
- * Weight of HIC: (typ) 12.0 g

Outer carton dimensions (WxLxH): 452mmx325mmx192mm

Specified Transformer Power Supply (Equivalent to MG-200)

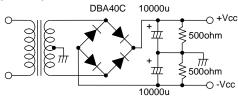
STK433-060N-E

Specifications

Absolute maximum ratings at Ta=25°C, Tc=25°C unless otherwise specified

Parameter	Symbol	Conditions	Ratings	Unit
Maximum Power Supply Voltage	Vcc max(0)	Non- signal	±46	V
Maximum Power Supply Voltage	Vcc max(1)	Signal, RL≥6Ω	±40	V
Maximum Power Supply Voltage	Vcc max(2)	Signal, RL=4Ω	±33	V
Minimum Operation Supply Voltage	Vcc min		±10	V
#13 Operating Voltage *5	VST OFF max	#13 voltage	-0.3 to +5.5	V
Thermal Resistance	Өј-с	Per one power transistor	3.5	°C/W
Junction Temperature	Tj max	Should catisfy Ti may and To may	150	°C
Operating Substrate Temperature	Tc max	Should satisfy Tj max and Tc max	125	°C
Storage Temperature	Tstg		-30 to +125	°C
Allowable Time for Load Short-circuit *4	ts	Vcc=±27V, RL=6Ω, f=50Hz Po=35W, 1ch drive	0.3	s

Operating Characteristics at Tc=25°C, RL=6Ω(Non-inductive Load), Rg=600Ω, VG=30dB


			C	Condition	s *2			Ratings		
Parameter	Symbol	Vcc [V]	f [Hz]	Po [W]	THD [%]		min	typ	max	Unit
	Po 1	±27	20 to20k		0.4		33	35		
Output Power *1	Po 2	±27	1k		10			50		W
	Po 3	±22	1k		1	RL=4Ω		35		
THD *1	THD 1	±27	20 to20k	F 0		VG=30dB			0.4	%
IND I	THD 2	±27	1k	5.0		VG=300B		0.02		%
Frequency Characteristics *1	fL, fH	±27		1.0		+0 -3dB		20 to 50k		Hz
Input Impedance	ri	±27	1k	1.0				55		kΩ
Output Noise Voltage *3	VNO	±33				Rg=2.2kΩ			1.0	mVrms
Quiescent Current	Icco	±33				No load	15	30	70	mA
Quiescent Current at Stand-by	ICST	±33				VST=0v			1.0	mA
Output Neutral Voltage	VN	±33					-70	0	+70	mV
#13 Stand-By ON Threshold *5	VST ON	±27				Stand-by		0	0.6	V
#13 Stand-By OFF Threshold *5	VST OFF	±27				Operation	2.5	3.0	5.5	V

Note

- *1. 1 channel Operation.
- *2. All tests are measured using a constant-voltage supply unless otherwise specified
- *3. The output noise voltage is peak value of an average-reading meter with a rms value scale (VTVM). A regulated AC supply (50Hz) should be used to eliminate the effects of AC primary line flicker noise
- *4. Allowable time for load short-circuit and output noise voltage are measured using the specified transformer power supply.
- *5. The impression voltage of '#13(Stand-By) pin' must not exceed the maximum rating. Power amplifier operate by impressing voltage +2.5 to +5.5v to '#13(Stand-By) pin'.
- * Please connect PreVcc pin (#1 pin) with the stable minimum voltage. and connect so that current does not flow in by reverse bias.
- * In case of heat sink design, we request customer to design in the condition to have assumed market.
- $^{\star}\,$ The case of this Hybrid-IC is using thermosetting silicon adhesive(TSE322SX).
- * Weight of HIC : (typ) 12.0 g

Outer carton dimensions (WxLxH): 452mmx325mmx192mm

Specified Transformer Power Supply (Equivalent to MG-200)

STK433-130N-E

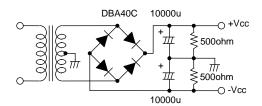
Specifications

Absolute maximum ratings at Ta=25°C, Tc=25°C unless otherwise specified

Parameter	Symbol	Conditions	Ratings	Unit
Maximum Power Supply Voltage	Vcc max(0)	Non- signal	±71.5	V
Maximum Power Supply Voltage	Vcc max(1)	Signal, RL≥6Ω	±63	V
Maximum Operation Supply Voltage	Vcc min		±10	V
#13 Operating Voltage *5	VST OFF max		-0.3 to +5.5	V
Thermal Resistance	Өј-с	Per one power transistor	1.6	°C/W
Junction Temperature	Tj max	Should satisfy Ti may and Ta may	150	ô
Operating Substrate Temperature	Tc max	Should satisfy Tj max and Tc max	125	°C
Storage Temperature	Tstg		-30 to +125	°C
Allowable Time for Load Short-circuit *4	ts	Vcc= \pm 44V,RL= 6Ω ,f= 50 Hz Po= 100 W,1ch drive	0.3	ø

Operating Characteristics at Tc=25°C, RL= 6Ω (Non-inductive Load), Rg= 600Ω , VG=30dB

				Conditio	ns			Ratings		
Parameter	Symbol	Vcc [V]	f [Hz]	Po [W]	THD [W]		min	typ	max	Unit
Outrast Danier *4	Po 1	±44	20 to20k		0.4		96	100		W
Output Power *1	Po 2	±44	1k		10			150		VV
THD *1	THD 1	±44	20 to20k	5.0		VG=30dB			0.4	- %
ו טחו	THD 2	±44	1k	5.0		VG=300B		0.01		76
Frequency Characteristics *1	fL, fH	±44		1.0		+0 -3dB		20 to 50k		Hz
Input Impedance	ri	±44	1k	1.0				55		kΩ
Output Noise Voltage *3	VNO	±53				Rg=2.2kΩ			1.0	mVrms
Quiescent Current	Icco	±53				No load	40	80	100	mA
Output Neutral Voltage	VN	±53					-70	0	+70	mV
#13 Stand-By ON Threshold *5	VST ON	±44				Stand-by		0	0.6	V
#13 Stand-By OFF Threshold *5	VST OFF	±44				Operation	2.5	3.0	5.5	V


Note

- *1.1channel Operation.
- *2.All tests are measured using a constant-voltage supply unless otherwise specified
- *3. The output noise voltage is peak value of an average-reading meter with a rms value scale (VTVM).

 A regulated AC supply (50Hz) should be used to eliminate the effects of AC primary line flicker noise
- *4. Allowable time for load short-circuit and output noise voltage are measured using the specified transformer power supply.
- *5. The impression voltage of '#13(Stand-By) pin' must not exceed the maximum rating. Power amplifier operate by impressing voltage +2.5 to +5.5v to '#13(Stand-By) pin'.
- * Please connect PreVcc pin (#1 pin)with the stable minimum voltage. and connect so that current does not flow in by reverse bias.
- * In case of heat sink design, we request customer to design in the condition to have assumed market.
- * The case of this Hybrid-IC is using thermosetting silicon adhesive(TSE322SX).
- * Weight of HIC: (typ)18.4 g

Outer carton dimensions (WxLxH): 429mmx245mmx275mm

Specified Transformer Power Supply (Equivalent to MG-250)

STK433-330N-E

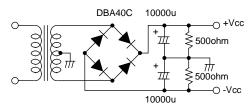
Specifications

Absolute maximum ratings at Ta=25°C, Tc=25°C unless otherwise specified

Parameter	Symbol	Conditions	Ratings	Unit
Maximum Power Supply Voltage	Vcc max(0)	Non- signal	±71.5	V
Maximum Power Supply Voltage	Vcc max(1)	Signal, RL≥6Ω	±63	V
Maximum Operation Supply Voltage	Vcc min		±10	V
#13 Operating Voltage *5	VST OFF max		-0.3 to +5.5	V
Thermal Resistance	Өј-с	Per one power transistor	1.6	°C/W
Junction Temperature	Tj max	Chauld action Ti may and To may	150	°C
Operating Substrate Temperature	Tc max	Should satisfy Tj max and Tc max	125	°C
Storage Temperature	Tstg		-30 to +125	°C
Allowable Time for Load Short-circuit *4	ts	Vcc=±44V,RL=6Ω,f=50Hz Po=100W,1ch drive	0.3	S

