AND9568/D

AP0100CS
 Register and Variable Reference

INTRODUCTION

This reference document describes the AP0100CS registers and variables accessible by the host.

HOW TO ACCESS REGISTERS AND VARIABLES

The host can control the AP0100CS in three ways:

- By issuing commands to the embedded microcontroller
- By reading and writing firmware variables, which influence the operation of the embedded microcontrollers
- By reading and writing hardware registers

In each case, the physical interface to the AP0100CS is the two-wire serial interface, using 16-bit addresses. The AP0100CS Data Sheet describes the interface protocol of the two-wire serial interface in more detail.

Where possible, the AP0100CS should be controlled though commands and variables since these have been designed to provide correctly-sequenced control of the underlying hardware. In contrast, access to registers is discouraged, since it may cause undesired interaction with microcontroller operations.

Registers

Registers can be accessed by the two-wire serial interface with addresses in the range $0 \times 0000-0 \times 7$ FFE. All registers are 16 -bits in size and register access only supports 16 -bit data read and write.

Variables

Variables correspond to locations in the memory space of the embedded microcontroller. Variables can be accessed by the two-wire serial interface with addresses in the range

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

APPLICATION NOTE

$0 x 8000-0 x F F F F$. Variables can be 8,16 or 32 -bit in size and variable access supports access of any 8 -bit multiple.
Variables are divided into groups called "Drivers". Each variable is specified by a driver number ($0 . . .31$) and an offset. This document uses the notation VAR (driver_number, offset). Given a driver number and offset, the corresponding address is calculated like this:
Direct-Address $=0 \times 8000 \mid($ driver_number $\ll 10) \mid$ offset
For example, ae_rule_algo is $\operatorname{VAR}(0 x 09,0 x 0004)$. Its direct address is therefore $0 \times 8000|(9 \ll 10)| 4=0 x A 404$.

Host Command Interface

The AP0100CS supports a host command interface. The host issues a 16 -bit command to the device by performing a register write to the command register (SYSCTL 0x40). Each command has bit[15]=1. When the embedded microcontroller has completed execution of the command it writes a response to the command register. Each response has bit[15]=0. When the host has issued a command, it can poll the command register waiting for bit[15]=0 to see that the command has completed and to read the command response.

The AP0100CS Host Command Interface Specification describes this interface in more detail.

Reserved

Do not change any of the reserved bits.

REGISTER MAP

The tables in this section show which locations are used within the 16 -bit address space. Locations that are not shown in the table are reserved for future use; to maintain compatibility with future designs they should not be read from or written to. Locations that are shown as "Reserved" should not be accessed. The default read values of registers are subject to change.

CAUTION: The effect of writing to reserved registers is undefined and includes the possibility of causing permanent electrical damage to the device.

Table 1 below through Table 8 list registers and their default values. Table 9 through Table 26 lists variables and their default values. Register addresses are shown as 16 -bit values in both decimal and hexadecimal. Variable addresses are shown in VAR(driver_id, offset) format, and also as 16-bit hexadecimal values using the Direct-Address conversion shown above. Table 27 through Table 34 list registers and their descriptions. Table 35 through Table 52 list variables and their descriptions.

Register Lists and Default Values

SYSCTL Register List

Table 1. SYSCTL REGISTER LIST
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} \mathrm{RO} \\ (\mathrm{RO} 0000) \end{gathered}$	chip_version_reg	0000000001100010	$\begin{gathered} 98 \\ (0 \times 0062) \end{gathered}$
$\begin{gathered} \mathrm{R} 6 \\ (\mathrm{RO} 0 \times 006) \end{gathered}$	user_defined_device_address_id	dddd ddd0 dddd ddd0	$\begin{gathered} 47760 \\ \text { (0xBA90) } \end{gathered}$
$\begin{gathered} \text { R26 } \\ (R 0 \times 001 A) \end{gathered}$	reset_and_misc_control	0000 dddd 0??? Oddd	$\begin{gathered} 3588 \\ (0 \times 0 E 04) \end{gathered}$
$\begin{gathered} \mathrm{R} 32 \\ (\mathrm{RO} 00020) \end{gathered}$	mcu_boot_options	00000000 dddd ddOd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R64 } \\ \text { (R0x0040) } \end{gathered}$	command_register	dddd dddd dddd dddd	$\begin{gathered} 32768 \\ (0 \times 8000) \end{gathered}$
$\begin{gathered} \mathrm{R} 88 \\ (\mathrm{RO} 0 \times 0058) \end{gathered}$	customer_rev	dddd dddd dddd dddd	$\begin{gathered} 514 \\ (0 \times 0202) \end{gathered}$

CPIPE Control Registers List

Table 2. CPIPE CONTROL REGISTER LIST
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
R12816	color_pipeline_control	000 d dddd d0dd d000	2224 $($ R0x3210 $)$

CPIPE Kernel Registers List

Table 3. CPIPE KERNEL REGISTER
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
R12832 (R0x3220)	dm_edge_th	00000000 dddd dddd	
R12834 (R0x3222)	grb_pos_thresholds		(0x000C)
R12836 (R0x3224)	grb_neg_thresholds	dddd dddd dddd dddd	4104
$(0 x 1008)$			

CPIPE YUV Pipe Register List

Table 4. CPIPE KERNEL REGISTER
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} \text { R13312 } \\ (\mathrm{RO} 3400) \end{gathered}$	hue1_q1q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13314 } \\ (\mathrm{ROx} 3402) \end{gathered}$	hue2_q1q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13316 } \\ (R 0 \times 3404) \end{gathered}$	hue3_q1q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13318 \\ (\mathrm{RO} 3406) \end{gathered}$	hue4_q1q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13320 \\ (\mathrm{R} 0 \times 3408) \end{gathered}$	hue5_q1q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13322 } \\ \text { (ROx340A) } \end{gathered}$	hue6_q1q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} R 13324 \\ (R 0 \times 340 C) \end{gathered}$	hue7_q1q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13326 } \\ \text { (R0x340E) } \end{gathered}$	hue8_q1q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13328 \\ (\mathrm{R} 0 \times 3410) \end{gathered}$	hue9_q1q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13330 \\ \text { (R0×3412) } \end{gathered}$	hue10_q3q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13332 \\ (\mathrm{R} 0 \times 3414) \end{gathered}$	hue11_q3q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13334 } \\ (\mathrm{RO} 3416) \end{gathered}$	hue12_q3q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13336 \\ (\mathrm{RO} 3418) \end{gathered}$	hue13_q3q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} R 13338 \\ (R 0 \times 341 A) \end{gathered}$	hue14_q3q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13340 \\ (\mathrm{RO} \times 341 \mathrm{C}) \end{gathered}$	hue15_q3q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13342 \\ \text { (R0x341E) } \end{gathered}$	hue16_q3q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13344 \\ (\mathrm{RO} 0 \times 3420) \end{gathered}$	hue17_q3q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13346 \\ (\mathrm{R} 0 \times 3422) \end{gathered}$	hue18_q3q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13348 } \\ (\mathrm{RO} 3424) \end{gathered}$	pcr_color_gain1_region_1	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13350 \\ \text { (R0×3426) } \end{gathered}$	pcr_color_gain1_region_10	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13352 } \\ (\mathrm{RO} 3428) \end{gathered}$	pcr_color_gain1_region_19	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} R 13354 \\ (R 0 \times 342 A) \end{gathered}$	pcr_color_gain1_region_28	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13356 \\ \text { (R0x342C) } \end{gathered}$	pcr_color_gain2_region_2	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13358 } \\ (\mathrm{RO} 342 \mathrm{E}) \end{gathered}$	pcr_color_gain2_region_11	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 4. CPIPE KERNEL REGISTER (continued)
(1 = Read-Only, Always 1; $0=$ Read-Only, Always $0 ; \mathrm{d}=$ Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} \mathrm{R} 13360 \\ (\mathrm{R} 0 \times 3430) \end{gathered}$	pcr_color_gain2_region_20	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13362 \\ (\mathrm{ROx} 3432) \end{gathered}$	pcr_color_gain2_region_29	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13364 \\ (\mathrm{RO} 3434) \end{gathered}$	pcr_color_gain3_region_3	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13366 \\ \text { (R0×3436) } \end{gathered}$	pcr_color_gain3_region_12	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13368 \\ \text { (R0×3438) } \end{gathered}$	pcr_color_gain3_region_21	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13370 \\ (\mathrm{RO} 0 \times 343 \mathrm{~A}) \end{gathered}$	pcr_color_gain3_region_30	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline \mathrm{R} 13372 \\ \text { (R0×343C) } \end{gathered}$	pcr_color_gain4_region_4	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13374 \\ \text { (R0×343E) } \end{gathered}$	pcr_color_gain4_region_13	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13376 \\ \text { (R0x3440) } \end{gathered}$	pcr_color_gain4_region_22	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13378 \\ \text { (R0×3442) } \end{gathered}$	pcr_color_gain4_region_31	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13380 \\ (\mathrm{RO} 3444) \end{gathered}$	pcr_color_gain5_region_5	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13382 } \\ (R 0 \times 3446) \end{gathered}$	pcr_color_gain5_region_14	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13384 \\ \text { (R0×3448) } \end{gathered}$	pcr_color_gain5_region_23	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13386 \\ \text { (R0×344A) } \end{gathered}$	pcr_color_gain5_region_32	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13388 \\ \text { (R0x344C) } \end{gathered}$	pcr_color_gain6_region_6	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13390 } \\ \text { (R0×344E) } \end{gathered}$	pcr_color_gain6_region_15	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13392 \\ (\mathrm{RO} 3450) \end{gathered}$	pcr_color_gain6_region_24	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13394 \\ (\mathrm{RO} 3452) \end{gathered}$	pcr_color_gain6_region_33	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13396 \\ (\mathrm{RO} 3454) \end{gathered}$	pcr_color_gain7_region_7	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13398 \\ \text { (R0x3456) } \end{gathered}$	pcr_color_gain7_region_16	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13400 \\ (\mathrm{RO} 3458) \end{gathered}$	pcr_color_gain7_region_25	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13402 \\ (\mathrm{R} 0 \times 345 \mathrm{~A}) \end{gathered}$	pcr_color_gain7_region_34	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline \mathrm{R} 13404 \\ \text { (R0x345C) } \end{gathered}$	pcr_color_gain8_region_8	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13406 \\ \text { (R0×345E) } \end{gathered}$	pcr_color_gain8_region_17	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13408 \\ (\mathrm{R} 0 \times 3460) \end{gathered}$	pcr_color_gain8_region_26	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13410 \\ (\mathrm{RO} 3462) \end{gathered}$	pcr_color_gain8_region_35	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 4. CPIPE KERNEL REGISTER (continued)
(1 = Read-Only, Always 1; $0=$ Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
R13412 $($ R0x3464)	pcr_color_gain9_region_9	000000000000 dddd	0 (0×0000)
R13414 $(R 0 \times 3466)$	pcr_color_gain9_region_18	000000000000 dddd	0 (0×0000)
R13416 $(R 0 \times 3468)$	pcr_color_gain9_region_27	000000000000 dddd	0 (0×0000)
R13418 $(R 0 \times 346 A)$	pcr_color_gain9_region_36	000000000000 dddd	0 (0×0000)

CPIPE Reconstruct Register List

Table 5. CPIPE RECONSTRUCT REGISTER LIST
(1 = Read-Only, Always 1; $0=$ Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} \mathrm{R} 13824 \\ (\mathrm{RO} 3600) \end{gathered}$	p_g1_p0q0	dddd dddd dddd dddd	$\begin{gathered} 16 \\ (0 \times 0010) \end{gathered}$
$\begin{gathered} \text { R13826 } \\ \text { (R0x3602) } \end{gathered}$	p_g1_p0q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13828 \\ (\mathrm{R} 0 \times 3604) \end{gathered}$	p_g1_p0q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13830 \\ (\mathrm{RO} 3606) \end{gathered}$	p_g1_p0q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13832 \\ (\mathrm{R} 0 \times 3608) \end{gathered}$	p_g1_p0q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} R 13834 \\ (R 0 \times 360 A) \end{gathered}$	p_r_p0q0	dddd dddd dddd dddd	$\begin{gathered} 16 \\ (0 \times 0010) \end{gathered}$
$\begin{gathered} \mathrm{R} 13836 \\ \text { (R0x360C) } \end{gathered}$	p_r_p0q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13838 \\ \text { (R0x360E) } \end{gathered}$	p_r_p0q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13840 \\ (\mathrm{R} 0 \times 3610) \end{gathered}$	p_r_p0q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13842 \\ (\mathrm{R} 0 \times 3612) \end{gathered}$	p_r_p0q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13844 \\ (\mathrm{RO} 3614) \end{gathered}$	p_b_p0q0	dddd dddd dddd dddd	$\begin{gathered} 16 \\ (0 \times 0010) \end{gathered}$
$\begin{gathered} \mathrm{R} 13846 \\ (\mathrm{R} 0 \times 3616) \end{gathered}$	p_b_p0q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13848 \\ (\mathrm{R} 0 \times 3618) \end{gathered}$	p_b_p0q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13850 \\ (\mathrm{RO} 0 \times 361 \mathrm{~A}) \end{gathered}$	p_b_p0q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13852 } \\ (\mathrm{R} 0 \times 361 \mathrm{C}) \end{gathered}$	p_b_p0q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} R 13854 \\ (R 0 \times 361 E) \end{gathered}$	p_g2_p0q0	dddd dddd dddd dddd	$\begin{gathered} 16 \\ (0 \times 0010) \end{gathered}$
$\begin{gathered} \mathrm{R} 13856 \\ (\mathrm{R} 0 \times 3620) \end{gathered}$	p_g2_p0q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13858 \\ (\mathrm{R} 0 \times 3622) \end{gathered}$	p_g2_p0q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 5. CPIPE RECONSTRUCT REGISTER LIST (continued)
(1 = Read-Only, Always 1; $0=$ Read-Only, Always $0 ; \mathrm{d}=$ Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} \text { R13860 } \\ (\mathrm{RO} 3624) \end{gathered}$	p_g2_p0q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13862 } \\ (R 0 \times 3626) \end{gathered}$	p_g2_p0q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13864 } \\ (\mathrm{RO} 3628) \end{gathered}$	p_g1_p1q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} R 13866 \\ (R 0 \times 362 A) \end{gathered}$	p_g1_p1q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13868 \\ (\mathrm{RO} 0 \times 362 \mathrm{C}) \end{gathered}$	p_g1_p1q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13870 } \\ \text { (R0x362E) } \end{gathered}$	p_g1_p1q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13872 \\ (\mathrm{R} 0 \times 3630) \end{gathered}$	p_g1_p1q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13874 } \\ \text { (R0x3632) } \end{gathered}$	p_r_p1q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13876 \\ (\mathrm{R} 0 \times 3634) \end{gathered}$	p_r_p1q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13878 \\ (\mathrm{RO} 0 \times 3636) \end{gathered}$	p_r_p1q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13880 } \\ (\mathrm{R} 0 \times 3638) \end{gathered}$	p_r_p1q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13882 } \\ (\mathrm{R} 0 \times 363 \mathrm{~A}) \end{gathered}$	p_r_p1q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} R 13884 \\ (R 0 \times 363 C) \end{gathered}$	p_b_p1q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13886 } \\ \text { (R0x363E) } \end{gathered}$	p_b_p1q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13888 \\ (\mathrm{R} 0 \times 3640) \end{gathered}$	p_b_p1q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13890 \\ \text { (R0×3642) } \end{gathered}$	p_b_p1q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13892 \\ (\mathrm{RO} 3644) \end{gathered}$	p_b_p1q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13894 \\ (\mathrm{R} 0 \times 3646) \end{gathered}$	p_g2_p1q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13896 \\ (\mathrm{R} 0 \times 3648) \end{gathered}$	p_g2_p1q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13898 \\ (\mathrm{R} 0 \times 364 \mathrm{~A}) \end{gathered}$	p_g2_p1q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13900 } \\ (\mathrm{RO} \times 364 \mathrm{C}) \end{gathered}$	p_g2_p1q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13902 } \\ \text { (R0×364E) } \end{gathered}$	p_g2_p1q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R13904 (R0x3650)	p_g1_p2q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13906 \\ (\mathrm{R} 0 \times 3652) \end{gathered}$	p_g1_p2q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13908 \\ (\mathrm{R} 0 \times 3654) \end{gathered}$	p_g1_p2q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13910 \\ \text { (R0×3656) } \end{gathered}$	p_g1_p2q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 5. CPIPE RECONSTRUCT REGISTER LIST (continued)
(1 = Read-Only, Always 1; $0=$ Read-Only, Always $0 ; \mathrm{d}=$ Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} \text { R13912 } \\ (\mathrm{RO} 3658) \end{gathered}$	p_g1_p2q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13914 } \\ (R 0 \times 365 \mathrm{~A}) \end{gathered}$	p_r_p2q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13916 \\ (\mathrm{R} 0 \times 365 \mathrm{C}) \end{gathered}$	p_r_p2q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} R 13918 \\ (R 0 \times 365 E) \end{gathered}$	p_r_p2q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13920 \\ (\mathrm{R} 0 \times 3660) \end{gathered}$	p_r_p2q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13922 \\ \text { (R0×3662) } \end{gathered}$	p_r_p2q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13924 } \\ (R 0 \times 3664) \end{gathered}$	p_b_p2q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13926 } \\ (\mathrm{R} 0 \times 3666) \end{gathered}$	p_b_p2q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13928 } \\ \text { (R0x3668) } \end{gathered}$	p_b_p2q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13930 \\ (\mathrm{R} 0 \times 366 \mathrm{~A}) \end{gathered}$	p_b_p2q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13932 \\ (\mathrm{R} 0 \times 366 \mathrm{C}) \end{gathered}$	p_b_p2q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13934 } \\ \text { (R0×366E) } \end{gathered}$	p_g2_p2q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} R 13936 \\ (R 0 \times 3670) \end{gathered}$	p_g2_p2q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13938 \\ (\mathrm{RO} 3672) \end{gathered}$	p_g2_p2q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13940 } \\ \text { (R0 } 3674 \text {) } \end{gathered}$	p_g2_p2q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13942 } \\ \text { (R0×3676) } \end{gathered}$	p_g2_p2q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13944 \\ \text { (R0×3678) } \end{gathered}$	p_g1_p3q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} R 13946 \\ (R 0 \times 367 A) \end{gathered}$	p_g1_p3q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13948 \\ (\mathrm{R} 0 \times 367 \mathrm{C}) \end{gathered}$	p_g1_p3q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13950 } \\ \text { (R0×367E) } \end{gathered}$	p_g1_p3q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13952 } \\ (\mathrm{ROx} 3680) \end{gathered}$	p_g1_p3q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13954 } \\ (\mathrm{RO} 3682) \end{gathered}$	p_r_p3q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13956 } \\ \text { (R0x3684) } \end{gathered}$	p_r_p3q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13958 } \\ (\mathrm{RO} 3686) \end{gathered}$	p_r_p3q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13960 \\ \text { (R0x3688) } \end{gathered}$	p_r_p3q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13962 \\ (\mathrm{RO} 368 \mathrm{~A}) \end{gathered}$	p_r_p3q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 5. CPIPE RECONSTRUCT REGISTER LIST (continued)
(1 = Read-Only, Always 1; $0=$ Read-Only, Always $0 ; \mathrm{d}=$ Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} \hline \text { R13964 } \\ \text { (R0×368C) } \end{gathered}$	p_b_p3q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline \text { R13966 } \\ \text { (R0x368E) } \end{gathered}$	p_b_p3q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13968 } \\ \text { (ROx3690) } \end{gathered}$	p_b_p3q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline \text { R13970 } \\ \text { (ROx3692) } \end{gathered}$	p_b_p3q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13972 } \\ \text { (ROx3694) } \end{gathered}$	p_b_p3q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13974 } \\ \text { (R0×3696) } \end{gathered}$	p_g2_p3q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline \text { R13976 } \\ \text { (ROx3698) } \end{gathered}$	p_g2_p3q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline \mathrm{R} 13978 \\ (\mathrm{RO} \times 369 \mathrm{~A}) \end{gathered}$	p_g2_p3q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline \text { R13980 } \\ \text { (R0×369C) } \end{gathered}$	p_g2_p3q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline \text { R13982 } \\ \text { (R0×369E) } \end{gathered}$	p_g2_p3q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13984 } \\ \text { (R0×36A0) } \end{gathered}$	p_g1_p4q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline \text { R13986 } \\ \text { (ROx36A2) } \end{gathered}$	p_g1_p4q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline \text { R13988 } \\ \text { (R0×36A4) } \end{gathered}$	p_g1_p4q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13990 \\ \text { (R0×36A6) } \end{gathered}$	p_g1_p4q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13992 } \\ \text { (R0×36A8) } \end{gathered}$	p_g1_p4q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13994 } \\ \text { (R0x36AA) } \end{gathered}$	p_r_p4q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 13996 \\ \text { (R0x36AC) } \end{gathered}$	p_r_p4q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R13998 } \\ \text { (R0×36AE) } \end{gathered}$	p_r_p4q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 14000 \\ \text { (RO×36B0) } \end{gathered}$	p_r_p4q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline \text { R14002 } \\ \text { (ROx36B2) } \end{gathered}$	p_r_p4q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R14004 } \\ \text { (R0×36B4) } \end{gathered}$	p_b_p4q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline \text { R14006 } \\ \text { (R0×36B6) } \end{gathered}$	p_b_p4q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline \text { R14008 } \\ \text { (R0×36B8) } \end{gathered}$	p_b_p4q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R14010 } \\ \text { (R0x36BA) } \end{gathered}$	p_b_p4q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R14012 } \\ \text { (R0x36BC) } \end{gathered}$	p_b_p4q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R14014 } \\ \text { (R0×36BE) } \end{gathered}$	p_g2_p4q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 5. CPIPE RECONSTRUCT REGISTER LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
R14016 (R0x36C0)	p_g2_p4q1	dddd dddd dddd dddd	0 (0×0000)
R14018 $($ R0x36C2 $)$	p_g2_p4q2	dddd dddd dddd dddd	0 (0×0000)
R14020 (R0x36C4)	p_g2_p4q3	dddd dddd dddd dddd	0 (0×0000)
R14022 (R0x36C6)	p_g2_p4q4	dddd dddd dddd dddd	0 (0×0000)
R14024 $(R 0 \times 36 C 8)$	center_row	0000 00dd dddd dddd	484 $(0 \times 01 E 4)$
R14026 (R0x36CA)	center_column	0000 0ddd dddd dddd	644 (0×0284)