Operating Characteristics at Tc=25°C, RL=6Ω(Non-inductive Load), Rg=600Ω, VG=30dB

operating enalaster			·, · · - · -	_(0 =00.07,	9	-,		
		Conditions					Ratings			
Parameter	Symbol	Vcc [V]	f [Hz]	Po [W]	THD [W]		min	typ	max	Unit
Output Bours *1	Po 1	±44	20 to20k		0.4		96	100		W
Output Power *1	Po 2	±44	1k		10			150		VV
THD *1	THD 1	±44	20 to20k	F 0		VG=30dB			0.4	- %
IND I	THD 2	±44	1k	5.0		VG=300B		0.01		%
Frequency Characteristics *1	fL, fH	±44		1.0		+0 -3dB		20 to 50k		Hz
Input Impedance	ri	±44	1k	1.0				55		kΩ
Output Noise Voltage *3	VNO	±53				Rg=2.2kΩ			1.0	mVrms
Quiescent Current	Icco	±53				No load	60	120	160	mA
Output Neutral Voltage	VN	±53					-70	0	+70	mV
#13 Stand-By ON Threshold *5	VST ON	±44				Stand-by		0	0.6	V
#13 Stand-By OFF Threshold *5	VST OFF	±44				Operation	2.5	3.0	5.5	V


Note

- *1.1channel Operation.
- *2.All tests are measured using a constant-voltage supply unless otherwise specified
- *3. The output noise voltage is peak value of an average-reading meter with a rms value scale (VTVM).

 A regulated AC supply (50Hz) should be used to eliminate the effects of AC primary line flicker noise
- *4. Allowable time for load short-circuit and output noise voltage are measured using the specified transformer power supply.
- *5. The impression voltage of '#13(Stand-By)pin' must not exceed the maximum rating. Power amplifier operate by impressing voltage +2.5 to +5.5v to '#13(Stand-By)pin'.
- * Please connect PreVcc pin (#1 pin)with the stable minimum voltage. and connect so that current does not flow in by reverse bias.
- * In case of heat sink design, we request customer to design in the condition to have assumed market.
- * The case of this Hybrid-IC is using thermosetting silicon adhesive(TSE322SX).
- * Weight of HIC: (typ)24.5g

Outer carton dimensions (WxLxH): 452mmx325mmx192mm

Specified Transformer Power Supply (Equivalent to MG-250)

STK433-840N-E

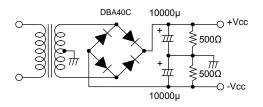
Specifications

Absolute maximum ratings at Ta=25°C, Tc=25°C unless otherwise specified

Parameter	Symbol	Conditions	Ratings	Unit
	Vcc max(0)	No signal	±38	V
Maximum supply voltage	Vcc max(1)	Signal, RL≥6Ω	±36	V
	Vcc max(2)	Signal, RL=4Ω	±30	V
Minimum supply voltage	Vcc min		±10	V
#13pin Operating Voltage *5	VST OFF max	#13pin voltage	-0.3 to +5.5	V
Thermal resistance	Өј-с	Per power transistor	4.2	°C/W
Junction temperature	Tj max	Both the Tj max and Tc max	150	°C
Operating Substrate Temperature	Tc max	conditions must be met.	125	°C
Storage temperature	Tstg		-30 to +125	°C
Allowable load shorted time *4	ts	Vcc=±25V,RL=6Ω,f=50Hz Po=25W,1ch Drive	0.3	S

Operating Characteristics at Tc=25°C, RL=6Ω(Non-inductive Load), Rg=600Ω, VG=30dB

			Co	ondition	s *2			Ratings		
Parameter	Symbol	Vcc [V]	f [Hz]	Po [W]	THD [%]		min	typ	max	Unit
Output power *1	Po 1	±25	20 to 20k		0.6		23	25		W
Output power *1	Po 2	±25	1k		10			40		VV
THD *1	THD 1	±25	20 to 20k	- 0		VC 204B			0.6	0/
THD T	THD 2 ±25 1k	1k	5.0	VG=30dB		0.02		- %		
Frequency characteristics *1	fL, fH	±25		1.0		+0 -3dB	20 to 50k		Hz	
Input impedance	Ri	±25	1k	1.0				55		kΩ
Output noise voltage *3	VNO	±30				Rg=2.2 kΩ			1.0	mVrms
Quiescent current	Icco	±30				No load	30	60	140	mA
Quiescent Current at Stand-by	ICST	±30				VST=0v			1.0	mA
Neutral voltage	VN	±30					-70	0	+70	mV
#13 Stand-By ON Threshold *5	VST ON	±25				Stand-by		0	0.6	V
#13 Stand-By OFF Threshold *5	VST OFF	±25				Operation	2.5	3.0	5.5	V


[Note]

- *1. 1channel Operation.
- *2. All tests are measured using a constant-voltage supply unless otherwise specified
- *3. The output noise voltage is peak value of an average-reading meter with a rms value scale (VTVM). A regulated AC supply (50Hz) should be used to eliminate the effects of AC primary line flicker noise
- *4. Allowable time for load short-circuit and output noise voltage are measured using the specified transformer power supply.
- *5. The impression voltage of '#13(Stand-By)pin' must not exceed the maximum rating. Power amplifier operate by impressing voltage +2.5 to +5.5V to '#13(Stand-By) pin'.
- * Please connect PreVcc pin (#1 pin)with the stable minimum voltage and connect so that current does not flow in by reverse bias.
- * In case of heat sink design, we request customer to design in the condition to have assumed market.
- * The case of this Hybrid-IC is using thermosetting silicon adhesive(TSE322SX).
- * Weight of 1 HIC : (typ) 20.6 g

Outer carton dimensions (WxLxH): 502mmx247mmx282mm

Specified Transformer Power Supply

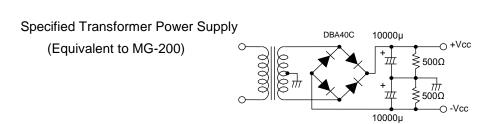
(Equivalent to MG-200)

STK433-890N-E

Specifications

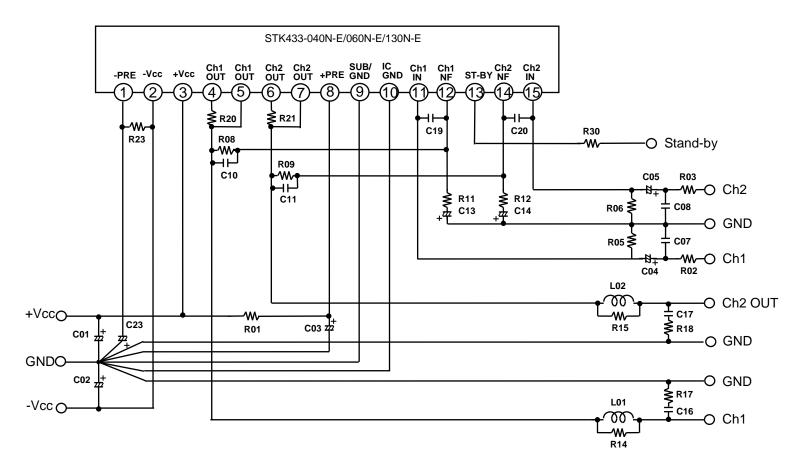
Absolute maximum ratings at Ta=25°C, Tc=25°C unless otherwise specified