XDMA Register List

Table 6. XDMA REGISTER LIST
(1 = Read-Only, Always 1; $0=$ Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} \mathrm{R} 2434 \\ (\mathrm{RO} 09982) \end{gathered}$	access_ctl_stat	00000000 dd0? ???d	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R2442 } \\ \text { (R0x098A) } \end{gathered}$	physical_address_access	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 2446 \\ \text { (R0x098E) } \end{gathered}$	logical_address_access	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 2448 \\ (\mathrm{RO} 0990) \end{gathered}$	mcu_variable_data0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 2450 \\ \text { (R0x0992) } \end{gathered}$	mcu_variable_data1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 2452 \\ (\mathrm{RO} 09994) \end{gathered}$	mcu_variable_data2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R2454 } \\ \text { (R0x0996) } \end{gathered}$	mcu_variable_data3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 2456 \\ (\mathrm{R} 0 \times 0998) \end{gathered}$	mcu_variable_data4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 2458 \\ (\mathrm{ROx099A}) \end{gathered}$	mcu_variable_data5	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 2460 \\ (\mathrm{ROx099C} \end{gathered}$	mcu_variable_data6	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R2462 } \\ \text { (R0x099E) } \end{gathered}$	mcu_variable_data7	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 7. TX_SS REGISTER LIST
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
R15364 R0x3C04)	vdac_ctrl_1	00000000 0?dd dddd	0
R15492 R0x3C84)	tx_frontporch_backporch	dddd dddd dddd dddd	1542 $(0 x 0606)$

OTPM Register List

Table 8. OTPM REGISTER LIST
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} \mathrm{R} 14336 \\ (\mathrm{R} 0 \times 3800) \end{gathered}$	otpm_data_0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 14338 \\ (\mathrm{R} 0 \times 3802) \end{gathered}$	otpm_data_1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R14340 } \\ \text { (R0×3804) } \end{gathered}$	otpm_data_2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R14342 } \\ \text { (R0x3806) } \end{gathered}$	otpm_data_3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R14344 (R0x3808)	otpm_data_4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R14346 } \\ (\mathrm{RO} 380 \mathrm{~A}) \end{gathered}$	otpm_data_5	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R14348 } \\ \text { (R0x380C) } \end{gathered}$	otpm_data_6	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{aligned} & \text { R14350 } \\ & \text { (R0x380E) } \end{aligned}$	otpm_data_7	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \mathrm{R} 14592 \\ (\mathrm{R} 0 \times 3900) \end{gathered}$	otpm_control	0000 Oddd 0??d 0??d	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \text { R14594 } \\ (\mathrm{R} 0 \times 3902) \end{gathered}$	otpm_record	dddd dddd dddd dddd	$\begin{gathered} 512 \\ (0 \times 0200) \end{gathered}$

Monitor Variables List

Table 9. MONITOR VARIABLES LIST
(1 = Read-Only, Always 1; $0=$ Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
0×8000 VAR(0x00,0x0000)	mon_major_version	0000000000000001	1 $(0 x 0001)$
0×8002 VAR(0x00,0x0002)	mon_minor_version	0000000000000011	3 0×8004 VAR(0x00,0x0004)
0×8006 VAR(0x00,0x0006)	mon_release_version	01110000000000011	28675 (0×7003)

Table 9. MONITOR VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
0×8014 VAR(0x00,0×0014)	mon_watchdog_count	???? ????????? ????	0
0×8016 VAR(0x00,0x0016)	mon_watchdog_status	???? ???? dddd dddd	0 (0×0000)

Sequencer Variables List
Table 10. SEQUENCER VARIABLES LIST
(1 = Read-Only, Always 1; $0=$ Read-Only, Always 0; $d=$ Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
0×8406 VAR(0x01,0x0006)	seq_error_code	????????	0 (0×00)

KeepSync Manager Variables List

Table 11. KEEPSYNC MANAGER VARIABLES LIST
(1 = Read-Only, Always 1; $0=$ Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$0 \times 8 C 01$ VAR(0x03,0x0001)	keepsyncmgr_control	dddd dddd	0
(0×00)			

NTSC Variables List

Table 12. NTSC VARIABLES LIST
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times 9400 \\ \operatorname{VAR}(0 \times 05,0 \times 0000) \end{gathered}$	ntsc_interlaced_output_format_yuv	dddd d??d ???? ????	$\begin{gathered} 28 \\ (0 \times 001 \mathrm{C}) \end{gathered}$
$\begin{gathered} 0 \times 9403 \\ \text { VAR(0x05,0x0003) } \end{gathered}$	ntsc_interlaced_output_y_offset	dddd dddd	$\begin{gathered} 16 \\ (0 \times 10) \end{gathered}$
$\begin{gathered} 0 \times 9404 \\ \operatorname{VAR}(0 \times 05,0 \times 0004) \end{gathered}$	ntsc_aet_flicker_freq_hz	dddd dddd	$\begin{gathered} 60 \\ (0 \times 3 C) \end{gathered}$
$\begin{gathered} 0 \times 9408 \\ \text { VAR(0x05,0x0008) } \end{gathered}$	ntsc_interlaced_port_parallel_control	dddd ???? ?ddd d??d	$\begin{gathered} 130 \\ (0 \times 0082) \end{gathered}$
$\begin{gathered} 0 \times 940 \mathrm{~A} \\ \operatorname{VAR}(0 \times 05,0 \times 000 \mathrm{~A}) \end{gathered}$	ntsc_interlaced_port_composite_control	dddd dddd dddd dddd	$\begin{gathered} 1 \\ (0 \times 0001) \end{gathered}$
$\begin{gathered} 0 \times 940 \mathrm{C} \\ \operatorname{VAR}(0 \times 05,0 \times 000 \mathrm{C}) \end{gathered}$	ntsc_interlaced_port_composite_burst_cb	dddd dddd dddd dddd	$\begin{gathered} 65216 \\ (0 \times F E C 0) \end{gathered}$
$\begin{gathered} 0 \times 940 E \\ \operatorname{VAR}(0 \times 05,0 \times 000 \mathrm{E}) \end{gathered}$	ntsc_interlaced_port_composite_burst_cr	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times 9410 \\ \operatorname{VAR}(0 \times 05,0 \times 0010) \end{gathered}$	ntsc_interlaced_port_composite_sub_phase_offset	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times 9412 \\ \operatorname{VAR}(0 \times 05,0 \times 0012) \end{gathered}$	ntsc_interlaced_port_composite_active_pixels	dddd dddd dddd dddd	$\begin{gathered} 710 \\ (0 \times 02 \mathrm{C} 6) \end{gathered}$
$\begin{gathered} 0 \times 9414 \\ \operatorname{VAR}(0 \times 05,0 \times 0014) \end{gathered}$	ntsc_interlaced_port_composite_first_active_pixel	dddd dddd	$\begin{gathered} 3 \\ (0 \times 03) \end{gathered}$

PAL Variables List

Table 13. PAL VARIABLES LIST
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
0×9800 VAR(0x06,0x0000)	pal_interlaced_output_format_yuv	dddd d??d ???? ????	28 $(0 \times 001 \mathrm{C})$
0×9803 VAR(0x06,0x0003)	pal_interlaced_output_y_offset	dddd dddd	16 (0×10)
0×9804 VAR(0x06,0x0004)	pal_aet_flicker_freq_hz	dddd dddd	50 (0×32)
0×9808 VAR(0x06,0x0008)	pal_interlaced_port_parallel_control	dddd ???? ?ddd d??d	130 (0×0082)
$0 \times 980 A$ VAR(0x06,0x000A)	pal_interlaced_port_composite_control	dddd dddd dddd dddd	1 (0×0001)
$0 \times 980 C$ VAR(0x06,0x000C)	pal_interlaced_port_composite_burst_cb	dddd dddd dddd dddd	65297 $(0 \times F F 11)$
$0 \times 980 \mathrm{~F}$ VAR(0x06,0x000E)	pal_interlaced_port_composite_burst_cr	dddd dddd dddd dddd	170 $(0 \times 00 \mathrm{AA})$
0×9810 VAR(0x06,0x0010)	pal_interlaced_port_composite_sub_phase_offset	dddd dddd dddd dddd	0 (0×0000)
0×9812 VAR(0x06,0x0012)	pal_interlaced_port_composite_active_pixels	dddd dddd dddd dddd	704 $(0 \times 02 C 0)$
0×9814 VAR(0x06,0x0014)	pal_interlaced_port_composite_first_active_pixel	dddd dddd	5 (0×05)

AE Rule Variables List

Table 14. AE RULE VARIABLES LIST
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} \hline 0 \times A 404 \\ \operatorname{VAR}(0 \times 09,0 \times 0004) \end{gathered}$	ae_rule_algo	dddd dddd dddd dddd	$\begin{gathered} 3 \\ (0 \times 0003) \end{gathered}$
$\begin{gathered} 0 \times A 408 \\ \operatorname{VAR}(0 \times 09,0 \times 0008) \end{gathered}$	ae_rule_avg_log_y_from_stats	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times A 40 \mathrm{~A} \\ \operatorname{VAR}(0 \times 09,0 \times 000 \mathrm{~A}) \end{gathered}$	ae_rule_ae_weight_table_0_0	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$\begin{gathered} \hline 0 \times A 40 B \\ \operatorname{VAR}(0 \times 09,0 \times 000 \mathrm{~B}) \end{gathered}$	ae_rule_ae_weight_table_0_1	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$\begin{gathered} 0 \times A 40 \mathrm{C} \\ \operatorname{VAR}(0 \times 09,0 \times 000 \mathrm{C}) \end{gathered}$	ae_rule_ae_weight_table_0_2	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$\begin{gathered} 0 \times A 40 \mathrm{D} \\ \operatorname{VAR}(0 \times 09,0 \times 000 \mathrm{D}) \end{gathered}$	ae_rule_ae_weight_table_0_3	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$\begin{gathered} 0 \times A 40 E \\ \operatorname{VAR}(0 \times 09,0 \times 000 \mathrm{E}) \end{gathered}$	ae_rule_ae_weight_table_0_4	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$\begin{gathered} 0 \times A 40 F \\ \operatorname{VAR}(0 \times 09,0 \times 000 F) \end{gathered}$	ae_rule_ae_weight_table_1_0	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$\begin{gathered} 0 \times A 410 \\ \operatorname{VAR}(0 \times 09,0 \times 0010) \end{gathered}$	ae_rule_ae_weight_table_1_1	dddd dddd	$\begin{gathered} 75 \\ (0 \times 4 B) \end{gathered}$
$\begin{gathered} 0 \times A 411 \\ \operatorname{VAR}(0 \times 09,0 \times 0011) \end{gathered}$	ae_rule_ae_weight_table_1_2	dddd dddd	$\begin{gathered} 75 \\ (0 \times 4 B) \end{gathered}$
$\begin{gathered} 0 \times A 412 \\ \operatorname{VAR}(0 \times 09,0 \times 0012) \end{gathered}$	ae_rule_ae_weight_table_1_3	dddd dddd	$\begin{gathered} 75 \\ (0 \times 4 B) \end{gathered}$

Table 14. AE RULE VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times A 413 \\ \operatorname{VAR}(0 \times 09,0 \times 0013) \end{gathered}$	ae_rule_ae_weight_table_1_4	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$\begin{gathered} \hline 0 \times A 414 \\ \operatorname{VAR}(0 \times 09,0 \times 0014) \end{gathered}$	ae_rule_ae_weight_table_2_0	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$\begin{gathered} 0 \times A 415 \\ \operatorname{VAR}(0 \times 09,0 \times 0015) \end{gathered}$	ae_rule_ae_weight_table_2_1	dddd dddd	$\begin{gathered} 75 \\ (0 \times 4 B) \end{gathered}$
$\begin{gathered} 0 \times \mathrm{A} 416 \\ \operatorname{VAR}(0 \times 09,0 \times 0016) \end{gathered}$	ae_rule_ae_weight_table_2_2	dddd dddd	$\begin{gathered} 100 \\ (0 \times 64) \end{gathered}$
$\begin{gathered} \hline 0 \times A 417 \\ \operatorname{VAR}(0 \times 09,0 \times 0017) \end{gathered}$	ae_rule_ae_weight_table_2_3	dddd dddd	$\begin{gathered} \hline 75 \\ (0 \times 4 B) \end{gathered}$
$\begin{gathered} \hline 0 \times \mathrm{A} 418 \\ \operatorname{VAR}(0 \times 09,0 \times 0018) \end{gathered}$	ae_rule_ae_weight_table_2_4	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$\begin{gathered} 0 \times A 419 \\ \operatorname{VAR}(0 \times 09,0 \times 0019) \end{gathered}$	ae_rule_ae_weight_table_3_0	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$\begin{gathered} 0 \times \mathrm{A} 41 \mathrm{~A} \\ \operatorname{VAR}(0 \times 09,0 \times 001 \mathrm{~A}) \end{gathered}$	ae_rule_ae_weight_table_3_1	dddd dddd	$\begin{gathered} 75 \\ (0 \times 4 B) \end{gathered}$
$\begin{gathered} 0 \times A 41 B \\ \operatorname{VAR}(0 \times 09,0 \times 001 B) \end{gathered}$	ae_rule_ae_weight_table_3_2	dddd dddd	$\begin{gathered} 75 \\ (0 \times 4 \mathrm{~B}) \end{gathered}$
$\begin{gathered} \hline 0 \times A 41 \mathrm{C} \\ \operatorname{VAR}(0 \times 09,0 \times 001 \mathrm{C}) \end{gathered}$	ae_rule_ae_weight_table_3_3	dddd dddd	$\begin{gathered} 75 \\ (0 \times 4 B) \end{gathered}$
$\begin{gathered} \hline 0 \times A 41 \mathrm{D} \\ \operatorname{VAR}(0 \times 09,0 \times 001 \mathrm{D}) \end{gathered}$	ae_rule_ae_weight_table_3_4	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$\begin{gathered} 0 \times A 41 E \\ \operatorname{VAR}(0 \times 09,0 \times 001 E) \end{gathered}$	ae_rule_ae_weight_table_4_0	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$\begin{gathered} \hline 0 \times A 41 \mathrm{~F} \\ \operatorname{VAR}(0 \times 09,0 \times 001 \mathrm{~F}) \end{gathered}$	ae_rule_ae_weight_table_4_1	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$\begin{gathered} 0 \times \mathrm{A} 420 \\ \operatorname{VAR}(0 \times 09,0 \times 0020) \end{gathered}$	ae_rule_ae_weight_table_4_2	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$\begin{gathered} \hline 0 \times A 421 \\ \operatorname{VAR}(0 \times 09,0 \times 0021) \end{gathered}$	ae_rule_ae_weight_table_4_3	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$\begin{gathered} \hline 0 \times A 422 \\ \operatorname{VAR}(0 \times 09,0 \times 0022) \end{gathered}$	ae_rule_ae_weight_table_4_4	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$

AE Track Variables List

Table 15. AE TRACK VARIABLES LIST
(1 = Read-Only, Always 1; $0=$ Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times A 800 \\ \operatorname{VAR}(0 \times 0 \mathrm{~A}, 0 \times 0000) \end{gathered}$	ae_track_status	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times A 802 \\ \operatorname{VAR}(0 \times 0 \mathrm{~A}, 0 \times 0002) \end{gathered}$	ae_track_mode	dddd dddd dddd dddd	$\begin{gathered} 28 \\ (0 \times 001 C) \end{gathered}$
$\begin{gathered} 0 \times A 804 \\ \operatorname{VAR}(0 \times 0 \mathrm{~A}, 0 \times 0004) \end{gathered}$	ae_track_algo	dddd dddd dddd dddd	$\begin{gathered} 63 \\ (0 \times 003 F) \end{gathered}$
$\begin{gathered} 0 \times A 806 \\ \operatorname{VAR}(0 \times 0 \mathrm{~A}, 0 \times 0006) \end{gathered}$	ae_track_avg_log_y_target	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times A 812 \\ \operatorname{VAR}(0 \times 0 A, 0 \times 0012) \end{gathered}$	ae_track_track_exp_speed	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
$\begin{gathered} 0 \times A 814 \\ \text { VAR(0x0A,0×0014) } \end{gathered}$	ae_track_adapt_thresh	dddd dddd	$\begin{gathered} 4 \\ (0 \times 04) \end{gathered}$

Table 15. AE TRACK VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times A 815 \\ \text { VAR(0x0A,0x0015) } \end{gathered}$	ae_track_damp_max	dddd dddd	$\begin{gathered} 3 \\ (0 \times 03) \end{gathered}$
$\begin{gathered} 0 \times A 816 \\ \text { VAR(0x0A,0x0016) } \end{gathered}$	ae_track_damp_slope	dddd dddd	$\begin{gathered} 3 \\ (0 \times 03) \end{gathered}$
$\begin{gathered} 0 \times A 817 \\ \operatorname{VAR}(0 \times 0 \mathrm{~A}, 0 \times 0017) \end{gathered}$	ae_track_damp_min	dddd dddd	$\begin{gathered} 28 \\ (0 \times 1 C) \end{gathered}$
$\begin{gathered} 0 \times A 81 E \\ \operatorname{VAR}(0 \times 0 A, 0 \times 001 E) \end{gathered}$	ae_track_min_gain_gate	dddd dddd	$\begin{gathered} 134 \\ (0 \times 86) \end{gathered}$
$\begin{gathered} 0 \times A 81 F \\ \operatorname{VAR}(0 \times 0 A, 0 \times 001 F) \end{gathered}$	ae_track_track_min_gain_speed	dddd dddd	$\begin{gathered} 8 \\ (0 \times 08) \end{gathered}$
$\begin{gathered} 0 \times A 82 C \\ \operatorname{VAR}(0 \times 0 A, 0 \times 002 \mathrm{C}) \end{gathered}$	ae_track_log_y_target_sdr_0	dddd dddd dddd dddd	$\begin{gathered} 1984 \\ (0 \times 07 \mathrm{C} 0) \end{gathered}$
$\begin{gathered} 0 \times A 82 E \\ \operatorname{VAR}(0 \times 0 A, 0 \times 002 E) \end{gathered}$	ae_track_log_y_target_sdr_1	dddd dddd dddd dddd	$\begin{gathered} 2079 \\ (0 \times 081 F) \end{gathered}$
$\begin{gathered} 0 \times A 830 \\ \operatorname{VAR}(0 \times 0 \mathrm{~A}, 0 \times 0030) \end{gathered}$	ae_track_log_y_target_sdr_2	dddd dddd dddd dddd	$\begin{gathered} 2176 \\ (0 \times 0880) \end{gathered}$
$\begin{gathered} 0 \times A 832 \\ \operatorname{VAR}(0 \times 0 A, 0 \times 0032) \end{gathered}$	ae_track_log_y_target_sdr_3	dddd dddd dddd dddd	$\begin{gathered} 2257 \\ (0 \times 08 D 1) \end{gathered}$
$\begin{gathered} 0 \times A 834 \\ \text { VAR(0x0A,0x0034) } \end{gathered}$	ae_track_log_y_target_sdr_4	dddd dddd dddd dddd	$\begin{gathered} 2337 \\ (0 \times 0921) \end{gathered}$
$\begin{gathered} 0 \times A 836 \\ \text { VAR(0x0A,0x0036) } \end{gathered}$	ae_track_log_y_target_sdr_5	dddd dddd dddd dddd	$\begin{gathered} 2469 \\ (0 \times 09 A 5) \end{gathered}$
$\begin{gathered} 0 \times A 838 \\ \text { VAR(0x0A, } 0 \times 0038) \end{gathered}$	ae_track_log_y_target_sdr_6	dddd dddd dddd dddd	$\begin{gathered} 2512 \\ (0 \times 09 D 0) \end{gathered}$
$\begin{gathered} 0 \times A 83 A \\ \operatorname{VAR}(0 \times 0 A, 0 \times 003 A) \end{gathered}$	ae_track_log_y_target_sdr_7	dddd dddd dddd dddd	$\begin{gathered} 2551 \\ (0 \times 09 F 7) \end{gathered}$
$\begin{gathered} 0 \times A 83 C \\ \operatorname{VAR}(0 \times 0 A, 0 \times 003 C) \end{gathered}$	ae_track_log_y_target_hdr_0	dddd dddd dddd dddd	$\begin{gathered} 1984 \\ (0 \times 07 \mathrm{C} 0) \end{gathered}$
$\begin{gathered} 0 \times A 83 E \\ \operatorname{VAR}(0 \times 0 A, 0 \times 003 E) \end{gathered}$	ae_track_log_y_target_hdr_1	dddd dddd dddd dddd	$\begin{gathered} 2079 \\ (0 \times 081 F) \end{gathered}$
$\begin{gathered} 0 \times A 840 \\ \text { VAR(0x0A, } 0 \times 0040) \end{gathered}$	ae_track_log_y_target_hdr_2	dddd dddd dddd dddd	$\begin{gathered} 2176 \\ (0 \times 0880) \end{gathered}$
$\begin{gathered} 0 \times A 842 \\ \operatorname{VAR}(0 \times 0 \mathrm{~A}, 0 \times 0042) \end{gathered}$	ae_track_log_y_target_hdr_3	dddd dddd dddd dddd	$\begin{gathered} 2257 \\ (0 x 08 D 1) \end{gathered}$
$\begin{gathered} 0 \times A 844 \\ \operatorname{VAR}(0 \times 0 A, 0 \times 0044) \end{gathered}$	ae_track_log_y_target_hdr_4	dddd dddd dddd dddd	$\begin{gathered} 2337 \\ (0 \times 0921) \end{gathered}$
$\begin{gathered} 0 \times A 846 \\ \operatorname{VAR}(0 \times 0 \mathrm{~A}, 0 \times 0046) \end{gathered}$	ae_track_log_y_target_hdr_5	dddd dddd dddd dddd	$\begin{gathered} 2469 \\ (0 \times 09 A 5) \end{gathered}$
$\begin{gathered} 0 \times A 848 \\ \text { VAR(0x0A,0x0048) } \end{gathered}$	ae_track_log_y_target_hdr_6	dddd dddd dddd dddd	$\begin{gathered} 2512 \\ (0 \times 09 D 0) \end{gathered}$
$\begin{gathered} 0 \times A 84 A \\ \operatorname{VAR}(0 \times 0 \mathrm{~A}, 0 \times 004 \mathrm{~A}) \end{gathered}$	ae_track_log_y_target_hdr_7	dddd dddd dddd dddd	$\begin{gathered} 2551 \\ \text { (0x09F7) } \end{gathered}$

AWB Variables List

Table 16. AWB VARIABLES LIST
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times A C 00 \\ \operatorname{VAR}(0 \times 0 \mathrm{~B}, 0 \times 0000) \end{gathered}$	awb_status	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times A C 02 \\ \operatorname{VAR}(0 \times 0 B, 0 \times 0002) \end{gathered}$	awb_mode	dddd dddd dddd dddd	$\begin{gathered} 456 \\ (0 \times 01 \mathrm{C} 8) \end{gathered}$
$\begin{gathered} 0 \times A C 06 \\ \operatorname{VAR}(0 \times 0 B, 0 \times 0006) \end{gathered}$	awb_r_ratio_lower	dddd dddd	$\begin{gathered} 99 \\ (0 \times 63) \end{gathered}$
$\begin{gathered} 0 \times A C 07 \\ \operatorname{VAR}(0 \times 0 B, 0 \times 0007) \end{gathered}$	awb_r_ratio_upper	dddd dddd	$\begin{gathered} 101 \\ (0 \times 65) \end{gathered}$
$\begin{gathered} 0 \times A C 08 \\ \operatorname{VAR}(0 \times 0 B, 0 \times 0008) \end{gathered}$	awb_b_ratio_lower	dddd dddd	$\begin{gathered} 99 \\ (0 \times 63) \end{gathered}$
$\begin{gathered} 0 \times A C 09 \\ \operatorname{VAR}(0 \times 0 B, 0 \times 0009) \end{gathered}$	awb_b_ratio_upper	dddd dddd	$\begin{gathered} 101 \\ (0 \times 65) \end{gathered}$
$\begin{gathered} 0 \times A C O A \\ \operatorname{VAR}(0 \times 0 B, 0 \times 000 A) \end{gathered}$	awb_r_scene_ratio_lower	dddd dddd	$\begin{gathered} \hline 25 \\ (0 \times 19) \end{gathered}$
$\begin{gathered} \hline 0 \times A C O B \\ \operatorname{VAR}(0 \times 0 B, 0 \times 000 B) \end{gathered}$	awb_r_scene_ratio_upper	dddd dddd	$\begin{gathered} 255 \\ (0 x F F) \end{gathered}$
$\begin{gathered} 0 \times A C 0 C \\ \operatorname{VAR}(0 \times 0 B, 0 \times 000 \mathrm{C}) \end{gathered}$	awb_b_scene_ratio_lower	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$\begin{gathered} 0 \times A C O D \\ \operatorname{VAR}(0 \times 0 B, 0 \times 000 \mathrm{D}) \end{gathered}$	awb_b_scene_ratio_upper	dddd dddd	$\begin{gathered} 255 \\ (0 x F F) \end{gathered}$
$\begin{gathered} 0 \times A C O E \\ \operatorname{VAR}(0 \times 0 B, 0 \times 000 E) \end{gathered}$	awb_r_ratio_pre_awb	???? ????	$\begin{gathered} 100 \\ (0 \times 64) \end{gathered}$
$\begin{gathered} 0 \times A C O F \\ \operatorname{VAR}(0 \times 0 B, 0 \times 000 F) \end{gathered}$	awb_b_ratio_pre_awb	???? ????	$\begin{gathered} 100 \\ (0 \times 64) \end{gathered}$
$\begin{gathered} 0 \times A C 10 \\ \operatorname{VAR}(0 \times 0 B, 0 \times 0010) \end{gathered}$	awb_r_ratio_post_awb	???? ????	$\begin{gathered} 100 \\ (0 \times 64) \end{gathered}$
$\begin{gathered} 0 \times A C 11 \\ \operatorname{VAR}(0 \times 0 B, 0 \times 0011) \end{gathered}$	awb_b_ratio_post_awb	???? ????	$\begin{gathered} 100 \\ (0 \times 64) \end{gathered}$
$\begin{gathered} 0 \times A C 12 \\ \operatorname{VAR}(0 \times 0 B, 0 \times 0012) \end{gathered}$	awb_r_gain	???? ???? ???? ????	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
$\begin{gathered} 0 \times A C 14 \\ \operatorname{VAR}(0 \times 0 B, 0 \times 0014) \end{gathered}$	awb_b_gain	???? ???? ???? ????	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
$\begin{gathered} 0 \times A C 16 \\ \operatorname{VAR}(0 \times 0 B, 0 \times 0016) \end{gathered}$	awb_pre_awb_ratios_tracking_speed	dddd dddd	$\begin{gathered} 10 \\ (0 \times 0 \mathrm{~A}) \end{gathered}$
$\begin{gathered} 0 \times A C 24 \\ \operatorname{VAR}(0 \times 0 B, 0 \times 0024) \end{gathered}$	awb_ir_control_brightness_th	dddd dddd dddd dddd	$\begin{gathered} 2304 \\ (0 \times 0900) \end{gathered}$
$\begin{gathered} \hline 0 \times A C 28 \\ \operatorname{VAR}(0 \times 0 \mathrm{~B}, 0 \times 0028) \end{gathered}$	awb_ir_control_threshold_1	dddd dddd dddd dddd	$\begin{gathered} 205 \\ (0 \times 00 C D) \end{gathered}$
$\begin{gathered} 0 \times A C 2 A \\ \operatorname{VAR}(0 \times 0 B, 0 \times 002 A) \end{gathered}$	awb_ir_control_threshold_1_gate	dddd dddd dddd dddd	$\begin{gathered} 4 \\ (0 \times 0004) \end{gathered}$
$\begin{gathered} 0 \times A C 2 C \\ \operatorname{VAR}(0 \times 0 \mathrm{~B}, 0 \times 002 \mathrm{C}) \end{gathered}$	awb_ir_control_slope_k1	dddd dddd dddd dddd	$\begin{gathered} 65344 \\ \text { (0xFF40) } \end{gathered}$
$\begin{gathered} 0 \times A C 2 E \\ \operatorname{VAR}(0 \times 0 B, 0 \times 002 E) \end{gathered}$	awb_ir_control_threshold_2	dddd dddd dddd dddd	$\begin{gathered} 13 \\ (0 \times 000 \mathrm{D}) \end{gathered}$
$\begin{gathered} 0 \times A C 30 \\ \operatorname{VAR}(0 \times 0 B, 0 \times 0030) \end{gathered}$	awb_ir_control_threshold_2_gate	dddd dddd dddd dddd	$\begin{gathered} 4 \\ (0 \times 0004) \end{gathered}$
$\begin{gathered} 0 \times A C 32 \\ \operatorname{VAR}(0 \times 0 B, 0 \times 0032) \\ \hline \end{gathered}$	awb_ir_control_slope_k2	dddd dddd dddd dddd	$\begin{gathered} 164 \\ (0 \times 00 \mathrm{~A} 4) \end{gathered}$

AND9568/D

Blacklevel Variables List

Table 17. BLACKLEVEL VARIABLES LIST
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$0 \times B 004$ VAR(0x0C,0x0004)	blacklevel_algo	dddd dddd dddd dddd	4 (0×0004)
0xB00C VAR(0x0C,0x000C)	blacklevel_max_black_level	dddd dddd	128 $(0 x 80)$
0xB00D VAR(0x0C,0x000D)	blacklevel_black_level_damping	dddd dddd	6 (0×06)

CCM Variables List

Table 18. CCM VARIABLES LIST
(1 = Read-Only, Always 1; $0=$ Read-Only, Always 0; d= Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times B 402 \\ \operatorname{VAR}(0 \times 0 \mathrm{D}, 0 \times 0002) \end{gathered}$	ccm_mode	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 404 \\ \operatorname{VAR}(0 \times 0 \mathrm{D}, 0 \times 0004) \end{gathered}$	ccm_algo	dddd dddd dddd dddd	$\begin{gathered} 48 \\ (0 \times 0030) \end{gathered}$
$\begin{gathered} 0 \times B 406 \\ \operatorname{VAR}(0 \times 0 \mathrm{D}, 0 \times 0006) \end{gathered}$	ccm_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 408 \\ \operatorname{VAR}(0 \times 0 \mathrm{D}, 0 \times 0008) \end{gathered}$	ccm_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 40 \mathrm{~A} \\ \operatorname{VAR}(0 \times 0 \mathrm{D}, 0 \times 000 \mathrm{~A}) \end{gathered}$	ccm_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 40 C \\ \operatorname{VAR}(0 \times 0 \mathrm{D}, 0 \times 000 \mathrm{C}) \end{gathered}$	ccm_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 40 E \\ \operatorname{VAR}(0 \times 0 \mathrm{D}, 0 \times 000 \mathrm{E}) \end{gathered}$	ccm_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 410 \\ \operatorname{VAR}(0 \times 0 D, 0 \times 0010) \end{gathered}$	ccm_5	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 412 \\ \operatorname{VAR}(0 \times 0 \mathrm{D}, 0 \times 0012) \end{gathered}$	ccm_6	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 414 \\ \operatorname{VAR}(0 \times 0 \mathrm{D}, 0 \times 0014) \end{gathered}$	ccm_7	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 416 \\ \operatorname{VAR}(0 \times 0 \mathrm{D}, 0 \times 0016) \end{gathered}$	ccm_8	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Stat Variables List

Table 19. STAT VARIABLES LIST
(1 = Read-Only, Always 1; $0=$ Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$0 \times B 804$ VAR(0x0E,0x0004)	stat_average_luma	???? ???? ???? ???? ???? ???? ???? ?????	(0×00000000)
$0 \times B 808$ VAR(0x0E,0x0008)	stat_log_average_luma	???? ???? ???? ????	0 (0×0000)
$0 \times B 80 A$ VAR(0x0E,0x000A)	stat_average_logy	???? ???? ???? ????	0 $(0 x 0000)$

Table 19. STAT VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times B 80 C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 000 \mathrm{C}) \end{gathered}$	stat_altm_I_min	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 810 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0010) \end{gathered}$	stat_altm_ımax	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 814 \\ \operatorname{VAR}(0 \times 0 E, 0 \times 0014) \end{gathered}$	stat_awb_pixels_in_stat	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 818 \\ \text { VAR(0x0E,0x0018) } \end{gathered}$	stat_awb_norm_sum_weighted_red	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 81 A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 001 \mathrm{~A}) \end{gathered}$	stat_awb_norm_sum_weighted_green	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 81 \mathrm{C} \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 001 \mathrm{C}) \end{gathered}$	stat_awb_norm_sum_weighted_blue	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 820 \\ \text { VAR(0x0E,0x0020) } \end{gathered}$	stat_clip_total_pixels_win	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 x B 824 \\ \text { VAR(0x0E,0x0024) } \end{gathered}$	stat_clip_num_lowlights	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 850 \\ \text { VAR(0x0E,0x0050) } \end{gathered}$	stat_ae_zone_size_cells	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 852 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0052) \end{gathered}$	stat_ae_histogram_size	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 854 \\ \text { VAR(0x0E,0x0054) } \end{gathered}$	stat_ae_zone_avgluma_0_0	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 858 \\ \text { VAR(0x0E,0x0058) } \end{gathered}$	stat_ae_zone_avgluma_0_1	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 85 C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 005 \mathrm{C}) \end{gathered}$	stat_ae_zone_avgluma_0_2	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 860 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0060) \end{gathered}$	stat_ae_zone_avgluma_0_3	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 864 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0064) \end{gathered}$	stat_ae_zone_avgluma_0_4	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 868 \\ \text { VAR(0x0E,0x0068) } \end{gathered}$	stat_ae_zone_avgluma_1_0	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 86 C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 006 \mathrm{C}) \end{gathered}$	stat_ae_zone_avgluma_1_1	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 870 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0070) \end{gathered}$	stat_ae_zone_avgluma_1_2	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 874 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0074) \end{gathered}$	stat_ae_zone_avgluma_1_3	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 878 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0078) \end{gathered}$	stat_ae_zone_avgluma_1_4	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 87 C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 007 \mathrm{C}) \end{gathered}$	stat_ae_zone_avgluma_2_0	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 880 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0080) \end{gathered}$	stat_ae_zone_avgluma_2_1	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 884 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0084) \end{gathered}$	stat_ae_zone_avgluma_2_2	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 888 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0088) \end{gathered}$	stat_ae_zone_avgluma_2_3	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 88 C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 008 \mathrm{C}) \end{gathered}$	stat_ae_zone_avgluma_2_4	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 890 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0090) \end{gathered}$	stat_ae_zone_avgluma_3_0	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$