Parameter	Symbol	Conditions	Ratings	Unit
	Vcc max(0)	No signal	±54	V
Maximum supply voltage	Vcc max(1)	Signal, RL≥6Ω	±47	V
	Vcc max(2)	Signal, RL=4Ω	±40	V
Minimum supply voltage	Vcc min		±10	V
#13pin Operating Voltage *5	VST OFF max	#13pin voltage	-0.3 to +5.5	V
Thermal resistance	Өј-с	Per power transistor	2.1	°C/W
Junction temperature	Tj max	Both the Tj max and Tc max	150	°C
Operating Substrate Temperature	Tc max	conditions must be met.	125	°C
Storage temperature	Tstg		-30 to +125	°C
Allowable load shorted time *4	ts	Vcc=±34V,RL=6Ω,f=50Hz Po=50W,1ch Drive	0.3	S

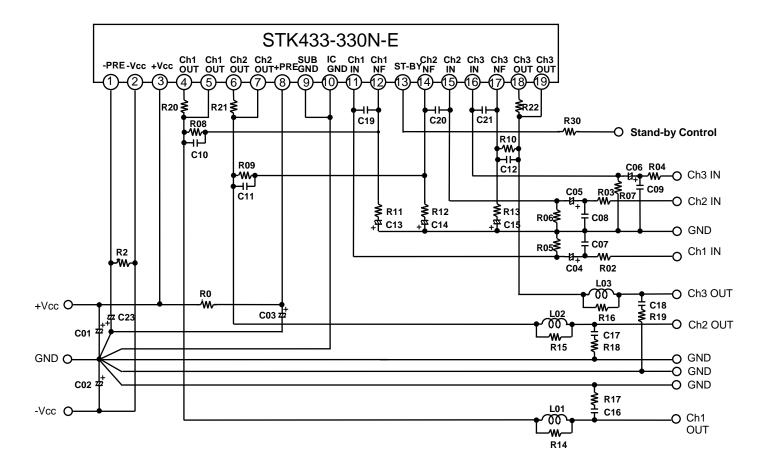

Operating Characteristics at Tc=25°C, RL=6Ω(Non-inductive Load), Rg=600Ω, VG=30dB

			Co	ondition	s *2			Ratings		
Parameter	Symbol	Vcc [V]	f [Hz]	Po [W]	THD [%]		min	typ	max	Unit
Output power *1	Po 1	±34	20 to 20k		0.6		47	50		W
Output power *1	Po 2	±34	1k		10			80		VV
THD *1	THD 1	±34	20 to 20k	١,		VC 204D			0.6	0/
THD *1	THD 2	±34	1k	5.0	VG=30dB		0.02		%	
Frequency characteristics *1	fL, fH	±34		1.0		+0 -3dB	20 to 50k		Hz	
Input impedance	ri	±34	1k	1.0				55		kΩ
Output noise voltage *3	VNO	±40				Rg=2.2 kΩ			1.0	mVrms
Quiescent current	Icco	±40				No load	90	150	210	mA
Quiescent Current at Stand-by	ICST	±40				VST=0v			1.0	mA
Neutral voltage	VN	±40					-70	0	+70	mV
#13 Stand-By ON Threshold *5	VST ON	±34				Stand-by		0	0.6	V
#13 Stand-By OFF Threshold *5	VST OFF	±34				Operation	2.5	3.0	5.5	V

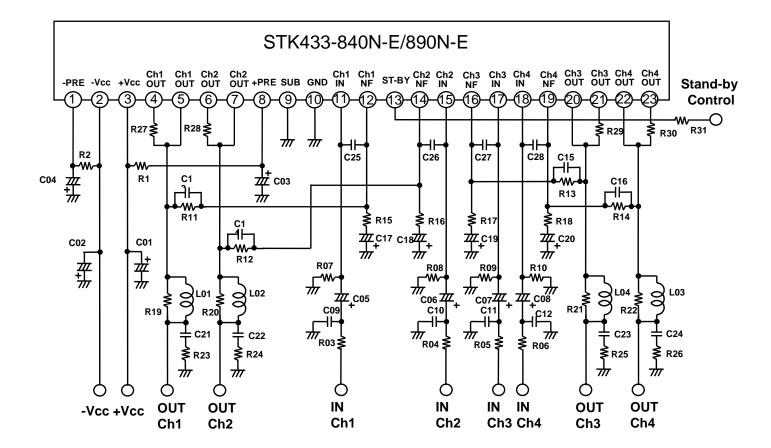
[Note]


- *1. 1channel Operation.
- *2. All tests are measured using a constant-voltage supply unless otherwise specified
- *3. The output noise voltage is peak value of an average-reading meter with a rms value scale (VTVM). A regulated AC supply (50Hz) should be used to eliminate the effects of AC primary line flicker noise
- *4. Allowable time for load short-circuit and output noise voltage are measured using the specified transformer power supply.
- *5. The impression voltage of '#13(Stand-By)pin' must not exceed the maximum rating. Power amplifier operate by impressing voltage +2.5 to +5.5V to '#13(Stand-By) pin'.
- * Please connect : PreVcc pin (#1 pin)with the stable minimum voltage and connect so that current does not flow in by reverse bias.
- * In case of heat sink design, we request customer to design in the condition to have assumed market.
- * The case of this Hybrid-IC is using thermosetting silicon adhesive(TSE322SX).
- * Weight of 1 HIC: (typ) 37.0 g