Table 19. STAT VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times B 894 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0094) \end{gathered}$	stat_ae_zone_avgluma_3_1	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 898 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0098) \end{gathered}$	stat_ae_zone_avgluma_3_2	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 89 \mathrm{C} \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 009 \mathrm{C}) \end{gathered}$	stat_ae_zone_avgluma_3_3	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ????? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 8 A 0 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{AO}) \end{gathered}$	stat_ae_zone_avgluma_3_4	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 88 A 4 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{~A} 4) \end{gathered}$	stat_ae_zone_avgluma_4_0	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 88 A 8 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{~A} 8) \end{gathered}$	stat_ae_zone_avgluma_4_1	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 8 A C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{AC}) \end{gathered}$	stat_ae_zone_avgluma_4_2	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 8 B 0 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{BO}) \end{gathered}$	stat_ae_zone_avgluma_4_3	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 8 B 4 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{~B} 4) \end{gathered}$	stat_ae_zone_avgluma_4_4	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} \hline 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times B 8 B 88 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{~B} 8) \end{gathered}$	stat_ae_zone_avglogy_0_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 8 B A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{BA}) \end{gathered}$	stat_ae_zone_avglogy_0_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 8 B C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{BC}) \end{gathered}$	stat_ae_zone_avglogy_0_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 8 B E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{BE}) \end{gathered}$	stat_ae_zone_avglogy_0_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 8 C 0 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{C} 0) \end{gathered}$	stat_ae_zone_avglogy_0_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 8 C 2 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{C} 2) \end{gathered}$	stat_ae_zone_avglogy_1_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 8 C 4 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{C} 4) \end{gathered}$	stat_ae_zone_avglogy_1_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 8 C 6 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{C} 6) \end{gathered}$	stat_ae_zone_avglogy_1_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 8 C 8 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{C} 8) \end{gathered}$	stat_ae_zone_avglogy_1_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 8 C A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{CA}) \end{gathered}$	stat_ae_zone_avglogy_1_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 8 C C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{CC}) \end{gathered}$	stat_ae_zone_avglogy_2_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 8 C E \\ \operatorname{VAR}(0 \times 0 E, 0 \times 00 C E) \end{gathered}$	stat_ae_zone_avglogy_2_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 8 D 0 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{DO}) \end{gathered}$	stat_ae_zone_avglogy_2_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 8 D 2 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{D} 2) \end{gathered}$	stat_ae_zone_avglogy_2_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 8 D 4 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{D} 4) \end{gathered}$	stat_ae_zone_avglogy_2_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 8 D 6 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{D} 6) \end{gathered}$	stat_ae_zone_avglogy_3_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 8 D 8 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{D} 8) \end{gathered}$	stat_ae_zone_avglogy_3_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 19. STAT VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times B 8 D A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{DA}) \end{gathered}$	stat_ae_zone_avglogy_3_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 8 D C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{DC}) \end{gathered}$	stat_ae_zone_avglogy_3_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 8 D E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{DE}) \end{gathered}$	stat_ae_zone_avglogy_3_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 8 E 0 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{EO}) \end{gathered}$	stat_ae_zone_avglogy_4_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 8 E 2 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{E} 2) \end{gathered}$	stat_ae_zone_avglogy_4_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 8 E 4 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{E} 4) \end{gathered}$	stat_ae_zone_avglogy_4_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 8 E 6 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{E} 6) \end{gathered}$	stat_ae_zone_avglogy_4_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 8 E 8 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 00 \mathrm{E} 8) \end{gathered}$	stat_ae_zone_avglogy_4_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 91 C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 011 \mathrm{C}) \end{gathered}$	stat_ae_histogram_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 91 \mathrm{E} \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 011 \mathrm{E}) \end{gathered}$	stat_ae_histogram_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 920 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0120) \end{gathered}$	stat_ae_histogram_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 922 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0122) \end{gathered}$	stat_ae_histogram_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 924 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0124) \end{gathered}$	stat_ae_histogram_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 926 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0126) \end{gathered}$	stat_ae_histogram_5	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 928 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0128) \end{gathered}$	stat_ae_histogram_6	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 92 A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 012 \mathrm{~A}) \end{gathered}$	stat_ae_histogram_7	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 92 \mathrm{C} \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 012 \mathrm{C}) \end{gathered}$	stat_ae_histogram_8	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 92 E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 012 \mathrm{E}) \end{gathered}$	stat_ae_histogram_9	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 930 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0130) \end{gathered}$	stat_ae_histogram_10	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 932 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0132) \end{gathered}$	stat_ae_histogram_11	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 934 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0134) \end{gathered}$	stat_ae_histogram_12	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 936 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0136) \end{gathered}$	stat_ae_histogram_13	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 938 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0138) \end{gathered}$	stat_ae_histogram_14	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 93 A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 013 \mathrm{~A}) \end{gathered}$	stat_ae_histogram_15	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 93 C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 013 \mathrm{C}) \end{gathered}$	stat_ae_histogram_16	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 93 E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 013 \mathrm{E}) \end{gathered}$	stat_ae_histogram_17	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 19. STAT VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times B 940 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0140) \end{gathered}$	stat_ae_histogram_18	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 942 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0142) \end{gathered}$	stat_ae_histogram_19	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 944 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0144) \end{gathered}$	stat_ae_histogram_20	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 946 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0146) \end{gathered}$	stat_ae_histogram_21	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 948 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0148) \end{gathered}$	stat_ae_histogram_22	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 94 \mathrm{~A} \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 014 \mathrm{~A}) \end{gathered}$	stat_ae_histogram_23	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 94 C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 014 \mathrm{C}) \end{gathered}$	stat_ae_histogram_24	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 94 E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 014 \mathrm{E}) \end{gathered}$	stat_ae_histogram_25	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 950 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0150) \end{gathered}$	stat_ae_histogram_26	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 952 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0152) \end{gathered}$	stat_ae_histogram_27	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 954 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0154) \end{gathered}$	stat_ae_histogram_28	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 956 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0156) \end{gathered}$	stat_ae_histogram_29	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 958 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0158) \end{gathered}$	stat_ae_histogram_30	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 95 A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 015 \mathrm{~A}) \end{gathered}$	stat_ae_histogram_31	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 95 \mathrm{C} \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 015 \mathrm{C}) \end{gathered}$	stat_ae_histogram_32	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 95 \mathrm{E} \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 015 \mathrm{E}) \end{gathered}$	stat_ae_histogram_33	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 960 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0160) \end{gathered}$	stat_ae_histogram_34	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 962 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0162) \end{gathered}$	stat_ae_histogram_35	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 964 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0164) \end{gathered}$	stat_ae_histogram_36	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 966 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0166) \end{gathered}$	stat_ae_histogram_37	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 968 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0168) \end{gathered}$	stat_ae_histogram_38	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 96 A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 016 \mathrm{~A}) \end{gathered}$	stat_ae_histogram_39	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 96 C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 016 \mathrm{C}) \end{gathered}$	stat_ae_histogram_40	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 96 E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 016 \mathrm{E}) \end{gathered}$	stat_ae_histogram_41	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 970 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0170) \end{gathered}$	stat_ae_histogram_42	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 972 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0172) \end{gathered}$	stat_ae_histogram_43	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 19. STAT VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} \hline 0 \times B 974 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0174) \end{gathered}$	stat_ae_histogram_44	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 976 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0176) \end{gathered}$	stat_ae_histogram_45	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 978 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0178) \end{gathered}$	stat_ae_histogram_46	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 97 A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 017 \mathrm{~A}) \end{gathered}$	stat_ae_histogram_47	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 97 C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 017 \mathrm{C}) \end{gathered}$	stat_ae_histogram_48	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 97 E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 017 \mathrm{E}) \end{gathered}$	stat_ae_histogram_49	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 980 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0180) \end{gathered}$	stat_ae_histogram_50	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 982 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0182) \end{gathered}$	stat_ae_histogram_51	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 984 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0184) \end{gathered}$	stat_ae_histogram_52	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 986 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0186) \end{gathered}$	stat_ae_histogram_53	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 988 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0188) \end{gathered}$	stat_ae_histogram_54	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 98 A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 018 \mathrm{~A}) \end{gathered}$	stat_ae_histogram_55	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 98 \mathrm{C} \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 018 \mathrm{C}) \end{gathered}$	stat_ae_histogram_56	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 98 \mathrm{E} \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 018 \mathrm{E}) \end{gathered}$	stat_ae_histogram_57	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 990 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0190) \end{gathered}$	stat_ae_histogram_58	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 992 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0192) \end{gathered}$	stat_ae_histogram_59	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 994 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0194) \end{gathered}$	stat_ae_histogram_60	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 996 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0196) \end{gathered}$	stat_ae_histogram_61	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 998 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0198) \end{gathered}$	stat_ae_histogram_62	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 99 \mathrm{~A} \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 019 \mathrm{~A}) \end{gathered}$	stat_ae_histogram_63	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 99 \mathrm{C} \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 019 \mathrm{C}) \end{gathered}$	stat_ae_histogram_64	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 99 E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 019 \mathrm{E}) \end{gathered}$	stat_ae_histogram_65	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 A 0 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{AO}) \end{gathered}$	stat_ae_histogram_66	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 9 A 2 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{~A} 2) \end{gathered}$	stat_ae_histogram_67	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 A 4 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{~A} 4) \end{gathered}$	stat_ae_histogram_68	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 9 A 6 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{~A} 6) \end{gathered}$	stat_ae_histogram_69	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 19. STAT VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} \hline 0 \times B 9 A 8 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{~A} 8) \end{gathered}$	stat_ae_histogram_70	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9AA VAR(0x0E,0x01AA)	stat_ae_histogram_71	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$0 \times B 9 A C$ $\operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{AC})$	stat_ae_histogram_72	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 A E \\ \operatorname{VAR}(0 x 0 \mathrm{E}, 0 \times 01 \mathrm{AE}) \end{gathered}$	stat_ae_histogram_73	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 9 B 0 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{BO}) \end{gathered}$	stat_ae_histogram_74	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 9 B 2 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{~B} 2) \end{gathered}$	stat_ae_histogram_75	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 B 4 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{~B} 4) \end{gathered}$	stat_ae_histogram_76	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 B 6 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{B6}) \end{gathered}$	stat_ae_histogram_77	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 9 B 8 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{~B} 8) \end{gathered}$	stat_ae_histogram_78	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 B A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{BA}) \end{gathered}$	stat_ae_histogram_79	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 B C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{BC}) \end{gathered}$	stat_ae_histogram_80	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 B E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{BE}) \end{gathered}$	stat_ae_histogram_81	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 C 0 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{Co}) \end{gathered}$	stat_ae_histogram_82	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 9 C 2 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{C} 2) \end{gathered}$	stat_ae_histogram_83	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 C 4 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{C} 4) \end{gathered}$	stat_ae_histogram_84	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 9 C 6 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{C} 6) \end{gathered}$	stat_ae_histogram_85	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 C 8 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{C} 8) \end{gathered}$	stat_ae_histogram_86	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 C A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{CA}) \end{gathered}$	stat_ae_histogram_87	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 C C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{CC}) \end{gathered}$	stat_ae_histogram_88	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 C E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{CE}) \end{gathered}$	stat_ae_histogram_89	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 x B 9 D 0 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{DO}) \end{gathered}$	stat_ae_histogram_90	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 D 2 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{D} 2) \end{gathered}$	stat_ae_histogram_91	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 x B 9 D 4 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{D} 4) \end{gathered}$	stat_ae_histogram_92	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 9 D 6 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{D} 6) \end{gathered}$	stat_ae_histogram_93	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 x B 9 D 8 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{D} 8) \end{gathered}$	stat_ae_histogram_94	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9DA VAR(0x0E,0x01DA)	stat_ae_histogram_95	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 19. STAT VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times B 9 D C \\ \operatorname{VAR}(0 \times 0 E, 0 \times 01 D C) \end{gathered}$	stat_ae_histogram_96	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9DE $\operatorname{VAR}(0 \times 0 E, 0 \times 01 D E)$	stat_ae_histogram_97	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 E 0 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{EO}) \end{gathered}$	stat_ae_histogram_98	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 E 2 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{E} 2) \end{gathered}$	stat_ae_histogram_99	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 9 E 4 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{E} 4) \end{gathered}$	stat_ae_histogram_100	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 E 6 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{E} 6) \end{gathered}$	stat_ae_histogram_101	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 E 8 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{E} 8) \end{gathered}$	stat_ae_histogram_102	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 x B 9 E A \\ \operatorname{VAR}(0 \times 0 E, 0 \times 01 E A) \end{gathered}$	stat_ae_histogram_103	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 E C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{EC}) \end{gathered}$	stat_ae_histogram_104	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 E E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{EE}) \end{gathered}$	stat_ae_histogram_105	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 F 0 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{F0}) \end{gathered}$	stat_ae_histogram_106	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 F 2 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{~F} 2) \end{gathered}$	stat_ae_histogram_107	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 9 F 4 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{~F} 4) \end{gathered}$	stat_ae_histogram_108	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 9 F 6 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{~F} 6) \end{gathered}$	stat_ae_histogram_109	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 9 F 8 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{~F} 8) \end{gathered}$	stat_ae_histogram_110	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B 9 F A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{FA}) \end{gathered}$	stat_ae_histogram_111	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 F C \\ \operatorname{VAR}(0 x 0 \mathrm{E}, 0 \mathrm{x} 01 \mathrm{FC}) \end{gathered}$	stat_ae_histogram_112	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B 9 F E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 01 \mathrm{FE}) \end{gathered}$	stat_ae_histogram_113	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A 00 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0200) \end{gathered}$	stat_ae_histogram_114	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 02 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0202) \end{gathered}$	stat_ae_histogram_115	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 04 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0204) \end{gathered}$	stat_ae_histogram_116	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 06 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0206) \end{gathered}$	stat_ae_histogram_117	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 08 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0208) \end{gathered}$	stat_ae_histogram_118	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A O A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 020 \mathrm{~A}) \end{gathered}$	stat_ae_histogram_119	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A O C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 020 \mathrm{C}) \end{gathered}$	stat_ae_histogram_120	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAOE VAR(0x0E,0x020E)	stat_ae_histogram_121	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 19. STAT VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} \hline 0 \times B A 10 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0210) \end{gathered}$	stat_ae_histogram_122	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 12 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0212) \end{gathered}$	stat_ae_histogram_123	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 14 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0214) \end{gathered}$	stat_ae_histogram_124	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA16 $\operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0216)$	stat_ae_histogram_125	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 18 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0218) \end{gathered}$	stat_ae_histogram_126	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A 1 A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 021 \mathrm{~A}) \end{gathered}$	stat_ae_histogram_127	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA1C $\operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 021 \mathrm{C})$	stat_ae_histogram_128	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA1E $\operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 021 \mathrm{E})$	stat_ae_histogram_129	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 20 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0220) \end{gathered}$	stat_ae_histogram_130	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 22 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0222) \end{gathered}$	stat_ae_histogram_131	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A 24 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0224) \end{gathered}$	stat_ae_histogram_132	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A 26 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0226) \end{gathered}$	stat_ae_histogram_133	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA28 VAR(0x0E,0x0228)	stat_ae_histogram_134	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 2 A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 022 \mathrm{~A}) \end{gathered}$	stat_ae_histogram_135	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 2 C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 022 \mathrm{C}) \end{gathered}$	stat_ae_histogram_136	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 2 E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 022 \mathrm{E}) \end{gathered}$	stat_ae_histogram_137	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 30 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0230) \end{gathered}$	stat_ae_histogram_138	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 32 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0232) \end{gathered}$	stat_ae_histogram_139	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 34 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0234) \end{gathered}$	stat_ae_histogram_140	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 36 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0236) \end{gathered}$	stat_ae_histogram_141	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 38 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0238) \end{gathered}$	stat_ae_histogram_142	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A 3 A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 023 \mathrm{~A}) \end{gathered}$	stat_ae_histogram_143	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 3 C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 023 \mathrm{C}) \end{gathered}$	stat_ae_histogram_144	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA3E VAR(0x0E,0x023E)	stat_ae_histogram_145	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 40 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0240) \end{gathered}$	stat_ae_histogram_146	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A 42 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0242) \end{gathered}$	stat_ae_histogram_147	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 19. STAT VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times B A 44 \\ \operatorname{VAR}(0 \times 0 E, 0 \times 0244) \end{gathered}$	stat_ae_histogram_148	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A 46 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0246) \end{gathered}$	stat_ae_histogram_149	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 48 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0248) \end{gathered}$	stat_ae_histogram_150	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 4 A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 024 \mathrm{~A}) \end{gathered}$	stat_ae_histogram_151	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 4 C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 024 \mathrm{C}) \end{gathered}$	stat_ae_histogram_152	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A 4 E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 024 \mathrm{E}) \end{gathered}$	stat_ae_histogram_153	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 50 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0250) \end{gathered}$	stat_ae_histogram_154	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 52 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0252) \end{gathered}$	stat_ae_histogram_155	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 54 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0254) \end{gathered}$	stat_ae_histogram_156	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 56 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0256) \end{gathered}$	stat_ae_histogram_157	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A 58 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0258) \end{gathered}$	stat_ae_histogram_158	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A 5 A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 025 \mathrm{~A}) \end{gathered}$	stat_ae_histogram_159	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 7 A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 027 \mathrm{~A}) \end{gathered}$	stat_ae_histogram_175	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 7 C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 027 \mathrm{C}) \end{gathered}$	stat_ae_histogram_176	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA7E $\operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 027 \mathrm{E})$	stat_ae_histogram_177	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 80 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0280) \end{gathered}$	stat_ae_histogram_178	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A 82 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0282) \end{gathered}$	stat_ae_histogram_179	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A 84 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0284) \end{gathered}$	stat_ae_histogram_180	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 86 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0286) \end{gathered}$	stat_ae_histogram_181	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 88 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0288) \end{gathered}$	stat_ae_histogram_182	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A 8 A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 028 \mathrm{~A}) \end{gathered}$	stat_ae_histogram_183	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA8C $\operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 028 \mathrm{C})$	stat_ae_histogram_184	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA8E $\operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 028 \mathrm{E})$	stat_ae_histogram_185	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 90 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0290) \end{gathered}$	stat_ae_histogram_186	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 92 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0292) \end{gathered}$	stat_ae_histogram_187	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 94 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0294) \end{gathered}$	stat_ae_histogram_188	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 19. STAT VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} \hline 0 \times B A 96 \\ \operatorname{VAR}(0 \times 0 E, 0 \times 0296) \end{gathered}$	stat_ae_histogram_189	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A 98 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0298) \end{gathered}$	stat_ae_histogram_190	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 9 A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 029 \mathrm{~A}) \end{gathered}$	stat_ae_histogram_191	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 9 C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 029 \mathrm{C}) \end{gathered}$	stat_ae_histogram_192	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A 9 E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 029 \mathrm{E}) \end{gathered}$	stat_ae_histogram_193	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A A O \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{AO}) \end{gathered}$	stat_ae_histogram_194	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAA2 $\operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{~A} 2)$	stat_ae_histogram_195	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A A 4 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{~A} 4) \end{gathered}$	stat_ae_histogram_196	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAA6 $\operatorname{VAR}(0 \times 0 E, 0 \times 02 A 6)$	stat_ae_histogram_197	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A A 8 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{~A} 8) \end{gathered}$	stat_ae_histogram_198	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A A A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 A A) \end{gathered}$	stat_ae_histogram_199	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A A C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{AC}) \end{gathered}$	stat_ae_histogram_200	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAAE $\operatorname{VAR}(0 \times 0 E, 0 \times 02 A E)$	stat_ae_histogram_201	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A B 0 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{BO}) \end{gathered}$	stat_ae_histogram_202	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A B 2 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{~B} 2) \end{gathered}$	stat_ae_histogram_203	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A B 4 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{~B} 4) \end{gathered}$	stat_ae_histogram_204	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A B 6 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{~B} 6) \end{gathered}$	stat_ae_histogram_205	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A B 8 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{~B} 8) \end{gathered}$	stat_ae_histogram_206	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A B A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{BA}) \end{gathered}$	stat_ae_histogram_207	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A B C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{BC}) \end{gathered}$	stat_ae_histogram_208	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A B E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{BE}) \end{gathered}$	stat_ae_histogram_209	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A C 0 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{CO}) \end{gathered}$	stat_ae_histogram_210	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A C 2 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{C} 2) \end{gathered}$	stat_ae_histogram_211	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A C 4 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{C} 4) \end{gathered}$	stat_ae_histogram_212	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A C 6 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{C} 6) \end{gathered}$	stat_ae_histogram_213	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A C 8 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{C} 8) \end{gathered}$	stat_ae_histogram_214	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 19. STAT VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times B A C A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{CA}) \end{gathered}$	stat_ae_histogram_215	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A C C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{CC}) \end{gathered}$	stat_ae_histogram_216	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A C E \\ \operatorname{VAR}(0 \times 0 E, 0 \times 02 C E) \end{gathered}$	stat_ae_histogram_217	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBADO VAR(0x0E,0x02D0)	stat_ae_histogram_218	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A D 2 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{D} 2) \end{gathered}$	stat_ae_histogram_219	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline \text { 0xBAD4 } \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{D} 4) \end{gathered}$	stat_ae_histogram_220	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAD6 VAR(0x0E,0x02D6)	stat_ae_histogram_221	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAD8 VAR(0x0E,0x02D8)	stat_ae_histogram_222	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBADA VAR(0x0E,0x02DA)	stat_ae_histogram_223	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A D C \\ \operatorname{VAR}(0 \times 0 E, 0 \times 02 D C) \end{gathered}$	stat_ae_histogram_224	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBADE $\operatorname{VAR}(0 \times 0 E, 0 \times 02 D E)$	stat_ae_histogram_225	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A E 0 \\ \operatorname{VAR}(0 \times 0 E, 0 \times 02 E 0) \end{gathered}$	stat_ae_histogram_226	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAE2 VAR(0x0E,0x02E2)	stat_ae_histogram_227	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A E 4 \\ \operatorname{VAR}(0 \times 0 E, 0 \times 02 E 4) \end{gathered}$	stat_ae_histogram_228	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A E 6 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{E} 6) \end{gathered}$	stat_ae_histogram_229	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A E 8 \\ \operatorname{VAR}(0 \times 0 E, 0 \times 02 E 8) \end{gathered}$	stat_ae_histogram_230	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAEA VAR(0x0E,0x02EA)	stat_ae_histogram_231	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A E C \\ \operatorname{VAR}(0 \times 0 E, 0 \times 02 E C) \end{gathered}$	stat_ae_histogram_232	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAEE VAR(0x0E,0x02EE)	stat_ae_histogram_233	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B A F 0 \\ \operatorname{VAR(0x0E,0\times 02F0)} \end{gathered}$	stat_ae_histogram_234	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B A F 2 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{~F} 2) \end{gathered}$	stat_ae_histogram_235	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAF4 VAR(0x0E,0x02F4)	stat_ae_histogram_236	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAF6 VAR(0x0E,0x02F6)	stat_ae_histogram_237	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAF8 VAR(0x0E,0x02F8)	stat_ae_histogram_238	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline \text { 0xBAFA } \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 F A) \end{gathered}$	stat_ae_histogram_239	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$0 \times B A F C$ VAR(0x0E,0x02FC)	stat_ae_histogram_240	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 19. STAT VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times B A F E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 02 \mathrm{FE}) \end{gathered}$	stat_ae_histogram_241	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B B 00 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0300) \end{gathered}$	stat_ae_histogram_242	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B B 02 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0302) \end{gathered}$	stat_ae_histogram_243	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B B 04 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0304) \end{gathered}$	stat_exposure_coarse_integration_time	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B B 06 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0306) \end{gathered}$	stat_exposure_fine_integration_time	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B B 08 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0308) \end{gathered}$	stat_exposure_analog_red_gain	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B B O A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 030 \mathrm{~A}) \end{gathered}$	stat_exposure_analog_green1_gain	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B B O C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 030 \mathrm{C}) \end{gathered}$	stat_exposure_analog_green2_gain	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B B B 0 E \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 030 \mathrm{E}) \end{gathered}$	stat_exposure_analog_blue_gain	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B B 10 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0310) \end{gathered}$	stat_exposure_frame_length_lines	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B B 12 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0312) \end{gathered}$	stat_exposure_line_length_pck	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B B 14 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0314) \end{gathered}$	stat_exposure_column_gain	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times B B 15 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0315) \end{gathered}$	stat_exposure_dcg_gain	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times B B 16 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0316) \end{gathered}$	stat_exposure_dgain_red	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B B 18 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0318) \end{gathered}$	stat_exposure_dgain_green1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B B 1 A \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 031 \mathrm{~A}) \end{gathered}$	stat_exposure_dgain_green2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B B 1 C \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 031 \mathrm{C}) \end{gathered}$	stat_exposure_dgain_blue	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$0 \times B B 1 E$ $\operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 031 \mathrm{E})$	stat_exposure_cpipe_dgain_red	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B B 20 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0320) \end{gathered}$	stat_exposure_cpipe_dgain_green1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B B 22 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0322) \end{gathered}$	stat_exposure_cpipe_dgain_green2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B B 24 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0324) \end{gathered}$	stat_exposure_cpipe_dgain_blue	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B B 26 \\ \operatorname{VAR}(0 \times 0 \mathrm{E}, 0 \times 0326) \end{gathered}$	stat_exposure_cpipe_dgain_second	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