Outer carton dimensions (WxLxH): 452mmx325mmx192mm

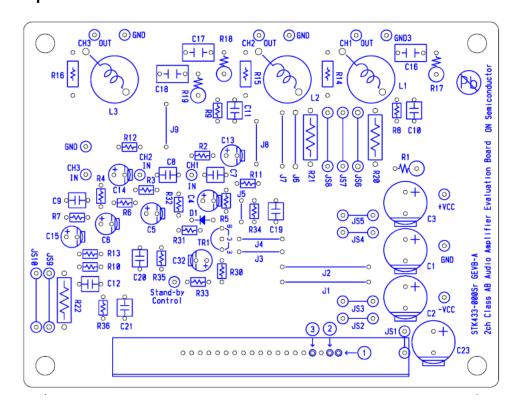

Application Circuit

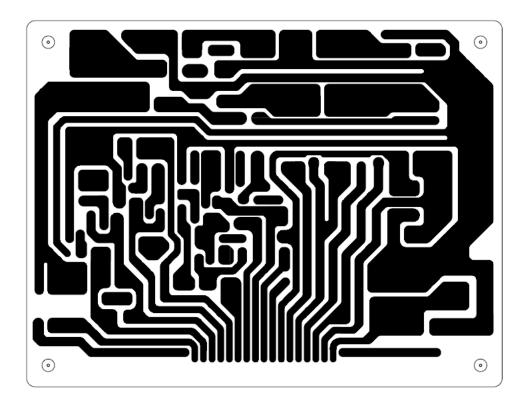
STK433-040N-E/060N-E/130N-E


Application Circuit

STK433-330N-E

Application Circuit


STK433-840N-E/890N-E



PCB Layout example

STK433-040N-E/060N-E/130N-E/330N-E

Top view

STK433-040N-E/060N-E/130N-E/330N-E PCB PARTS LIST

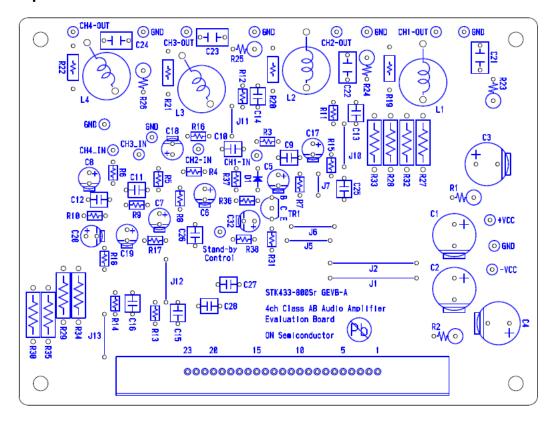
PCB Name: STK433 - 000Sr GEVB - A

Location No.					
(*2) 2ch Amp doesn't mount parts of()	RATING	Component			
			STK433-		
	-	040N-E	060N-E	130N-E/ 330N-E	
R01	100Ω,1W		0		
R02,R03,(R04)	1kΩ,1/6W		0		
R05,R06,(R07),R08,R09,(R10)	56KΩ,1/6W		0		
R11,R12,(R13)	1.8KΩ,1/6W		0		
R14,R15,(R16)	4.7Ω,1/4W		0		
R17,R18,(R19)	4.7Ω,1W		0		
R20,R21,(R22)	0.22Ω,5W	0			
C01,C02,C03,C23	100µF,100V	0			
C04,C05,(C06)	2.2µF,50V	0			
C07,C08,(C09)	470pF,50V	0			
C10,C11,(C12)	3pF,50V	0			
C13,C14,(C15)	10μF,10V	0			
C16,C17,(C18)	0.1µF,50V	0			
C19,C20,(C21)	***pF,50V	100pF	56pF	N.C.	
R34,R35,(R36)	3kΩ,1/6W	Short			
L01,L02,(L03)	3µH	0			
Tr1	Vce≥75V,lc≥1mA	0			
D1	Di		0		
Stand-By R30 (*2)	***kΩ,1/6W		O(*2)		
Control R31	33kΩ,1/6W	0			
Circuit R32	1kΩ,1/6W		0		
R33	2kΩ,1/6W		0		
C32	33µF,10V	0			
J1,J2,J3,J4,J5,J6,J8,J9	-	0			
J7,JS2,JS3,JS4,JS5,JS7 JS8,JS9	-	-			
JS6,JS10	-	0			
JS1(R23)	100Ω,1W		0		

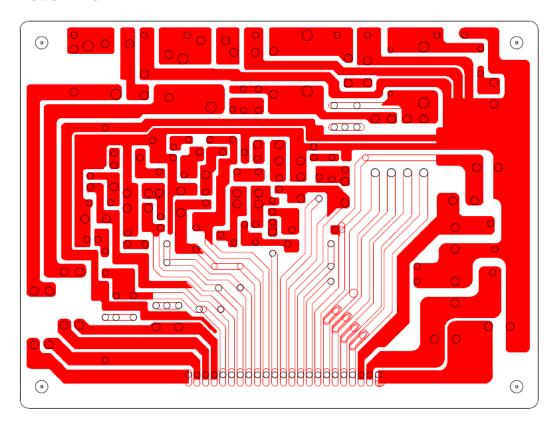
^(*1) STK433-040N-E/060N-E/130N-E(2ch Amp) doesn't mount parts of() (*2) Recommended standby circuit is used.

STK433-000N-E series

Recommended external components


STK433-040N-E/060N-E/130N-E/330N-E

Parts Location	Recommended value	Circuit purpose	Above Recommended value	Below Recommended value
R01,R23	100Ω/1W	Resistance for Ripple filter. (Fuse resistance is recommended. Ripple filter is constituted with C03, C23.)	Short-through current may decrease at high frequency.	Short-through current may increase at high frequency.
R02,R03,R04	1kΩ	Resistance for input filters.	-	-
R05,R06,R07	56kΩ	Input impedance is determined.	Output neutral v (It is referred that R	
R08,R09,R10	56kΩ	Voltage Gain(VG) is determined with R11,R12,R13	-	-
R11,R12,R13	1.8kΩ	Voltage Gain(VG) is determined with R8,R9,R10 (As for VG, it is desirable to set up by R11,R12,R13)	It may oscillate. (Vg > 30dB)	With especially no problem
R14,R15,R16	4.7Ω	Resistance for oscillation prevention.	-	-
R17,R18,R19	4.7Ω/1W	Resistance for oscillation prevention.	-	-
R20,R21,R22	0.22Ω/2W	This resistance is used as detection resistance of the protection circuit application.	Decrease of Maximum output Power	It may cause thermal runaway
R30	Note *5	Select Restriction resistance, for the impression voltage of #17(Starating.	and-By)pin' must not exc	eed the maximum
C01,C02	100μF/50V	Capacitor for oscillation prevention. Locate near the HIC as much as possible. Power supply impedance is lowered and stable operation of the IC is carried out. (Electrolytic capacitor is recommended.)	-	-
C03,C23	100μF/50V	Decoupling capacitor The Ripple ingredient mixed in an input side Is removed from a power supply line. (Ripple filter is constituted with R01, R23.)	The change in the Ripple ingredient mixed in input side from a power supply line	
C04,C05,C06	2.2µF/50V	Input coupling capacitor.(for DC current prevention.)		•
C07,C08,C09	470pF	Input filter capacitor A high frequency noise is reduced with the filter constituted by R02,R03,R04	-	
C10,C11,C12	3pF	Capacitor for oscillation prevention.	It may o	scillate.
C13,C14,C15	10μF/10V	Negative feedback capacitor. The cutoff frequency of a low cycle changes. $(\text{fL=1/(}2\pi \cdot \text{C13} \cdot \text{R11)})$	The voltage gain(VG) of low frequency is extended. However, the pop noise at the time of a power supply injection also becomes	The voltage gain(VG) of low frequency decreases.
			large.	
C16,C17,C18	0.1μF	Capacitor for oscillation prevention.	It may o	scillate.
C19,C20,C21	100pF(040N-E) 56pF(060N-E) N.C.(130N-E, 330N-E)	Capacitor for oscillation prevention.	It may o	scillate.
L01,L02,L03	3μН	Coil for oscillation prevention.	With especially no problem	It may oscillate.


PCB Layout example

STK433-840N-E/890N-E

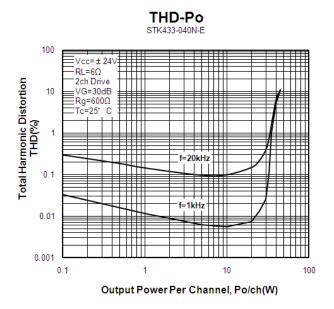
Top view

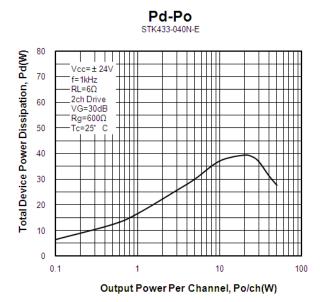
Bottom view

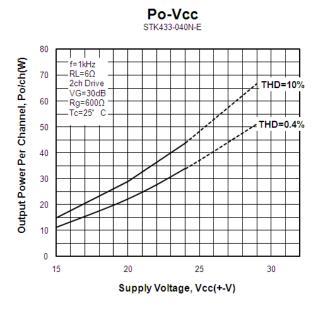
STK433-800NSr PCB PARTS LIST

PCB Name: STK433-800Sr GEVB - A

			Component
Locati	ion No.	RATING	STK433-840N-E/890N-E
Hybrid IC #1 Pin Position		-	1
R01,R02		100Ω,1W	0
R03,R04,R05,R06	;	1kΩ,1/6W	0
R07,R08,R09,R10 R11,R12,R13,R14		56KΩ,1/6W	0
R15,R16,R17,R18		1.8KΩ,1/6W	0
R19,R20,R21,R22		4.7Ω,1/4W	0
R23,R24,R25,R26	i	4.7Ω,1W	0
R27,R28,R29,R30		0.22Ω,5W	0
R32,R33,R34,R35		0.22Ω,5W	-
C01,C02,C03,C04		100μF,100V	0
C05,C06,C07,C08		2.2µF,50V	0
C09,C10,C11,C12		470pF,50V	0
C13,C14,C15,C16	;	3pF,50V	0
C17,C18,C19,C20		10μF,10V	0
C21,C22,C23,C24		0.1µF,50V	0
C25,C26,C27,C28		100pF,50V	0
L01,L02,L03,L04		3µH	0
	Tr1	0	0
	D1	0	0
Stand-By	R31	0	0
Control	R32	0	0
Circuit	R33	0	0
	R34	0	0
C32		0	0
		-	
		-	
		-	
		-	

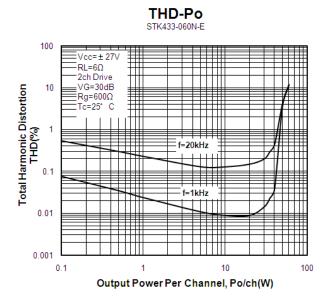

STK433-000N-E series

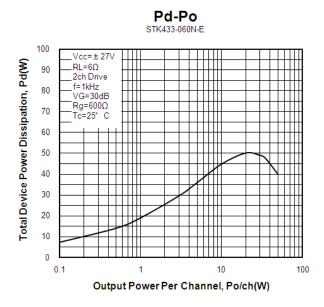

Recommended external components

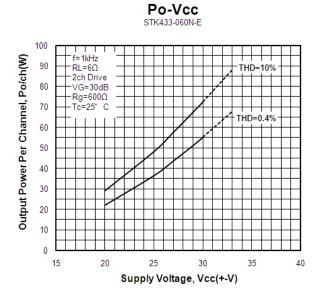

STK433-840N-E/890N-E

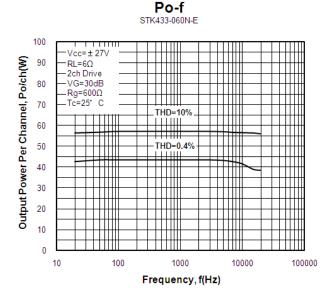

Parts Location	Recommended value	Circuit purpose	Above Recommended value	Below Recommended value	
R01,R02	100Ω/1W	Resistance for Ripple filters. (Fuse resistance is recommended. Ripple filter is constituted with C03, C04.)	Short-through current may decrease at high frequency.	Short-through current may increase at high frequency.	
R03,R04,R05,R06	1kΩ	Resistance for input filters.	· - ·	-	
R07,R08,R09,R10	56kΩ	Input impedance is determined.	Output neutral vo (It is refe R07=R11,R08=R12,	rred that	
R11,R12,R13,R14	56kΩ	Voltage Gain(VG) is determined with R15,R16,R17,R18	-	-	
R15,R16,R17,R18	1.8kΩ	Voltage Gain (VG) is determined with R11, R12, R13, and R14. (As for VG, it is desirable to set up by R15, R16, R17, and R18.)	It may oscillate. (Vg<30dB)	With especially no problem	
R19,R20,R21,R22	4.7Ω	Resistance for oscillation prevention.	-	•	
R23,R24,R25,R26	4.7Ω/1W	Resistance for oscillation prevention.	-	-	
R27,R28,R29,R30	0.22Ω ±10%,5W	Output emitter resistor (Metal-plate Resistor is recommended.)	Decrease of Maximum output Power	It may cause thermal runaway	
R31	Note*4	Select Restriction resistance, for the impression voltage of '#13(Sta	and-By) pin' must not excee	d the maximum rating.	
C01,C02	100µF/100V	Capacitor for oscillation prevention. Locate near the HIC as much as possible. Power supply impedance is lowered and stable operation of the IC is carried out. (Electrolytic capacitor is recommended.)	-	-	
C03,C04	100μF/100V	Decoupling capacitor The Ripple ingredient mixed in an input side Is removed from a power supply line. (Ripple filter is constituted with R01, R02.)	The change in the Ripple ingredient mixed in an inpr side from a power supply line		
C05,C06,C07,C08	2.2µF/50V	Input coupling capacitor. (For DC current prevention.)	-		
C09,C10,C11,C12	470pF	Input filter capacitor A high frequency noise is reduced with the filter constituted by R03, R04, R05, R06.			
C13,C14,C15,C16	5pF	Capacitor for oscillation prevention.	It may oscillate.		
C17,C18,C19,C20	10μF/10V	Negative feedback capacitor. • The cutoff frequency of a low cycle changes. (fL=1/(2π • C17 • R15))	The voltage gain (VG) of low frequency is extended. However, the pop noise at the time of a power supply injection also becomes large.	The voltage gain (VG) of low frequency decreases.	
C21,C22,C23,C24	0.1µF	Capacitor for oscillation prevention.	It may o	scillate.	
C25,C26,C27,C28	100pF	Capacitor for oscillation prevention.	It may o		
L01,L02,L03,L04	ЗμН	Coil for oscillation prevention.	With especially no problem	It may oscillate.	

STK433-040N-E



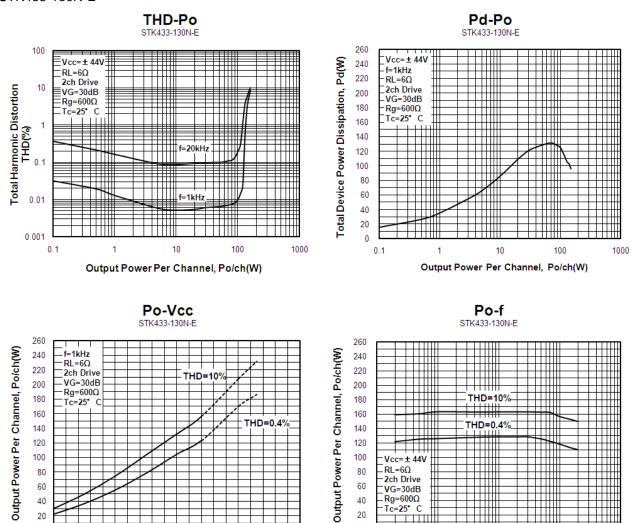





STK433-000N-E series

STK433-060N-E

STK433-130N-E


0

20

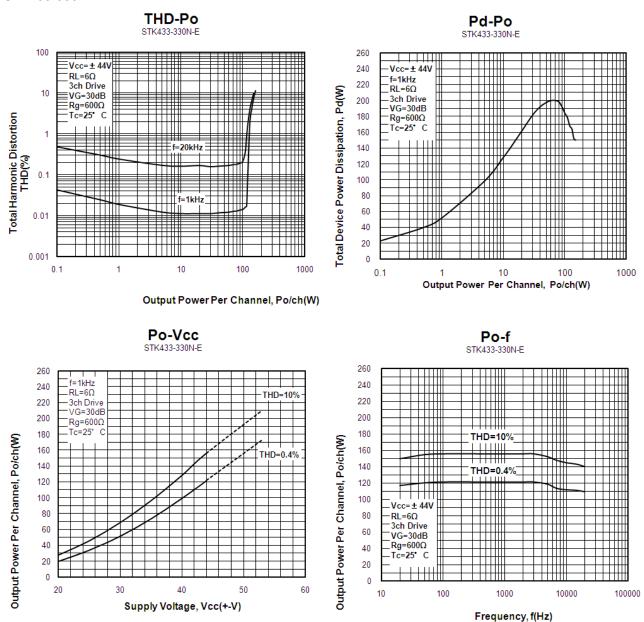
30

40

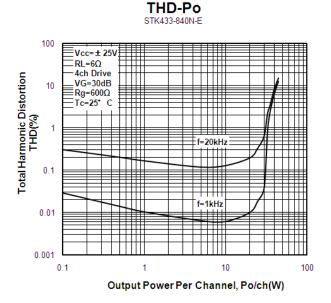
Supply Voltage, Vcc(+-V)