AND9568/D

Low Light Variables List

Table 20. LOW LIGHT VARIABLES LIST
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times B C 02 \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 0002) \end{gathered}$	I__mode	dddd dddd dddd dddd	$\begin{gathered} 7 \\ (0 \times 0007) \end{gathered}$
$\begin{gathered} 0 \times B C 04 \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 0004) \end{gathered}$	II_algo	dddd dddd dddd dddd	$\begin{gathered} 1023 \\ (0 \times 03 F F) \end{gathered}$
$\begin{gathered} 0 \times B C 07 \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 0007) \end{gathered}$	I_gamma_select	dddd dddd	$\begin{gathered} 1 \\ (0 \times 01) \end{gathered}$
$\begin{gathered} 0 \times B C 0 A \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 000 \mathrm{~A}) \end{gathered}$	I_gamma_contrast_curve_0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C O C \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 000 \mathrm{C}) \end{gathered}$	II_gamma_contrast_curve_1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C O E \\ \operatorname{VAR}(0 \times 0 F, 0 \times 000 E) \end{gathered}$	I__gamma_contrast_curve_2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 10 \\ \operatorname{VAR}(0 \times 0 F, 0 \times 0010) \end{gathered}$	I_gamma_contrast_curve_3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 12 \\ \operatorname{VAR}(0 \times 0 F, 0 \times 0012) \end{gathered}$	I__gamma_contrast_curve_4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 14 \\ \operatorname{VAR}(0 \times 0 F, 0 \times 0014) \end{gathered}$	I__gamma_contrast_curve_5	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 16 \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 0016) \end{gathered}$	I__gamma_contrast_curve_6	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 18 \\ \operatorname{VAR}(0 \times 0 F, 0 \times 0018) \end{gathered}$	I_gamma_contrast_curve_7	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 1 \mathrm{~A} \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 001 \mathrm{~A}) \end{gathered}$	I_gamma_contrast_curve_8	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 1 C \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 001 \mathrm{C}) \end{gathered}$	I_gamma_contrast_curve_9	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$0 \times B C 1 E$ VAR(0x0F,0x001E)	II_gamma_contrast_curve_10	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 20 \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 0020) \end{gathered}$	II_gamma_contrast_curve_11	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 22 \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 0022) \end{gathered}$	II_gamma_contrast_curve_12	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 24 \\ \operatorname{VAR}(0 \times 0 F, 0 \times 0024) \end{gathered}$	II_gamma_contrast_curve_13	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 26 \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 0026) \end{gathered}$	II_gamma_contrast_curve_14	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 28 \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 0028) \end{gathered}$	II_gamma_contrast_curve_15	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 2 A \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 002 \mathrm{~A}) \end{gathered}$	II_gamma_contrast_curve_16	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 2 C \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 002 \mathrm{C}) \end{gathered}$	II_gamma_contrast_curve_17	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 2 E \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 002 \mathrm{E}) \end{gathered}$	II_gamma_contrast_curve_18	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 30 \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 0030) \end{gathered}$	II_gamma_contrast_curve_19	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B C 32 \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 0032) \end{gathered}$	II_gamma_contrast_curve_20	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 20. LOW LIGHT VARIABLES LIST (continued)
(1 = Read-Only, Always 1; $0=$ Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times B C 34 \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 0034) \end{gathered}$	II_gamma_contrast_curve_21	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 36 \\ \operatorname{VAR}(0 \times 0 F, 0 \times 0036) \end{gathered}$	II_gamma_contrast_curve_22	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 38 \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 0038) \end{gathered}$	II_gamma_contrast_curve_23	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 3 A \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 003 \mathrm{~A}) \end{gathered}$	II_gamma_contrast_curve_24	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 3 C \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 003 \mathrm{C}) \end{gathered}$	II_gamma_contrast_curve_25	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B C 3 E \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 003 \mathrm{E}) \end{gathered}$	II_gamma_contrast_curve_26	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 40 \\ \operatorname{VAR}(0 \times 0 F, 0 \times 0040) \end{gathered}$	II_gamma_contrast_curve_27	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times B C 42 \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 0042) \end{gathered}$	II_gamma_contrast_curve_28	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 44 \\ \operatorname{VAR}(0 \times 0 F, 0 \times 0044) \end{gathered}$	II_gamma_contrast_curve_29	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 46 \\ \operatorname{VAR}(0 \times 0 F, 0 \times 0046) \end{gathered}$	II_gamma_contrast_curve_30	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 48 \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 0048) \end{gathered}$	II_gamma_contrast_curve_31	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 4 A \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 004 \mathrm{~A}) \end{gathered}$	II_gamma_contrast_curve_32	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C 8 E \\ \operatorname{VAR}(0 \times 0 F, 0 \times 008 E) \end{gathered}$	I__average_luma_fade_to_black	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times B C B 4 \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 00 B 4) \end{gathered}$	II_altm_damping_fast	dddd dddd dddd dddd	$\begin{gathered} 63 \\ (0 \times 003 F) \end{gathered}$
$\begin{gathered} 0 \times B C B 6 \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 00 \mathrm{~B} 6) \end{gathered}$	II_altm_damping_med	dddd dddd dddd dddd	$\begin{gathered} 15 \\ (0 \times 000 \mathrm{~F}) \end{gathered}$
$\begin{gathered} 0 \times B C B 8 \\ \operatorname{VAR}(0 \times 0 \mathrm{~F}, 0 \times 00 \mathrm{~B} 8) \end{gathered}$	I__altm_damping_slow	dddd dddd dddd dddd	$\begin{gathered} \hline 7 \\ (0 \times 0007) \end{gathered}$

Flicker Detect Variables List

Table 21. FLICKER DETECTVARIABLES LIST
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$0 \times C 000$	flicker_detect_status	???? ????? ???? ????	0
VAR(0x10,0x0000)			$(0 x 0000)$

CamControl Variables List

Table 22. CAM CONTROL VARIABLES LIST
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} \hline 0 \times C 804 \\ \operatorname{VAR}(0 \times 12,0 \times 0004) \end{gathered}$	cam_sensor_cfg_y_addr_start	dddd dddd dddd dddd	$\begin{gathered} 8 \\ (0 \times 0008) \end{gathered}$
$\begin{gathered} \hline 0 \times C 806 \\ \operatorname{VAR}(0 \times 12,0 \times 0006) \end{gathered}$	cam_sensor_cfg_x_addr_start	dddd dddd dddd dddd	$\begin{gathered} 2 \\ (0 \times 0002) \end{gathered}$
$\begin{gathered} \hline 0 \times C 808 \\ \operatorname{VAR}(0 \times 12,0 \times 0008) \end{gathered}$	cam_sensor_cfg_y_addr_end	dddd dddd dddd dddd	$\begin{gathered} 967 \\ (0 \times 03 C 7) \end{gathered}$
$\begin{gathered} 0 \times C 80 A \\ \operatorname{VAR}(0 \times 12,0 \times 000 \mathrm{~A}) \end{gathered}$	cam_sensor_cfg_x_addr_end	dddd dddd dddd dddd	$\begin{gathered} 1281 \\ (0 \times 0501) \end{gathered}$
$\begin{gathered} 0 \times C 80 C \\ \operatorname{VAR}(0 \times 12,0 \times 000 C) \end{gathered}$	cam_sensor_cfg_pixclk	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 54000000 \\ \text { (0x0337F980) } \end{gathered}$
$\begin{gathered} 0 \times C 810 \\ \operatorname{VAR}(0 \times 12,0 \times 0010) \end{gathered}$	cam_sensor_cfg_fine_integ_time_min	dddd dddd dddd dddd	$\begin{gathered} 700 \\ (0 \times 02 \mathrm{BC}) \end{gathered}$
$\begin{gathered} 0 \times C 812 \\ \operatorname{VAR}(0 \times 12,0 \times 0012) \end{gathered}$	cam_sensor_cfg_fine_integ_time_max	dddd dddd dddd dddd	$\begin{gathered} 1676 \\ (0 \times 068 \mathrm{C}) \end{gathered}$
$\begin{gathered} 0 \times C 814 \\ \operatorname{VAR}(0 \times 12,0 \times 0014) \end{gathered}$	cam_sensor_cfg_frame_length_lines	dddd dddd dddd dddd	$\begin{gathered} 1074 \\ (0 \times 0432) \end{gathered}$
$\begin{gathered} 0 \times C 816 \\ \operatorname{VAR}(0 \times 12,0 \times 0016) \end{gathered}$	cam_sensor_cfg_line_length_pck	dddd dddd dddd dddd	$\begin{gathered} 1676 \\ (0 \times 068 \mathrm{C}) \end{gathered}$
$\begin{gathered} 0 \times C 818 \\ \operatorname{VAR}(0 \times 12,0 \times 0018) \end{gathered}$	cam_sensor_cfg_fine_correction	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 830 \\ \operatorname{VAR}(0 \times 12,0 \times 0030) \end{gathered}$	cam_sensor_cfg_tuning	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 9381 \\ (0 \times 000024 \mathrm{~A} 5) \end{gathered}$
$\begin{gathered} 0 \times C 834 \\ \operatorname{VAR}(0 \times 12,0 \times 0034) \end{gathered}$	cam_sensor_cfg_cci_base_addr_0	dddd dddd	$\begin{gathered} 32 \\ (0 \times 20) \end{gathered}$
$\begin{gathered} 0 \times C 835 \\ \operatorname{VAR}(0 \times 12,0 \times 0035) \end{gathered}$	cam_sensor_cfg_cci_base_addr_1	dddd dddd	$\begin{gathered} 48 \\ (0 \times 30) \end{gathered}$
$\begin{gathered} 0 \times C 838 \\ \operatorname{VAR}(0 \times 12,0 \times 0038) \end{gathered}$	cam_sensor_control_external_pll	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 67242049 \\ (0 \times 04020841) \end{gathered}$
$\begin{gathered} 0 \times C 83 C \\ \operatorname{VAR}(0 \times 12,0 \times 003 C) \end{gathered}$	cam_sensor_control_base_address	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times C 83 D \\ \operatorname{VAR}(0 \times 12,0 \times 003 D) \end{gathered}$	cam_sensor_control_revision_number	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times C 83 E \\ \operatorname{VAR}(0 \times 12,0 \times 003 E) \end{gathered}$	cam_sensor_control_model_id	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times C 840 \\ \operatorname{VAR}(0 \times 12,0 \times 0040) \end{gathered}$	cam_sensor_control_external_output_clk_div	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 842 \\ \operatorname{VAR}(0 \times 12,0 \times 0042) \end{gathered}$	cam_sensor_control_request	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times C 843 \\ \operatorname{VAR}(0 \times 12,0 \times 0043) \end{gathered}$	cam_sensor_control_internal_request	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times C 844 \\ \operatorname{VAR}(0 \times 12,0 \times 0044) \end{gathered}$	cam_sensor_control_operation_mode	dddd dddd dddd dddd	$\begin{gathered} 2498 \\ (0 \times 09 \mathrm{C} 2) \end{gathered}$
$\begin{gathered} 0 \times C 846 \\ \operatorname{VAR}(0 \times 12,0 \times 0046) \end{gathered}$	cam_sensor_control_read_mode	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 848 \\ \operatorname{VAR}(0 \times 12,0 \times 0048) \end{gathered}$	cam_hdr_mc_ctrl_mode	dddd dddd dddd dddd	$\begin{gathered} 11 \\ (0 \times 000 B) \end{gathered}$
$\begin{gathered} 0 \times C 84 \mathrm{~A} \\ \operatorname{VAR}(0 \times 12,0 \times 004 \mathrm{~A}) \end{gathered}$	cam_hdr_mc_ctrl_s1_threshold	dddd dddd dddd dddd	$\begin{gathered} 2976 \\ \text { (0xOBAO) } \end{gathered}$