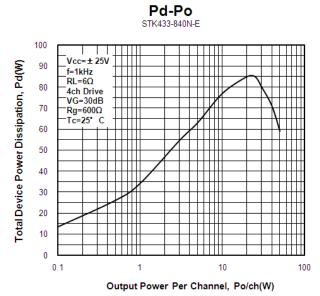
0 L

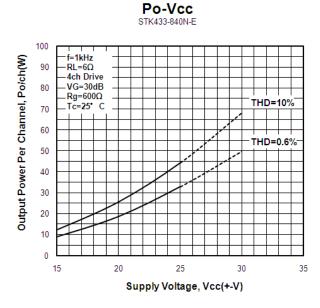
60

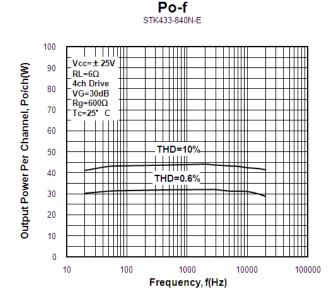

100

1000

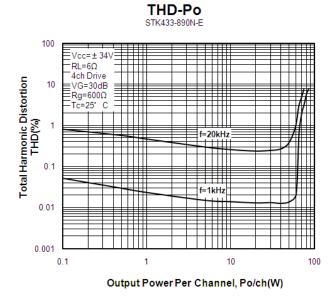

Frequency, f(Hz)

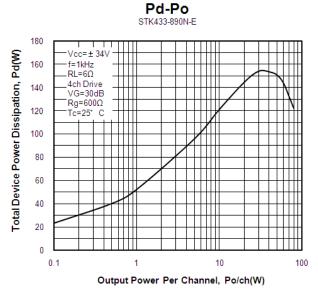

100000


STK433-330N-E



STK433-840N-E







STK433-890N-E

A Thermal Design Tip For STK433-040N-E Amplifier

[Thermal Design Conditions]

The thermal resistance (θ c-a) of the heat-sink which manages the heat dissipation inside the Hybrid IC will be determined as follow:

(Condition 1) The case temperature (Tc) of the Hybrid IC should not exceed 125°C

$$Pd \times \theta c - a + Ta < 125^{\circ}C$$
 (1

Where Ta: the ambient temperature for the system

(Condition 2) The junction temperature of each power transistor should not exceed 150°C

$$Pd \times \theta c - a + Pd / N \times \theta j - c + Ta < 150 ^{\circ}C$$
 (2)

Where N: the number of transistors (two for 1 channel, ten for channel)

θj-c : the thermal resistance of each transistor (see specification)

Note that the power consumption of each power transistor is assumed to be equal to the total power dissipation (Pd) divided by the number of transistors (N).

From the formula (1) and (2), we will obtain:

$$\theta c-a < (125 - Ta) / Pd$$
 (1)

$$\theta c-a < (150 - Ta) / Pd - \theta j-c / N$$
 (2)

The value which satisfies above formula (1)' and (2)' will be the thermal resistance for a desired heat-sink.

Note that all of the component except power transistors employed in the Hybrid IC comply with above conditions.

[Example of Thermal Design]

Generally, the power consumption of actual music signals are being estimated by the continuous signal of 1/8 Pomax.(Note that the value of 1/8 Pomax may be varied from the country to country.) (Sample of STK433-040N-E; 25W×2ch)

If Vcc is $\pm 24V$, and RL is 6Ω , then the total power dissipation (Pd) of inside Hybrid IC is as follow;

There are four (4) transistors in Audio Section of this Hybrid IC, and thermal resistance (θ j-c) of each transistor is 4.2°C/W. If the ambient temperature(Ta) is guaranteed for 50°C, then the thermal resistance (θ c-a) of a desired heat-sink should be;

From(1)'
$$\theta c-a < (125 - 50) / 26$$

 < 2.88
From(2)' $\theta c-a < (150 - 50) / 26 - 4.2 / 4$
 < 2.79

Therefore, in order to satisfy both (1)' and (2)', the thermal resistance of a desired Heat-sink will be **2.79°C/W**.

[Note]

A Thermal Design Tip For STK433-060N-E Amplifier

[Thermal Design Conditions]

The thermal resistance (θ c-a) of the heat-sink which manages the heat dissipation inside the Hybrid IC will be determined as follow:

(Condition 1) The case temperature (Tc) of the Hybrid IC should not exceed 125°C

$$Pd \times \theta c - a + Ta < 125^{\circ}C$$
 (1

Where Ta: the ambient temperature for the system

(Condition 2) The junction temperature of each power transistor should not exceed 150°C

$$Pd \times \theta c - a + Pd / N \times \theta j - c + Ta < 150 ^{\circ}C$$
 (2)

Where N: the number of transistors (two for 1 channel, ten for channel)

θj-c : the thermal resistance of each transistor (see specification)

Note that the power consumption of each power transistor is assumed to be equal to the total power dissipation (Pd) divided by the number of transistors (N).

From the formula (1) and (2), we will obtain:

$$\theta c-a < (125 - Ta) / Pd$$
 (1)

$$\theta c-a < (150 - Ta) / Pd - \theta j-c / N$$
 (2)

The value which satisfies above formula (1)' and (2)' will be the thermal resistance for a desired heat-sink.

Note that all of the component except power transistors employed in the Hybrid IC comply with above conditions.

[Example of Thermal Design]

Generally, the power consumption of actual music signals are being estimated by the continuous signal of 1/8 Pomax.(Note that the value of 1/8 Pomax may be varied from the country to country.) (Sample of STK433-060N-E; 35W×2ch)

If Vcc is $\pm 27V$, and RL is 6Ω , then the total power dissipation (Pd) of inside Hybrid IC is as follow;

There are four (4) transistors in Audio Section of this Hybrid IC, and thermal resistance (θ j-c) of each transistor is 3.5°C/W. If the ambient temperature(Ta) is guaranteed for 50°C, then the thermal resistance (θ c-a) of a desired heat-sink should be;

From(1)'
$$\theta c-a < (125 - 50) / 33$$

 < 2.27
From(2)' $\theta c-a < (150 - 50) / 33 - 3.5 / 4$
 < 2.16

Therefore, in order to satisfy both (1)' and (2)', the thermal resistance of a desired Heat-sink will be **2.16°C/W**.

[Note]

A Thermal Design Tip For STK433-130N-E Amplifier

[Thermal Design Conditions]

The thermal resistance (θ c-a) of the heat-sink which manages the heat dissipation inside the Hybrid IC will be determined as follow:

(Condition 1) The case temperature (Tc) of the Hybrid IC should not exceed 125°C

$$Pd \times \theta c - a + Ta < 125^{\circ}C$$
 (1

Where Ta: the ambient temperature for the system

(Condition 2) The junction temperature of each power transistor should not exceed 150°C

$$Pd \times \theta c - a + Pd / N \times \theta j - c + Ta < 150 ^{\circ}C$$
 (2)

Where N: the number of transistors (two for 1 channel, ten for channel)

θj-c : the thermal resistance of each transistor (see specification)

Note that the power consumption of each power transistor is assumed to be equal to the total power dissipation (Pd) divided by the number of transistors (N).

From the formula (1) and (2), we will obtain:

$$\theta c-a < (125 - Ta) / Pd$$
 (1)

$$\theta c-a < (150 - Ta) / Pd - \theta j-c / N$$
 (2)

The value which satisfies above formula (1)' and (2)' will be the thermal resistance for a desired heat-sink.

Note that all of the component except power transistors employed in the Hybrid IC comply with above conditions.

[Example of Thermal Design]

Generally, the power consumption of actual music signals are being estimated by the continuous signal of 1/8 Pomax.(Note that the value of 1/8 Pomax may be varied from the country to country.) (Sample of STK433-130N-E; 100W×2ch)

If Vcc is $\pm 44V$, and RL is 6Ω , then the total power dissipation (Pd) of inside Hybrid IC is as follow;

There are four (4) transistors in Audio Section of this Hybrid IC, and thermal resistance (θ j-c) of each transistor is 1.6°C/W. If the ambient temperature(Ta) is guaranteed for 50°C, then the thermal resistance (θ c-a) of a desired heat-sink should be;

From(1)'
$$\theta c-a < (125 - 50) / 91$$

 < 0.82
From(2)' $\theta c-a < (150 - 50) / 91 - 1.6 / 4$
 < 0.70

Therefore, in order to satisfy both (1)' and (2)', the thermal resistance of a desired Heat-sink will be **0.70°C/W**.

[Note]

A Thermal Design Tip For STK433-330N-E Amplifier

[Thermal Design Conditions]

The thermal resistance (θ c-a) of the heat-sink which manages the heat dissipation inside the Hybrid IC will be determined as follow:

(Condition 1) The case temperature (Tc) of the Hybrid IC should not exceed 125°C

$$Pd \times \theta c - a + Ta < 125^{\circ}C$$
 (1)

Where Ta: the ambient temperature for the system

(Condition 2) The junction temperature of each power transistor should not exceed 150°C

$$Pd \times \theta c - a + Pd / N \times \theta j - c + Ta < 150 ^{\circ}C$$
 (2)

Where N: the number of transistors (two for 1 channel, ten for channel)

θj-c : the thermal resistance of each transistor (see specification)

Note that the power consumption of each power transistor is assumed to be equal to the total power dissipation (Pd) divided by the number of transistors (N).

From the formula (1) and (2), we will obtain:

$$\theta c-a < (125 - Ta) / Pd$$
 (1)

$$\theta c-a < (150 - Ta) / Pd - \theta j-c / N$$
 (2)

The value which satisfies above formula (1)' and (2)' will be the thermal resistance for a desired heat-sink.

Note that all of the component except power transistors employed in the Hybrid IC comply with above conditions.

[Example of Thermal Design]

Generally, the power consumption of actual music signals are being estimated by the continuous signal of 1/8 Pomax.(Note that the value of 1/8 Pomax may be varied from the country to country.) (Sample of STK433-330N-E; 100W×3ch)

If Vcc is $\pm 44V$, and RL is 6Ω , then the total power dissipation (Pd) of inside Hybrid IC is as follow;

There are six (6) transistors in Audio Section of this Hybrid IC, and thermal resistance (θ j-c) of each transistor is 1.6°C/W. If the ambient temperature(Ta) is guaranteed for 50°C, then the thermal resistance (θ c-a) of a desired heat-sink should be;

Therefore, in order to satisfy both (1)' and (2)', the thermal resistance of a desired Heat-sink will be **0.45°C/W**.

[Note]

A Thermal Design Tip For STK433-840N-E Amplifier

[Thermal Design Conditions]

The thermal resistance (θ c-a) of the heat-sink which manages the heat dissipation inside the Hybrid IC will be determined as follow:

(Condition 1) The case temperature (Tc) of the Hybrid IC should not exceed 125°C

$$Pd \times \theta c - a + Ta < 125^{\circ}C$$
 (1

Where Ta: the ambient temperature for the system

(Condition 2) The junction temperature of each power transistor should not exceed 150°C

$$Pd \times \theta c - a + Pd / N \times \theta j - c + Ta < 150 ^{\circ}C$$
 (2)

Where N: the number of transistors (two for 1 channel, ten for channel)

θj-c : the thermal resistance of each transistor (see specification)

Note that the power consumption of each power transistor is assumed to be equal to the total power dissipation (Pd) divided by the number of transistors (N).

From the formula (1) and (2), we will obtain:

$$\theta c-a < (125 - Ta) / Pd$$
 (1)

$$\theta c-a < (150 - Ta) / Pd - \theta j-c / N$$
 (2)

The value which satisfies above formula (1)' and (2)' will be the thermal resistance for a desired heat-sink.

Note that all of the component except power transistors employed in the Hybrid IC comply with above conditions.

[Example of Thermal Design]

Generally, the power consumption of actual music signals are being estimated by the continuous signal of 1/8 Pomax.(Note that the value of 1/8 Pomax may be varied from the country to country.) (Sample of STK433-840N-E; 25W×4ch)

If Vcc is ± 25 V, and RL is 6Ω , then the total power dissipation (Pd) of inside Hybrid IC is as follow;

There are eight (8) transistors in Audio Section of this Hybrid IC, and thermal resistance (θ j-c) of each transistor is 4.2°C/W. If the ambient temperature(Ta) is guaranteed for 50°C, then the thermal resistance (θ c-a) of a desired heat-sink should be;

Therefore, in order to satisfy both (1)' and (2)', the thermal resistance of a desired Heat-sink will be 1.29°C/W.

[Note]

A Thermal Design Tip For STK433-890N-E Amplifier

[Thermal Design Conditions]

The thermal resistance (θ c-a) of the heat-sink which manages the heat dissipation inside the Hybrid IC will be determined as follow:

(Condition 1) The case temperature (Tc) of the Hybrid IC should not exceed 125°C

$$Pd \times \theta c - a + Ta < 125^{\circ}C$$
 (1

Where Ta: the ambient temperature for the system

(Condition 2) The junction temperature of each power transistor should not exceed 150°C

$$Pd \times \theta c - a + Pd / N \times \theta j - c + Ta < 150 ^{\circ}C$$
 (2)

Where N: the number of transistors (two for 1 channel, ten for channel)

θj-c : the thermal resistance of each transistor (see specification)

Note that the power consumption of each power transistor is assumed to be equal to the total power dissipation (Pd) divided by the number of transistors (N).

From the formula (1) and (2), we will obtain:

$$\theta c-a < (125 - Ta) / Pd$$
 (1)

$$\theta c-a < (150 - Ta) / Pd - \theta j-c / N$$
 (2)

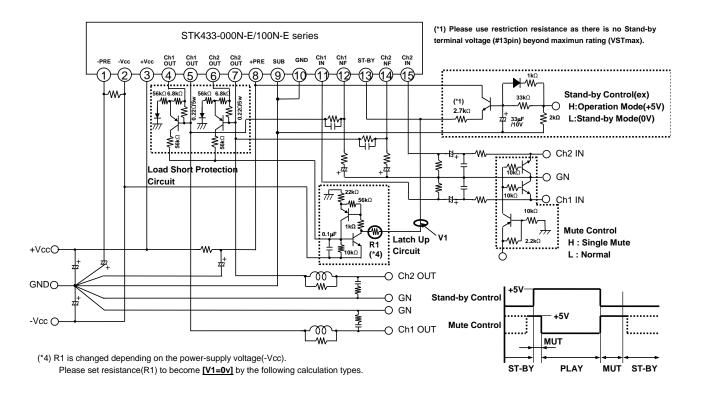
The value which satisfies above formula (1)' and (2)' will be the thermal resistance for a desired heat-sink.

Note that all of the component except power transistors employed in the Hybrid IC comply with above conditions.