Table 22. CAM CONTROL VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times C 84 C \\ \operatorname{VAR}(0 \times 12,0 \times 004 C) \end{gathered}$	cam_hdr_mc_ctrl_s2_threshold	dddd dddd dddd dddd	$\begin{gathered} 4000 \\ (0 x 0 F A O) \end{gathered}$
$\begin{gathered} 0 \times C 84 E \\ \operatorname{VAR}(0 \times 12,0 \times 004 E) \end{gathered}$	cam_hdr_mc_ctrl_s12_range	dddd dddd dddd dddd	$\begin{gathered} 2048 \\ (0 \times 0800) \end{gathered}$
$\begin{gathered} 0 \times C 850 \\ \text { VAR(0x12,0x0050) } \end{gathered}$	cam_hdr_mc_ctrl_diff_threshold	dddd dddd dddd dddd	$\begin{gathered} 768 \\ (0 \times 0300) \end{gathered}$
$\begin{gathered} 0 \times C 854 \\ \text { VAR(0x12,0x0054) } \end{gathered}$	cam_hdr_dlo_ctrl_mode	dddd dddd dddd dddd	$\begin{gathered} 1 \\ (0 \times 0001) \end{gathered}$
$\begin{gathered} 0 \times C 856 \\ \operatorname{VAR}(0 \times 12,0 \times 0056) \end{gathered}$	cam_hdr_dlo_ctrl_t1_barrier	dddd dddd dddd dddd	$\begin{gathered} 3000 \\ (0 \times 0 B B 8) \end{gathered}$
$\begin{gathered} 0 \times C 858 \\ \operatorname{VAR}(0 \times 12,0 \times 0058) \end{gathered}$	cam_hdr_dlo_ctrl_t2_barrier	dddd dddd dddd dddd	$\begin{gathered} 3500 \\ \text { (0x0DAC) } \end{gathered}$
$\begin{gathered} 0 \times C 85 A \\ \operatorname{VAR}(0 \times 12,0 \times 005 A) \end{gathered}$	cam_hdr_dlo_ctrl_t3_barrier	dddd dddd dddd dddd	$\begin{gathered} 4000 \\ (0 x 0 F A 0) \end{gathered}$
$\begin{gathered} 0 \times C 85 C \\ \operatorname{VAR}(0 \times 12,0 \times 005 C) \end{gathered}$	cam_hdr_dlo_ctrl_noise_disable_threshold	dddd dddd dddd dddd	$\begin{gathered} 256 \\ (0 \times 0100) \end{gathered}$
$\begin{gathered} 0 \times C 85 E \\ \operatorname{VAR}(0 \times 12,0 \times 005 E) \end{gathered}$	cam_hdr_dlo_ctrl_noise_s2_threshold	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
$\begin{gathered} 0 \times C 860 \\ \operatorname{VAR}(0 \times 12,0 \times 0060) \end{gathered}$	cam_hdr_dlo_ctrl_noise_s12_range	dddd dddd dddd dddd	$\begin{gathered} 5 \\ (0 \times 0005) \end{gathered}$
$\begin{gathered} 0 \times C 864 \\ \operatorname{VAR}(0 \times 12,0 \times 0064) \end{gathered}$	cam_exp_ctrl_coarse_integration_time	dddd dddd dddd dddd	$\begin{gathered} 1 \\ (0 \times 0001) \end{gathered}$
$\begin{gathered} 0 \times C 866 \\ \text { VAR(0x12,0x0066) } \end{gathered}$	cam_exp_ctrl_fine_integration_time	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 868 \\ \operatorname{VAR}(0 \times 12,0 \times 0068) \end{gathered}$	cam_exp_ctrl_analog_red_gain	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
$\begin{gathered} 0 \times C 86 A \\ \operatorname{VAR}(0 \times 12,0 \times 006 A) \end{gathered}$	cam_exp_ctrl_analog_green1_gain	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
$\begin{gathered} 0 \times C 86 C \\ \operatorname{VAR}(0 \times 12,0 \times 006 C) \end{gathered}$	cam_exp_ctrl_analog_green2_gain	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
$\begin{gathered} 0 \times C 86 E \\ \text { VAR(0x12,0x006E) } \end{gathered}$	cam_exp_ctrl_analog_blue_gain	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
$\begin{gathered} 0 \times C 870 \\ \operatorname{VAR}(0 \times 12,0 \times 0070) \end{gathered}$	cam_exp_ctrl_frame_length_lines	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 872 \\ \operatorname{VAR}(0 \times 12,0 \times 0072) \end{gathered}$	cam_exp_ctrl_line_length_pck	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 874 \\ \operatorname{VAR}(0 \times 12,0 \times 0074) \end{gathered}$	cam_exp_ctrl_column_gain	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times C 875 \\ \operatorname{VAR}(0 \times 12,0 \times 0075) \end{gathered}$	cam_exp_ctrl_dcg_gain	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times C 876 \\ \text { VAR(0x12,0x0076) } \end{gathered}$	cam_exp_ctrl_dgain_red	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
$\begin{gathered} 0 \times C 878 \\ \operatorname{VAR}(0 \times 12,0 \times 0078) \end{gathered}$	cam_exp_ctrl_dgain_green1	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
$\begin{gathered} 0 \times C 87 A \\ \operatorname{VAR}(0 \times 12,0 \times 007 A) \end{gathered}$	cam_exp_ctrl_dgain_green2	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
$\begin{gathered} 0 \times C 87 C \\ \operatorname{VAR}(0 \times 12,0 \times 007 C) \end{gathered}$	cam_exp_ctrl_dgain_blue	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
$\begin{gathered} 0 \times C 87 E \\ \operatorname{VAR}(0 \times 12,0 \times 007 E) \end{gathered}$	cam_exp_ctrl_cpipe_dgain_red	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
$\begin{gathered} 0 \times C 880 \\ \operatorname{VAR}(0 \times 12,0 \times 0080) \end{gathered}$	cam_exp_ctrl_cpipe_dgain_green1	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$

Table 22. CAM CONTROL VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times C 882 \\ \operatorname{VAR}(0 \times 12,0 \times 0082) \end{gathered}$	cam_exp_ctrl_cpipe_dgain_green2	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
$\begin{gathered} 0 \times C 884 \\ \operatorname{VAR}(0 \times 12,0 \times 0084) \end{gathered}$	cam_exp_ctrl_cpipe_dgain_blue	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
$\begin{gathered} 0 \times C 886 \\ \text { VAR(0x12,0x0086) } \end{gathered}$	cam_exp_ctrl_cpipe_dgain_second	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
$\begin{gathered} 0 \times C 888 \\ \operatorname{VAR}(0 \times 12,0 \times 0088) \end{gathered}$	cam_cpipe_control_first_black_level	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
$\begin{gathered} 0 \times C 88 A \\ \operatorname{VAR}(0 \times 12,0 \times 008 A) \end{gathered}$	cam_cpipe_control_second_black_level	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 88 C \\ \operatorname{VAR}(0 \times 12,0 \times 008 C) \end{gathered}$	cam_mode_select	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times C 88 \mathrm{D} \\ \operatorname{VAR}(0 \times 12,0 \times 008 \mathrm{D}) \end{gathered}$	cam_mode_sync_type	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times C 88 E \\ \operatorname{VAR}(0 \times 12,0 \times 008 E) \end{gathered}$	cam_mode_sync_trigger_mode	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times C 88 F \\ \operatorname{VAR}(0 \times 12,0 \times 008 F) \end{gathered}$	cam_mode_test_pattern_select	dddd dddd	$\begin{gathered} 2 \\ (0 \times 02) \end{gathered}$
$\begin{gathered} 0 \times C 890 \\ \operatorname{VAR}(0 \times 12,0 \times 0090) \end{gathered}$	cam_mode_test_pattern_red	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 1048575 \\ (0 \times 000 F F F F F) \end{gathered}$
$\begin{gathered} 0 \times C 894 \\ \operatorname{VAR}(0 \times 12,0 \times 0094) \end{gathered}$	cam_mode_test_pattern_green	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 1048575 \\ (0 \times 000 F F F F F) \end{gathered}$
$\begin{gathered} 0 \times C 898 \\ \operatorname{VAR}(0 \times 12,0 \times 0098) \end{gathered}$	cam_mode_test_pattern_blue	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 1048575 \\ (0 x 000 F F F F F) \end{gathered}$
$\begin{gathered} 0 \times C 89 C \\ \operatorname{VAR}(0 \times 12,0 \times 009 C) \end{gathered}$	cam_crop_window_xoffset	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 89 E \\ \operatorname{VAR}(0 \times 12,0 \times 009 E) \end{gathered}$	cam_crop_window_yoffset	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 8 A 0 \\ \operatorname{VAR}(0 \times 12,0 \times 00 A 0) \end{gathered}$	cam_crop_window_width	dddd dddd dddd dddd	$\begin{gathered} 1280 \\ (0 \times 0500) \end{gathered}$
$\begin{gathered} 0 \times C 8 A 2 \\ \operatorname{VAR}(0 \times 12,0 \times 00 \mathrm{~A} 2) \end{gathered}$	cam_crop_window_height	dddd dddd dddd dddd	$\begin{gathered} 960 \\ (0 \times 03 C 0) \end{gathered}$
$\begin{gathered} 0 \times C 8 A 4 \\ \operatorname{VAR}(0 \times 12,0 \times 00 \mathrm{~A} 4) \end{gathered}$	cam_frame_scan_control	dddd dddd dddd dddd	$\begin{gathered} 17 \\ (0 \times 0011) \end{gathered}$
$\begin{gathered} 0 \times C 8 A 8 \\ \operatorname{VAR}(0 \times 12,0 \times 00 \mathrm{~A} 8) \end{gathered}$	cam_fov_calib_x_offset	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times C 8 A 9 \\ \text { VAR(0x12,0x00A9) } \end{gathered}$	cam_fov_calib_y_offset	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times C 8 B C \\ \operatorname{VAR}(0 \times 12,0 \times 00 B C) \end{gathered}$	cam_aet_aemode	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times C 8 B E \\ \operatorname{VAR}(0 \times 12,0 \times 00 B E) \end{gathered}$	cam_aet_black_clipping_target	dddd dddd dddd dddd	$\begin{gathered} 30 \\ (0 \times 001 E) \end{gathered}$
$\begin{gathered} 0 \times C 8 C 0 \\ \text { VAR(0x12,0×00C0) } \end{gathered}$	cam_aet_exposure_time_ms	dddd dddd dddd dddd	$\begin{gathered} 1280 \\ (0 \times 0500) \end{gathered}$
$\begin{gathered} 0 \times \mathrm{C} 8 \mathrm{C} 2 \\ \operatorname{VAR}(0 \times 12,0 \times 00 \mathrm{C} 2) \end{gathered}$	cam_aet_exposure_gain	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
$\begin{gathered} 0 \times C 8 C 6 \\ \operatorname{VAR}(0 \times 12,0 \times 00 C 6) \end{gathered}$	cam_aet_ae_min_virt_dgain	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
$\begin{gathered} 0 \times \mathrm{C} 8 \mathrm{C} 8 \\ \operatorname{VAR}(0 \times 12,0 \times 00 \mathrm{C} 8) \end{gathered}$	cam_aet_ae_max_virt_dgain	dddd dddd dddd dddd	$\begin{gathered} 640 \\ (0 \times 0280) \end{gathered}$
$\begin{gathered} 0 \times C 8 C A \\ \operatorname{VAR}(0 \times 12,0 \times 00 C A) \end{gathered}$	cam_aet_ae_min_virt_again	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$

Table 22. CAM CONTROL VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times C 8 C C \\ \operatorname{VAR}(0 \times 12,0 \times 00 C C) \end{gathered}$	cam_aet_ae_max_virt_again	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
$\begin{gathered} \hline 0 \times C 8 C E \\ \operatorname{VAR}(0 \times 12,0 \times 00 C E) \end{gathered}$	cam_aet_ae_virt_gain_th_eg	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
$\begin{gathered} 0 \times C 8 D 1 \\ \operatorname{VAR}(0 \times 12,0 \times 00 \mathrm{D} 1) \end{gathered}$	cam_aet_flicker_freq_hz	dddd dddd	$\begin{gathered} 60 \\ (0 \times 3 C) \end{gathered}$
$\begin{gathered} 0 \times C 8 D 2 \\ \operatorname{VAR}(0 \times 12,0 \times 00 \mathrm{D} 2) \end{gathered}$	cam_aet_max_frame_rate	???? ???? ???? ????	$\begin{gathered} 7680 \\ (0 \times 1 E 00) \end{gathered}$
$\begin{gathered} 0 \times C 8 D 4 \\ \operatorname{VAR}(0 \times 12,0 \times 00 \mathrm{D} 4) \end{gathered}$	cam_aet_frame_rate_0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 8 D 6 \\ \operatorname{VAR}(0 \times 12,0 \times 00 D 6) \end{gathered}$	cam_aet_frame_rate_1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 8 D 8 \\ \operatorname{VAR}(0 \times 12,0 \times 00 \mathrm{D} 8) \end{gathered}$	cam_aet_frame_rate_2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times C 8 D A \\ \operatorname{VAR}(0 \times 12,0 \times 00 \mathrm{DA}) \end{gathered}$	cam_aet_target_gain	dddd dddd dddd dddd	$\begin{gathered} 256 \\ (0 \times 0100) \end{gathered}$
$\begin{gathered} 0 \times C 8 D C \\ \operatorname{VAR}(0 \times 12,0 \times 00 \mathrm{DC}) \end{gathered}$	cam_awb_ccm_I_0	dddd dddd dddd dddd	$\begin{gathered} 156 \\ (0 \times 009 C) \end{gathered}$
$\begin{gathered} 0 \times C 8 D E \\ \operatorname{VAR}(0 \times 12,0 \times 00 D E) \end{gathered}$	cam_awb_ccm_I_1	dddd dddd dddd dddd	$\begin{gathered} 46 \\ (0 \times 002 \mathrm{E}) \end{gathered}$
$\begin{gathered} 0 \times \mathrm{C} 8 \mathrm{E} 0 \\ \operatorname{VAR}(0 \times 12,0 \times 00 \mathrm{E} 0) \end{gathered}$	cam_awb_ccm_I_2	dddd dddd dddd dddd	$\begin{gathered} 53 \\ (0 \times 0035) \end{gathered}$
$\begin{gathered} \hline 0 \times C 8 E 2 \\ \operatorname{VAR}(0 \times 12,0 \times 00 \mathrm{E} 2) \end{gathered}$	cam_awb_ccm_I_3	dddd dddd dddd dddd	$\begin{gathered} 65448 \\ \text { (0xFFA8) } \end{gathered}$
$\begin{gathered} 0 \times C 8 E 4 \\ \operatorname{VAR}(0 \times 12,0 \times 00 E 4) \end{gathered}$	cam_awb_ccm_I_4	dddd dddd dddd dddd	$\begin{gathered} 279 \\ (0 \times 0117) \end{gathered}$
$\begin{gathered} 0 \times C 8 E 6 \\ \operatorname{VAR}(0 \times 12,0 \times 00 E 6) \end{gathered}$	cam_awb_ccm_l_5	dddd dddd dddd dddd	$\begin{gathered} 65 \\ (0 \times 0041) \end{gathered}$
$\begin{gathered} 0 \times C 8 E 8 \\ \operatorname{VAR}(0 \times 12,0 \times 00 E 8) \end{gathered}$	cam_awb_ccm_l_6	dddd dddd dddd dddd	$\begin{gathered} 65442 \\ \text { (0xFFA2) } \end{gathered}$
$\begin{gathered} 0 \times C 8 E A \\ \operatorname{VAR}(0 \times 12,0 \times 00 E A) \end{gathered}$	cam_awb_ccm_l_7	dddd dddd dddd dddd	$\begin{gathered} 4 \\ (0 \times 0004) \end{gathered}$
$\begin{gathered} \hline 0 \times C 8 E C \\ \operatorname{VAR}(0 \times 12,0 \times 00 E C) \end{gathered}$	cam_awb_ccm_1_8	dddd dddd dddd dddd	$\begin{gathered} 346 \\ (0 \times 015 A) \end{gathered}$
$\begin{gathered} 0 \times C 8 E E \\ \operatorname{VAR}(0 \times 12,0 \times 00 E E) \end{gathered}$	cam_awb_ccm_m_0	dddd dddd dddd dddd	$\begin{gathered} 197 \\ (0 \times 00 \mathrm{C} 5) \end{gathered}$
$\begin{gathered} 0 \times C 8 F 0 \\ \operatorname{VAR}(0 \times 12,0 \times 00 \mathrm{Fo}) \end{gathered}$	cam_awb_ccm_m_1	dddd dddd dddd dddd	$\begin{gathered} 1 \\ (0 \times 0001) \end{gathered}$
$\begin{gathered} 0 \times C 8 F 2 \\ \operatorname{VAR}(0 \times 12,0 \times 00 F 2) \end{gathered}$	cam_awb_ccm_m_2	dddd dddd dddd dddd	$\begin{gathered} 58 \\ (0 \times 003 A) \end{gathered}$
$\begin{gathered} 0 \times C 8 F 4 \\ \operatorname{VAR}(0 \times 12,0 \times 00 F 4) \end{gathered}$	cam_awb_ccm_m_3	dddd dddd dddd dddd	$\begin{gathered} 65514 \\ (0 x F F E A) \end{gathered}$
$\begin{gathered} \hline 0 \times C 8 F 6 \\ \text { VAR(0x12,0x00F6) } \end{gathered}$	cam_awb_ccm_m_4	dddd dddd dddd dddd	$\begin{gathered} 231 \\ (0 \times 00 E 7) \end{gathered}$
$\begin{gathered} \hline 0 \times C 8 F 8 \\ \operatorname{VAR}(0 \times 12,0 \times 00 \mathrm{~F}) \end{gathered}$	cam_awb_ccm_m_5	dddd dddd dddd dddd	$\begin{gathered} 47 \\ (0 \times 002 F) \end{gathered}$
$\begin{gathered} 0 \times C 8 F A \\ \operatorname{VAR}(0 \times 12,0 \times 00 F A) \end{gathered}$	cam_awb_ccm_m_6	dddd dddd dddd dddd	$\begin{gathered} 9 \\ (0 \times 0009) \end{gathered}$
$\begin{gathered} 0 \times C 8 F C \\ \operatorname{VAR}(0 \times 12,0 \times 00 F C) \end{gathered}$	cam_awb_ccm_m_7	dddd dddd dddd dddd	$\begin{gathered} 65527 \\ (0 \times F F F 7) \end{gathered}$
$\begin{gathered} 0 \times C 8 F E \\ \operatorname{VAR}(0 \times 12,0 \times 00 F E) \end{gathered}$	cam_awb_ccm_m_8	dddd dddd dddd dddd	$\begin{gathered} 256 \\ (0 \times 0100) \end{gathered}$