[Example of Thermal Design]

Generally, the power consumption of actual music signals are being estimated by the continuous signal of 1/8 Pomax.(Note that the value of 1/8 Pomax may be varied from the country to country.) (Sample of STK433-890N-E; 50W×4ch)

If Vcc is $\pm 34V$, and RL is 6Ω , then the total power dissipation (Pd) of inside Hybrid IC is as follow;


There are eight (8) transistors in Audio Section of this Hybrid IC, and thermal resistance (θ j-c) of each transistor is 2.1°C/W. If the ambient temperature(Ta) is guaranteed for 50°C, then the thermal resistance (θ c-a) of a desired heat-sink should be;

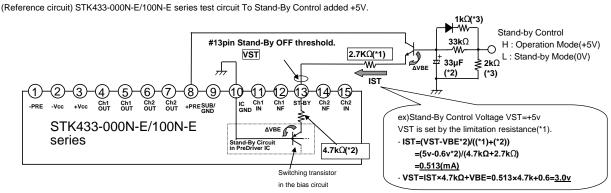
From(1)'
$$\theta c-a < (125 - 50) / 99.0$$

 < 0.76
From(2)' $\theta c-a < (150 - 50) / 99.0 - 2.1 / 8$
 < 0.75

Therefore, in order to satisfy both (1)' and (2)', the thermal resistance of a desired Heat-sink will be **0.75°C/W**.

[Note]

STK433-000N-E/100N-E series Stand-by Control & Mute Control & Load-Short Protection Application



[STK433-000N-E/100N-E series Stand-By Control example]

2012.3.26

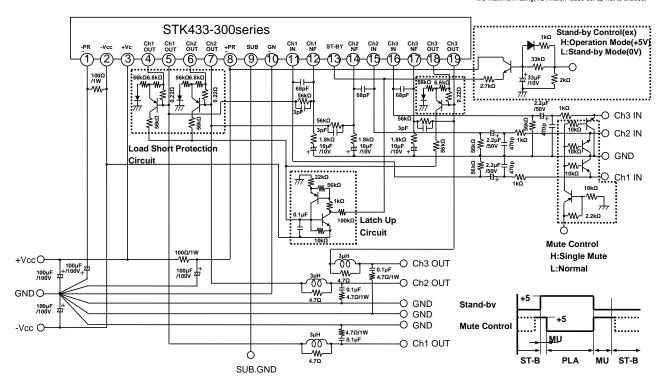
[Feature]

- · The pop noise which occurs to the time of power supply on/off can be improved substantially by recommendation Stand-By Control Application.
- · Stand-By Control can be done by additionally adjusting the limitation resistance to the voltage such as miccom, the set design is easy.

[Operation explanation] #13pin Stand-By Control Voltage VST

(1)Operation Mode

The switching transistor in the bias circuit turns on and places the amplifier into the operating mode, when 13pin(VST) voltage added above 2.5V(typ3.0v).

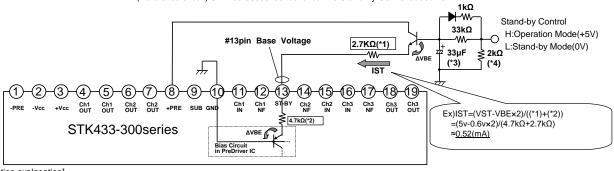

(2)Stand-By Mode

When 13pin(VST) voltage is stopped (=0V), the switching transistor in the bias circuit turn off. placing the amplifier into the standby mode.

- (*1)The current limiting resistor must be used to ensure that stand-by pin(13pin) voltage does not exceed its maximum rated value VST max.
- (*2)The pop noise level when the power is turned on can be reduced by setting the time constant with a capacitor in operating mode.
- (*3)Determines the time constant at which the capacitor (*2) is discharged in stand-by mode.

STK433-300series Stand-by Control & Mute Control & Load-Short Protection Application 2009.01.23

(*1)The impression voltage of a Stand-by terminal(#13) is the maximum rating(VSTmax).Please set up not to exceed.


[STK433-300 series Stand-By Control example]

2010.06.14

[Feature]

- $\cdot \text{The pop noise generated when power supply ON/OFF by using recommendation Stand-By Control Application can be improved.} \\$
- ·Stand-By Control can be done by additionally adjusting the limitation resistance (*1) to the voltage such as Micro computer, the set design is easy.

(Reference circuit) STK433-300series test circuit To Stand-By Control added +5V.

[Operation explanation]

1)#13pin Stand-By Control Voltage VST

Operation Mode

SW transistor of Stand-By Circuit is turned on when VST≈2.5V or more is impressed, and the power amplifier works. ex)VST=2.5V

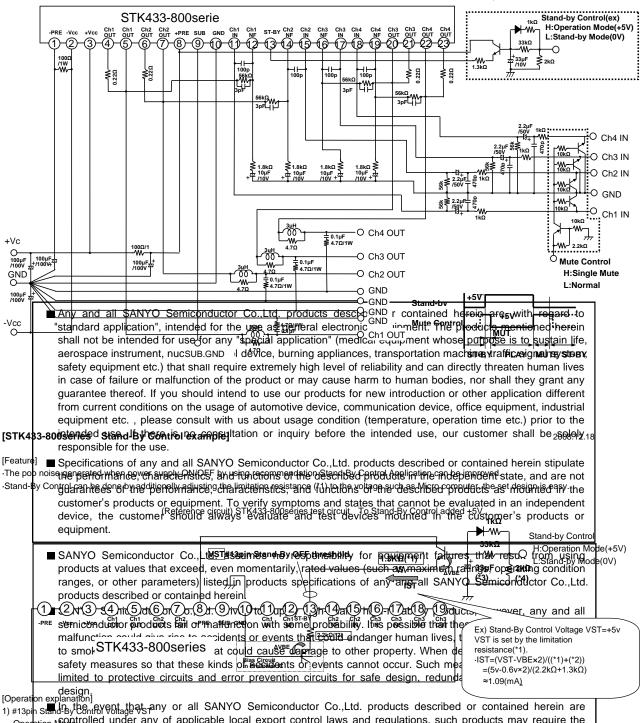
 $VST=(^*2)\times IST + 0.6v \rightarrow 2.5v = 4.7k\Omega\times IST + 0.6v \quad Therefore, \ \underline{IST\approx 0.40mA}$

·Stand-By Mode

VST ≤0.6V or less turns off the SW transistor of Stand-By Circuit by (typ 0v), and the amplifier stops.

ex)VST=0.6V

 $VST\text{=}(^*2) \times IST\text{+}0.6 v \rightarrow 0.6 v = 4.7 k\Omega \times IST\text{+}0.6 v \quad Therefore, \ \underline{IST\approx0mA}$


(*3)When the power supply is turned on by giving the time constant with the capacitor(*3) when the amplifier works, the pop noise is improved.

(*4)When capacitor(*3) is discharged when the amplifier operation stops, the constant is decided.

STK433-800series Stand-by Control & Mute Control Application

2008 12 18

(*1)The impression voltage of a Stand-by terminal(#13) is the maximum rating(VSTmax) Please set up not to exceed.

Operation Moderrolled under any of applicable local export control laws and regulations, such products may require the SW ransistexpetalicensection the authorities requoerned in accession and with the aboverlaws.

ex) VST = NV part of this publication may be reproduced or transmitted in any form or by any means, electronic or V\$T=(~2)}Hecthankan,3AktradhgyBitobbbfyfiffgrandFteldhambg, or any information storage or retrieval system, or otherwise, -By Morfall the prior written consent of SANYO Semiconductor Co. Ltd. ≈0.6V or less turns off the SW transistor of Stand-By Circuit by (typ 0v), and the amplifier stops

ex) VST Abovy and all information described or contained herein are subject to change without notice due to vst=(*2p**สุดปะเวลา** to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.

(~3)When**mal**lower as and internet an acciding the incidentations conjuded the described and the restriber works the meanistic as a granted (*4)When caparity ខ្មែងនាំមីនាង and intercipe profiles នាក្នុងការ នាងការគ្រង់នៅទៅ SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned

This catalog provides information as of April, 2012. Specifications and information herein are subject to change without notice.

STK433-000N-E series