Table 22. CAM CONTROL VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times C 900 \\ \operatorname{VAR}(0 \times 12,0 \times 0100) \end{gathered}$	cam_awb_ccm_r_0	dddd dddd dddd dddd	$\begin{gathered} 164 \\ (0 \times 00 \mathrm{~A} 4) \end{gathered}$
$\begin{gathered} 0 \times C 902 \\ \operatorname{VAR}(0 \times 12,0 \times 0102) \end{gathered}$	cam_awb_ccm_r_1	dddd dddd dddd dddd	$\begin{gathered} 75 \\ (0 \times 004 \mathrm{~B}) \end{gathered}$
$\begin{gathered} 0 \times C 904 \\ \operatorname{VAR}(0 \times 12,0 \times 0104) \end{gathered}$	cam_awb_ccm_r_2	dddd dddd dddd dddd	$\begin{gathered} 17 \\ (0 \times 0011) \end{gathered}$
$\begin{gathered} 0 \times C 906 \\ \operatorname{VAR}(0 \times 12,0 \times 0106) \end{gathered}$	cam_awb_ccm_r_3	dddd dddd dddd dddd	$\begin{gathered} 65512 \\ \text { (0xFFE8) } \end{gathered}$
$\begin{gathered} 0 \times C 908 \\ \operatorname{VAR}(0 \times 12,0 \times 0108) \end{gathered}$	cam_awb_ccm_r_4	dddd dddd dddd dddd	$\begin{gathered} 228 \\ (0 \times 00 E 4) \end{gathered}$
$\begin{gathered} 0 \times C 90 A \\ \operatorname{VAR}(0 \times 12,0 \times 010 A) \end{gathered}$	cam_awb_ccm_r_5	dddd dddd dddd dddd	$\begin{gathered} 52 \\ (0 \times 0034) \end{gathered}$
$\begin{gathered} 0 \times C 90 C \\ \operatorname{VAR}(0 \times 12,0 \times 010 C) \end{gathered}$	cam_awb_ccm_r_6	dddd dddd dddd dddd	$\begin{gathered} 10 \\ (0 \times 000 \mathrm{~A}) \end{gathered}$
$\begin{gathered} 0 \times C 90 E \\ \operatorname{VAR}(0 \times 12,0 \times 010 E) \end{gathered}$	cam_awb_ccm_r_7	dddd dddd dddd dddd	$\begin{gathered} 31 \\ (0 \times 001 F) \end{gathered}$
$\begin{gathered} 0 \times C 910 \\ \operatorname{VAR}(0 \times 12,0 \times 0110) \end{gathered}$	cam_awb_ccm_r_8	dddd dddd dddd dddd	$\begin{gathered} 216 \\ (0 \times 00 \mathrm{D} 8) \end{gathered}$
$\begin{gathered} 0 \times C 912 \\ \operatorname{VAR}(0 \times 12,0 \times 0112) \end{gathered}$	cam_awb_ccm_l_rg_gain	dddd dddd dddd dddd	$\begin{gathered} 91 \\ (0 \times 005 B) \end{gathered}$
$\begin{gathered} 0 \times C 914 \\ \operatorname{VAR}(0 \times 12,0 \times 0114) \end{gathered}$	cam_awb_ccm_l_bg_gain	dddd dddd dddd dddd	$\begin{gathered} 320 \\ (0 \times 0140) \end{gathered}$
$\begin{gathered} 0 \times C 916 \\ \operatorname{VAR}(0 \times 12,0 \times 0116) \end{gathered}$	cam_awb_ccm_m_rg_gain	dddd dddd dddd dddd	$\begin{gathered} 158 \\ (0 \times 009 \mathrm{E}) \end{gathered}$
$\begin{gathered} 0 \times C 918 \\ \operatorname{VAR}(0 \times 12,0 \times 0118) \end{gathered}$	cam_awb_ccm_m_bg_gain	dddd dddd dddd dddd	$\begin{gathered} 278 \\ (0 \times 0116) \end{gathered}$
$\begin{gathered} 0 \times C 91 \mathrm{~A} \\ \operatorname{VAR}(0 \times 12,0 \times 011 \mathrm{~A}) \end{gathered}$	cam_awb_ccm_r_rg_gain	dddd dddd dddd dddd	$\begin{gathered} 139 \\ (0 \times 008 B) \end{gathered}$
$\begin{gathered} 0 \times C 91 C \\ \operatorname{VAR}(0 \times 12,0 \times 011 C) \end{gathered}$	cam_awb_ccm_r_bg_gain	dddd dddd dddd dddd	$\begin{gathered} 175 \\ (0 x 00 A F) \end{gathered}$
$\begin{gathered} 0 \times C 91 E \\ \operatorname{VAR}(0 \times 12,0 \times 011 E) \end{gathered}$	cam_awb_ccm_l_ctemp	dddd dddd dddd dddd	$\begin{gathered} 2500 \\ (0 \times 09 \mathrm{C} 4) \end{gathered}$
$\begin{gathered} 0 \times C 920 \\ \operatorname{VAR}(0 \times 12,0 \times 0120) \end{gathered}$	cam_awb_ccm_m_ctemp	dddd dddd dddd dddd	$\begin{gathered} 3431 \\ (0 \times 0 D 67) \end{gathered}$
$\begin{gathered} 0 \times C 922 \\ \operatorname{VAR}(0 \times 12,0 \times 0122) \end{gathered}$	cam_awb_ccm_r_ctemp	dddd dddd dddd dddd	$\begin{gathered} 6500 \\ (0 \times 1964) \end{gathered}$
$\begin{gathered} 0 \times C 924 \\ \operatorname{VAR}(0 \times 12,0 \times 0124) \end{gathered}$	cam_awb_color_temperature_min	dddd dddd dddd dddd	$\begin{gathered} 2700 \\ (0 \times 0 A 8 C) \end{gathered}$
$\begin{gathered} 0 \times C 926 \\ \operatorname{VAR}(0 \times 12,0 \times 0126) \end{gathered}$	cam_awb_color_temperature_max	dddd dddd dddd dddd	$\begin{gathered} 6500 \\ (0 \times 1964) \end{gathered}$
$\begin{gathered} 0 \times C 928 \\ \text { VAR(0x12,0x0128) } \end{gathered}$	cam_awb_color_temperature	dddd dddd dddd dddd	$\begin{gathered} 6500 \\ (0 \times 1964) \end{gathered}$
$\begin{gathered} 0 \times C 92 A \\ \operatorname{VAR}(0 \times 12,0 \times 012 A) \end{gathered}$	cam_awb_x_shift	dddd dddd dddd dddd	$\begin{gathered} 36 \\ (0 \times 0024) \end{gathered}$
$\begin{gathered} 0 \times C 92 C \\ \operatorname{VAR}(0 \times 12,0 \times 012 C) \end{gathered}$	cam_awb_y_shift	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
$\begin{gathered} 0 \times C 92 E \\ \operatorname{VAR}(0 \times 12,0 \times 012 E) \end{gathered}$	cam_awb_recip_x_scale	dddd dddd dddd dddd	$\begin{gathered} 156 \\ (0 \times 009 \mathrm{C}) \end{gathered}$
$\begin{gathered} 0 \times C 930 \\ \operatorname{VAR}(0 \times 12,0 \times 0130) \end{gathered}$	cam_awb_recip_y_scale	dddd dddd dddd dddd	$\begin{gathered} 68 \\ (0 \times 0044) \end{gathered}$
$\begin{gathered} 0 \times C 932 \\ \operatorname{VAR}(0 \times 12,0 \times 0132) \end{gathered}$	cam_awb_rot_center_x	dddd dddd dddd dddd	$\begin{gathered} 7 \\ (0 \times 0007) \end{gathered}$

Table 22. CAM CONTROL VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times C 934 \\ \operatorname{VAR}(0 \times 12,0 \times 0134) \end{gathered}$	cam_awb_rot_center_y	dddd dddd dddd dddd	$\begin{gathered} 65503 \\ \text { (0xFFDF) } \end{gathered}$
$\begin{gathered} 0 \times C 936 \\ \operatorname{VAR}(0 \times 12,0 \times 0136) \end{gathered}$	cam_awb_rot_sin	dddd dddd	$\begin{gathered} 63 \\ (0 \times 3 F) \end{gathered}$
$\begin{gathered} 0 \times C 937 \\ \text { VAR(0x12,0x0137) } \end{gathered}$	cam_awb_rot_cos	dddd dddd	$\begin{gathered} 10 \\ (0 \times 0 \mathrm{~A}) \end{gathered}$
$\begin{gathered} 0 \times C 938 \\ \operatorname{VAR}(0 \times 12,0 \times 0138) \end{gathered}$	cam_awb_weight_table_0	dddd dddd dddd dddd	$\begin{gathered} 4369 \\ (0 \times 1111) \end{gathered}$
$\begin{gathered} 0 \times C 93 A \\ \operatorname{VAR}(0 \times 12,0 \times 013 A) \end{gathered}$	cam_awb_weight_table_1	dddd dddd dddd dddd	$\begin{gathered} 4369 \\ (0 \times 1111) \end{gathered}$
$\begin{gathered} 0 \times C 93 C \\ \operatorname{VAR}(0 \times 12,0 \times 013 C) \end{gathered}$	cam_awb_weight_table_2	dddd dddd dddd dddd	$\begin{gathered} 8738 \\ (0 \times 2222) \end{gathered}$
$\begin{gathered} 0 \times C 93 E \\ \operatorname{VAR}(0 \times 12,0 \times 013 E) \end{gathered}$	cam_awb_weight_table_3	dddd dddd dddd dddd	$\begin{gathered} 4369 \\ (0 \times 1111) \end{gathered}$
$\begin{gathered} 0 \times C 940 \\ \operatorname{VAR}(0 \times 12,0 \times 0140) \end{gathered}$	cam_awb_weight_table_4	dddd dddd dddd dddd	$\begin{gathered} 4642 \\ (0 \times 1222) \end{gathered}$
$\begin{gathered} 0 \times C 942 \\ \operatorname{VAR}(0 \times 12,0 \times 0142) \end{gathered}$	cam_awb_weight_table_5	dddd dddd dddd dddd	$\begin{gathered} 8739 \\ (0 \times 2223) \end{gathered}$
$\begin{gathered} 0 \times C 944 \\ \operatorname{VAR}(0 \times 12,0 \times 0144) \end{gathered}$	cam_awb_weight_table_6	dddd dddd dddd dddd	$\begin{gathered} 17749 \\ (0 \times 4555) \end{gathered}$
$\begin{gathered} 0 \times C 946 \\ \operatorname{VAR}(0 \times 12,0 \times 0146) \end{gathered}$	cam_awb_weight_table_7	dddd dddd dddd dddd	$\begin{gathered} 8737 \\ (0 \times 2221) \end{gathered}$
$\begin{gathered} 0 \times C 948 \\ \operatorname{VAR}(0 \times 12,0 \times 0148) \end{gathered}$	cam_awb_weight_table_8	dddd dddd dddd dddd	$\begin{gathered} 9318 \\ (0 \times 2466) \end{gathered}$
$\begin{gathered} 0 \times C 94 A \\ \operatorname{VAR}(0 \times 12,0 \times 014 \mathrm{~A}) \end{gathered}$	cam_awb_weight_table_9	dddd dddd dddd dddd	$\begin{gathered} 26196 \\ (0 \times 6654) \end{gathered}$
$\begin{gathered} 0 \times C 94 C \\ \operatorname{VAR}(0 \times 12,0 \times 014 C) \end{gathered}$	cam_awb_weight_table_10	dddd dddd dddd dddd	$\begin{gathered} 12852 \\ (0 \times 3234) \end{gathered}$
$\begin{gathered} 0 x C 94 E \\ \operatorname{VAR}(0 \times 12,0 \times 014 \mathrm{E}) \end{gathered}$	cam_awb_weight_table_11	dddd dddd dddd dddd	$\begin{gathered} 13394 \\ (0 \times 3452) \end{gathered}$
$\begin{gathered} 0 \times C 950 \\ \operatorname{VAR}(0 \times 12,0 \times 0150) \end{gathered}$	cam_awb_weight_table_12	dddd dddd dddd dddd	$\begin{gathered} 9591 \\ (0 \times 2577) \end{gathered}$
$\begin{gathered} 0 \times C 952 \\ \operatorname{VAR}(0 \times 12,0 \times 0152) \end{gathered}$	cam_awb_weight_table_13	dddd dddd dddd dddd	$\begin{gathered} 26468 \\ (0 \times 6764) \end{gathered}$
$\begin{gathered} 0 \times C 954 \\ \operatorname{VAR}(0 \times 12,0 \times 0154) \end{gathered}$	cam_awb_weight_table_14	dddd dddd dddd dddd	$\begin{gathered} 8722 \\ (0 \times 2212) \end{gathered}$
$\begin{gathered} 0 \times C 956 \\ \operatorname{VAR}(0 \times 12,0 \times 0156) \end{gathered}$	cam_awb_weight_table_15	dddd dddd dddd dddd	$\begin{gathered} 9554 \\ (0 \times 2552) \end{gathered}$
$\begin{gathered} 0 \times C 958 \\ \operatorname{VAR}(0 \times 12,0 \times 0158) \end{gathered}$	cam_awb_weight_table_16	dddd dddd dddd dddd	$\begin{gathered} 4948 \\ (0 \times 1354) \end{gathered}$
$\begin{gathered} 0 \times C 95 A \\ \text { VAR(0x12,0x015A) } \end{gathered}$	cam_awb_weight_table_17	dddd dddd dddd dddd	$\begin{gathered} 17765 \\ (0 \times 4565) \end{gathered}$
$\begin{gathered} 0 \times C 95 C \\ \operatorname{VAR}(0 \times 12,0 \times 015 C) \end{gathered}$	cam_awb_weight_table_18	dddd dddd dddd dddd	$\begin{gathered} 17442 \\ (0 \times 4422) \end{gathered}$
$\begin{gathered} 0 x C 95 E \\ \operatorname{VAR}(0 \times 12,0 \times 015 E) \end{gathered}$	cam_awb_weight_table_19	dddd dddd dddd dddd	$\begin{gathered} 9009 \\ (0 \times 2331) \end{gathered}$
$\begin{gathered} 0 \times C 960 \\ \operatorname{VAR}(0 \times 12,0 \times 0160) \end{gathered}$	cam_awb_weight_table_20	dddd dddd dddd dddd	$\begin{gathered} 4386 \\ (0 \times 1122) \end{gathered}$
$\begin{gathered} 0 \times C 962 \\ \operatorname{VAR}(0 \times 12,0 \times 0162) \end{gathered}$	cam_awb_weight_table_21	dddd dddd dddd dddd	$\begin{gathered} 4660 \\ (0 \times 1234) \end{gathered}$
$\begin{gathered} 0 \times C 964 \\ \operatorname{VAR}(0 \times 12,0 \times 0164) \end{gathered}$	cam_awb_weight_table_22	dddd dddd dddd dddd	$\begin{gathered} 13109 \\ (0 \times 3335) \end{gathered}$

Table 22. CAM CONTROL VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times C 966 \\ \operatorname{VAR}(0 \times 12,0 \times 0166) \end{gathered}$	cam_awb_weight_table_23	dddd dddd dddd dddd	$\begin{gathered} 26194 \\ (0 \times 6652) \end{gathered}$
$\begin{gathered} \hline 0 \times C 968 \\ \operatorname{VAR}(0 \times 12,0 \times 0168) \end{gathered}$	cam_awb_weight_table_24	dddd dddd dddd dddd	$\begin{gathered} \hline 4369 \\ (0 \times 1111) \end{gathered}$
$\begin{gathered} 0 \times C 96 A \\ \operatorname{VAR}(0 \times 12,0 \times 016 A) \end{gathered}$	cam_awb_weight_table_25	dddd dddd dddd dddd	$\begin{gathered} 4370 \\ (0 \times 1112) \end{gathered}$
$\begin{gathered} 0 \times C 96 C \\ \operatorname{VAR}(0 \times 12,0 \times 016 \mathrm{C}) \end{gathered}$	cam_awb_weight_table_26	dddd dddd dddd dddd	$\begin{gathered} 4644 \\ (0 \times 1224) \end{gathered}$
$\begin{gathered} 0 \times C 96 E \\ \operatorname{VAR}(0 \times 12,0 \times 016 E) \end{gathered}$	cam_awb_weight_table_27	dddd dddd dddd dddd	$\begin{gathered} 22098 \\ (0 \times 5652) \end{gathered}$
$\begin{gathered} \hline 0 \times C 970 \\ \operatorname{VAR}(0 \times 12,0 \times 0170) \end{gathered}$	cam_awb_weight_table_28	dddd dddd dddd dddd	$\begin{gathered} \hline 4369 \\ (0 \times 1111) \end{gathered}$
$\begin{gathered} \hline 0 \times C 972 \\ \operatorname{VAR}(0 \times 12,0 \times 0172) \end{gathered}$	cam_awb_weight_table_29	dddd dddd dddd dddd	$\begin{gathered} 4369 \\ (0 \times 1111) \end{gathered}$
$\begin{gathered} 0 \times C 974 \\ \operatorname{VAR}(0 \times 12,0 \times 0174) \end{gathered}$	cam_awb_weight_table_30	dddd dddd dddd dddd	$\begin{gathered} 4370 \\ (0 \times 1112) \end{gathered}$
$\begin{gathered} 0 \times C 976 \\ \operatorname{VAR}(0 \times 12,0 \times 0176) \end{gathered}$	cam_awb_weight_table_31	dddd dddd dddd dddd	$\begin{gathered} 9010 \\ (0 \times 2332) \end{gathered}$
$\begin{gathered} 0 \times C 979 \\ \operatorname{VAR}(0 \times 12,0 \times 0179) \end{gathered}$	cam_awb_luma_thresh_low	dddd dddd	$\begin{gathered} 16 \\ (0 \times 10) \end{gathered}$
$\begin{gathered} \hline 0 \times C 97 A \\ \operatorname{VAR}(0 \times 12,0 \times 017 \mathrm{~A}) \end{gathered}$	cam_awb_luma_thresh_high	dddd dddd	$\begin{gathered} 240 \\ (0 \times F 0) \end{gathered}$
$\begin{gathered} 0 \times C 97 B \\ \operatorname{VAR}(0 \times 12,0 \times 017 B) \end{gathered}$	cam_awb_weight_thresh_low	dddd dddd	$\begin{gathered} 1 \\ (0 \times 01) \end{gathered}$
$\begin{gathered} 0 \times C 97 D \\ \operatorname{VAR}(0 \times 12,0 \times 017 \mathrm{D}) \end{gathered}$	cam_awb_mode	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times C 980 \\ \operatorname{VAR}(0 \times 12,0 \times 0180) \end{gathered}$	cam_awb_tints_ctemp_threshold	dddd dddd dddd dddd	$\begin{gathered} 3500 \\ \text { (0xODAC) } \end{gathered}$
$\begin{gathered} 0 \times C 982 \\ \operatorname{VAR}(0 \times 12,0 \times 0182) \end{gathered}$	cam_awb_k_r_l	dddd dddd	$\begin{gathered} 128 \\ (0 \times 80) \end{gathered}$
$\begin{gathered} 0 \times C 983 \\ \operatorname{VAR}(0 \times 12,0 \times 0183) \end{gathered}$	cam_awb_k_g_l	dddd dddd	$\begin{gathered} \hline 128 \\ (0 \times 80) \end{gathered}$
$\begin{gathered} \hline 0 \times C 984 \\ \operatorname{VAR}(0 \times 12,0 \times 0184) \end{gathered}$	cam_awb_k_b_l	dddd dddd	$\begin{gathered} 128 \\ (0 \times 80) \end{gathered}$
$\begin{gathered} 0 \times C 985 \\ \operatorname{VAR}(0 \times 12,0 \times 0185) \end{gathered}$	cam_awb_k_r_r	dddd dddd	$\begin{gathered} 128 \\ (0 \times 80) \end{gathered}$
$\begin{gathered} \hline 0 \times C 986 \\ \operatorname{VAR}(0 \times 12,0 \times 0186) \end{gathered}$	cam_awb_k_g_r	dddd dddd	$\begin{gathered} \hline 128 \\ (0 \times 80) \end{gathered}$
$\begin{gathered} 0 \times C 987 \\ \operatorname{VAR}(0 \times 12,0 \times 0187) \end{gathered}$	cam_awb_k_b_r	dddd dddd	$\begin{gathered} 128 \\ (0 \times 80) \end{gathered}$
$\begin{gathered} \hline 0 \times C 988 \\ \operatorname{VAR}(0 \times 12,0 \times 0188) \end{gathered}$	cam_altm_mode	dddd dddd dddd dddd	$\begin{gathered} \hline 7 \\ (0 \times 0007) \end{gathered}$
$\begin{gathered} 0 \times C 98 A \\ \operatorname{VAR}(0 \times 12,0 \times 018 \mathrm{~A}) \end{gathered}$	cam_altm_key_k0	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
$\begin{gathered} 0 \times C 98 C \\ \operatorname{VAR}(0 \times 12,0 \times 018 \mathrm{C}) \end{gathered}$	cam_altm_key_k1	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} 0 \times C 990 \\ \operatorname{VAR}(0 \times 12,0 \times 0190) \end{gathered}$	cam_altm_lo_gamma	dddd dddd dddd dddd	$\begin{gathered} 16 \\ (0 \times 0010) \end{gathered}$
$\begin{gathered} 0 \times C 992 \\ \operatorname{VAR}(0 \times 12,0 \times 0192) \end{gathered}$	cam_altm_hi_gamma	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
$\begin{gathered} \hline 0 \times C 994 \\ \operatorname{VAR}(0 \times 12,0 \times 0194) \end{gathered}$	cam_altm_k1_slope	dddd dddd dddd dddd	$\begin{gathered} 175 \\ \text { (0x00AF) } \end{gathered}$

Table 22. CAM CONTROL VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times C 996 \\ \operatorname{VAR}(0 \times 12,0 \times 0196) \end{gathered}$	cam_altm_k1_min	dddd dddd dddd dddd	$\begin{gathered} 1024 \\ (0 \times 0400) \end{gathered}$
$\begin{gathered} 0 \times C 998 \\ \operatorname{VAR}(0 \times 12,0 \times 0198) \end{gathered}$	cam_altm_k1_max	dddd dddd dddd dddd	$\begin{gathered} 65535 \\ (0 x F F F F) \end{gathered}$
$\begin{gathered} 0 \times C 99 A \\ \operatorname{VAR}(0 \times 12,0 \times 019 A) \end{gathered}$	cam_altm_dark_bm	dddd dddd dddd dddd	$\begin{gathered} 1024 \\ (0 \times 0400) \end{gathered}$
$\begin{gathered} 0 \times C 99 C \\ \operatorname{VAR}(0 \times 12,0 \times 019 \mathrm{C}) \end{gathered}$	cam_altm_bright_bm	dddd dddd dddd dddd	$\begin{gathered} 2048 \\ (0 \times 0800) \end{gathered}$
$\begin{gathered} 0 \times C 99 E \\ \operatorname{VAR}(0 \times 12,0 \times 019 E) \end{gathered}$	cam_altm_k1_damping_speed	dddd dddd dddd dddd	$\begin{gathered} 1 \\ (0 \times 0001) \end{gathered}$
$\begin{gathered} 0 \times C 9 A 0 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{AO}) \end{gathered}$	cam_altm_sharpness_dark_bm	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
$\begin{gathered} 0 \times C 9 A 2 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{~A} 2) \end{gathered}$	cam_altm_sharpness_bright_bm	dddd dddd dddd dddd	$\begin{aligned} & 2900 \\ & \text { (0x0B54) } \end{aligned}$
$\begin{gathered} 0 \times C 9 A 4 \\ \operatorname{VAR}(0 \times 12,0 \times 01 A 4) \end{gathered}$	cam_altm_sharpness_strength_dark	dddd dddd dddd dddd	$\begin{gathered} 5 \\ (0 \times 0005) \end{gathered}$
$\begin{gathered} \hline 0 \times C 9 A 6 \\ \operatorname{VAR}(0 \times 12,0 \times 01 A 6) \end{gathered}$	cam_altm_sharpness_strength_bright	dddd dddd dddd dddd	$\begin{gathered} 8 \\ (0 \times 0008) \end{gathered}$
$\begin{gathered} 0 \times C 9 A 8 \\ \operatorname{VAR}(0 \times 12,0 \times 01 A 8) \end{gathered}$	cam_stat_mode	dddd dddd dddd dddd	$\begin{gathered} 30 \\ (0 \times 001 \mathrm{E}) \end{gathered}$
$\begin{gathered} 0 \times C 9 A A \\ \operatorname{VAR}(0 \times 12,0 \times 01 A A) \end{gathered}$	cam_stat_control	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 9 A C \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{AC}) \end{gathered}$	cam_stat_exclude_control	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} \hline 0 \times C 9 B 0 \\ \operatorname{VAR}(0 \times 12,0 \times 01 B 0) \end{gathered}$	cam_stat_exclude_window_x_offset	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 9 B 2 \\ \operatorname{VAR}(0 \times 12,0 \times 01 B 2) \end{gathered}$	cam_stat_exclude_window_y_offset	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 9 B 4 \\ \operatorname{VAR}(0 \times 12,0 \times 01 B 4) \end{gathered}$	cam_stat_exclude_window_width	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 9 B 6 \\ \operatorname{VAR}(0 \times 12,0 \times 01 B 6) \end{gathered}$	cam_stat_exclude_window_height	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 9 B 8 \\ \operatorname{VAR}(0 \times 12,0 \times 01 B 8) \end{gathered}$	cam_stat_ae_altm_fd_window_x_offset	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times C 9 B A \\ \operatorname{VAR}(0 \times 12,0 \times 01 B A) \end{gathered}$	cam_stat_ae_altm_fd_window_y_offset	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 9 B C \\ \operatorname{VAR}(0 \times 12,0 \times 01 B C) \end{gathered}$	cam_stat_ae_altm_fd_window_width	dddd dddd dddd dddd	$\begin{gathered} 1280 \\ (0 \times 0500) \end{gathered}$
$\begin{gathered} 0 \times C 9 B E \\ \operatorname{VAR}(0 \times 12,0 \times 01 B E) \end{gathered}$	cam_stat_ae_altm_fd_window_height	dddd dddd dddd dddd	$\begin{gathered} 960 \\ (0 \times 03 \mathrm{C}) \end{gathered}$
$\begin{gathered} 0 \times C 9 C 0 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{C} 0) \end{gathered}$	cam_stat_awb_clip_window_x_offset	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 9 C 2 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{C} 2) \end{gathered}$	cam_stat_awb_clip_window_y_offset	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 9 C 4 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{C} 4) \end{gathered}$	cam_stat_awb_clip_window_width	dddd dddd dddd dddd	$\begin{gathered} 1280 \\ (0 \times 0500) \end{gathered}$
$\begin{gathered} 0 \times C 9 C 6 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{C} 6) \end{gathered}$	cam_stat_awb_clip_window_height	dddd dddd dddd dddd	$\begin{gathered} 960 \\ (0 \times 03 \mathrm{C}) \end{gathered}$
$\begin{gathered} 0 \times C 9 C 8 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{C} 8) \end{gathered}$	cam_ll_mode	dddd dddd dddd dddd	$\stackrel{3}{(0 \times 0003)}$
$\begin{gathered} 0 \times C 9 C A \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{CA}) \end{gathered}$	cam_l_brightness_metric	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 22. CAM CONTROL VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times C 9 C C \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{CC}) \end{gathered}$	cam_ll_bm_offset	dddd dddd dddd dddd	$\begin{gathered} 63744 \\ (0 \times F 900) \end{gathered}$
$\begin{gathered} \hline 0 \times C 9 C E \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{CE}) \end{gathered}$	cam_॥_sensor_red_gain_metric	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 9 D 0 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{D}) \end{gathered}$	cam_ll_sensor_green_gain_metric	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times C 9 D 2 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{D} 2) \end{gathered}$	cam_ll_sensor_blue_gain_metric	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 9 D 4 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{D} 4) \end{gathered}$	cam_ll_red_gain_metric	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 9 D 6 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{D} 6) \end{gathered}$	cam_ll_green_gain_metric	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 9 D 8 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{D} 8) \end{gathered}$	cam_ll_blue_gain_metric	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times C 9 D A \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{DA}) \end{gathered}$	cam_ll_snr_metric	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C 9 D C \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{DC}) \end{gathered}$	cam_ll_dark_bm	dddd dddd dddd dddd	$\begin{gathered} 500 \\ (0 \times 01 \mathrm{~F} 4) \end{gathered}$
$\begin{gathered} 0 \times C 9 D E \\ \operatorname{VAR}(0 \times 12,0 \times 01 D E) \end{gathered}$	cam_ll_bright_bm	dddd dddd dddd dddd	$\begin{gathered} 3000 \\ \text { (0x0BB8) } \end{gathered}$
$\begin{gathered} 0 \times C 9 E 0 \\ \operatorname{VAR}(0 \times 12,0 \times 01 E 0) \end{gathered}$	cam_ll_high_gm	dddd dddd dddd dddd	$\begin{gathered} 3520 \\ (0 \times 0 D C 0) \end{gathered}$
$\begin{gathered} \hline 0 \times C 9 E 2 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{E} 2) \end{gathered}$	cam_ll_low_gm	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
$\begin{gathered} 0 \times C 9 E 6 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{E} 6) \end{gathered}$	cam_ll_demosaic_high	dddd dddd	$\begin{gathered} 77 \\ (0 \times 4 \mathrm{D}) \end{gathered}$
$\begin{gathered} 0 \times C 9 E 7 \\ \operatorname{VAR}(0 \times 12,0 \times 01 E 7) \end{gathered}$	cam_Il_demosaic_low	dddd dddd	$\begin{gathered} 8 \\ (0 \times 08) \end{gathered}$
$\begin{gathered} 0 \times C 9 E 8 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{E} 8) \end{gathered}$	cam_ll_ap_gain_dark	dddd dddd	$\begin{gathered} 1 \\ (0 \times 01) \end{gathered}$
$\begin{gathered} 0 \times C 9 E 9 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{E} 9) \end{gathered}$	cam_ll_ap_gain_bright	dddd dddd	$\begin{gathered} 2 \\ (0 \times 02) \end{gathered}$
$\begin{gathered} 0 \times C 9 E A \\ \operatorname{VAR}(0 \times 12,0 \times 01 E A) \end{gathered}$	cam_ll_ap_thresh_high	dddd dddd	$\begin{gathered} 77 \\ (0 \times 4 \mathrm{D}) \end{gathered}$
$\begin{gathered} 0 \times C 9 E B \\ \operatorname{VAR}(0 \times 12,0 \times 01 E B) \end{gathered}$	cam_ll_ap_thresh_low	dddd dddd	$\begin{gathered} 8 \\ (0 \times 08) \end{gathered}$
$\begin{gathered} 0 \times C 9 E C \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{EC}) \end{gathered}$	cam_ll_contrast_bright_bm	dddd dddd dddd dddd	$\begin{gathered} 3000 \\ \text { (0x0BB8) } \end{gathered}$
$\begin{gathered} 0 \times C 9 E E \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{EE}) \end{gathered}$	cam_ll_contrast_dark_bm	dddd dddd dddd dddd	$\begin{gathered} 500 \\ (0 \times 01 \mathrm{~F} 4) \end{gathered}$
$\begin{gathered} 0 \times C 9 F 0 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{FO}) \end{gathered}$	cam_ll_gamma	dddd dddd dddd dddd	$\begin{gathered} 100 \\ (0 \times 0064) \end{gathered}$
$\begin{gathered} \hline 0 \times C 9 F 2 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{~F} 2) \end{gathered}$	cam_ll_contrast_gradient_bright	dddd dddd	$\begin{gathered} 32 \\ (0 \times 20) \end{gathered}$
$\begin{gathered} 0 \times C 9 F 3 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{~F} 3) \end{gathered}$	cam_Il_contrast_gradient_dark	dddd dddd	$\begin{gathered} 32 \\ (0 \times 20) \end{gathered}$
$\begin{gathered} 0 \times C 9 F 4 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{~F} 4) \end{gathered}$	cam_ll_contrast_intercept_point_bright	dddd dddd	$\begin{gathered} 60 \\ (0 \times 3 C) \end{gathered}$
$\begin{gathered} 0 \times C 9 F 5 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{~F} 5) \end{gathered}$	cam_II_contrast_intercept_point_dark	dddd dddd	$\begin{gathered} 40 \\ (0 \times 28) \end{gathered}$
$\begin{gathered} 0 \times C 9 F 6 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{~F} 6) \end{gathered}$	cam_ll_bright_fade_to_black_luma	dddd dddd dddd dddd	$\begin{gathered} 16 \\ (0 \times 0010) \end{gathered}$

Table 22. CAM CONTROL VARIABLES LIST (continued)
(1 = Read-Only, Always 1; $0=$ Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times C 9 F 8 \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{~F} 8) \end{gathered}$	cam_ll_dark_fade_to_black_luma	dddd dddd dddd dddd	$\begin{gathered} \hline 1 \\ (0 \times 0001) \end{gathered}$
$\begin{gathered} \hline 0 \times C 9 F A \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{FA}) \end{gathered}$	cam_ll_sdc_dp_dark_bm	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
$\begin{gathered} 0 \times C 9 F C \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{FC}) \end{gathered}$	cam_II_sdc_dp_bright_bm	dddd dddd dddd dddd	$\begin{gathered} 2900 \\ \text { (0x0B54) } \end{gathered}$
$\begin{gathered} 0 \times C 9 F E \\ \operatorname{VAR}(0 \times 12,0 \times 01 \mathrm{FE}) \end{gathered}$	cam_ll_sdc_dp_strength_dark	dddd dddd	$\begin{gathered} 8 \\ (0 \times 08) \end{gathered}$
$\begin{gathered} 0 \times C 9 F F \\ \operatorname{VAR}(0 \times 12,0 \times 01 F F) \end{gathered}$	cam_ll_sdc_dp_strength_bright	dddd dddd	$\begin{gathered} 15 \\ (0 \times 0 F) \end{gathered}$
$\begin{gathered} 0 \times C A 00 \\ \operatorname{VAR}(0 \times 12,0 \times 0200) \end{gathered}$	cam_ll_sdc_hp_dark_bm	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
$\begin{gathered} 0 \times C A 02 \\ \operatorname{VAR}(0 \times 12,0 \times 0202) \end{gathered}$	cam_ll_sdc_hp_bright_bm	dddd dddd dddd dddd	$\begin{gathered} 2900 \\ (0 \times 0 B 54) \end{gathered}$
$\begin{gathered} 0 \times C A 04 \\ \operatorname{VAR}(0 \times 12,0 \times 0204) \end{gathered}$	cam_ll_sdc_hp_strength_dark	dddd dddd	$\begin{gathered} 8 \\ (0 \times 08) \end{gathered}$
$\begin{gathered} 0 \times C A 05 \\ \operatorname{VAR}(0 \times 12,0 \times 0205) \end{gathered}$	cam_ll_sdc_hp_strength_bright	dddd dddd	$\begin{gathered} 15 \\ (0 \times 0 \mathrm{~F}) \end{gathered}$
$\begin{gathered} 0 \times C A 06 \\ \operatorname{VAR}(0 \times 12,0 \times 0206) \end{gathered}$	cam_ll_sdc_crossfactor_dark_bm	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
$\begin{gathered} 0 \times C A 08 \\ \operatorname{VAR}(0 \times 12,0 \times 0208) \end{gathered}$	cam_॥_sdc_crossfactor_bright_bm	dddd dddd dddd dddd	$\begin{gathered} 2900 \\ \text { (0x0B54) } \end{gathered}$
$\begin{gathered} \hline 0 \times C A O A \\ \operatorname{VAR}(0 \times 12,0 \times 020 A) \end{gathered}$	cam_ll_sdc_crossfactor_strength_dark	dddd dddd	$\begin{gathered} 4 \\ (0 \times 04) \end{gathered}$
$\begin{gathered} 0 \times C A O B \\ \operatorname{VAR}(0 \times 12,0 \times 020 B) \end{gathered}$	cam_ll_sdc_crossfactor_strength_bright	dddd dddd	$\begin{gathered} 12 \\ (0 \times 0 \mathrm{C}) \end{gathered}$
$\begin{gathered} 0 \times C A 0 C \\ \operatorname{VAR}(0 \times 12,0 \times 020 \mathrm{C}) \end{gathered}$	cam_ll_sdc_maxfactor_dark_bm	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
$\begin{gathered} 0 \times C A 0 E \\ \operatorname{VAR}(0 \times 12,0 \times 020 E) \end{gathered}$	cam_II_sdc_maxfactor_bright_bm	dddd dddd dddd dddd	$\begin{gathered} 2900 \\ (0 \times 0 B 54) \end{gathered}$
$\begin{gathered} 0 \times C A 10 \\ \operatorname{VAR}(0 \times 12,0 \times 0210) \end{gathered}$	cam_II_sdc_maxfactor_strength_dark	dddd dddd	$\begin{gathered} 1 \\ (0 \times 01) \end{gathered}$
$\begin{gathered} 0 \times C A 11 \\ \operatorname{VAR}(0 \times 12,0 \times 0211) \end{gathered}$	cam_ll_sdc_maxfactor_strength_bright	dddd dddd	$\begin{gathered} 1 \\ (0 \times 01) \end{gathered}$
$\begin{gathered} 0 \times C A 12 \\ \operatorname{VAR}(0 \times 12,0 \times 0212) \end{gathered}$	cam_ll_sdc_th_bm	dddd dddd dddd dddd	$\begin{gathered} 4096 \\ (0 \times 1000) \end{gathered}$
$\begin{gathered} 0 \times C A 16 \\ \operatorname{VAR}(0 \times 12,0 \times 0216) \end{gathered}$	cam_ll_cdc_dp_dark_bm	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
$\begin{gathered} 0 \times C A 18 \\ \operatorname{VAR}(0 \times 12,0 \times 0218) \end{gathered}$	cam_ll_cdc_dp_bright_bm	dddd dddd dddd dddd	$\begin{gathered} 2900 \\ \text { (0x0B54) } \end{gathered}$
$\begin{gathered} 0 \times C A 1 A \\ \operatorname{VAR}(0 \times 12,0 \times 021 \mathrm{~A}) \end{gathered}$	cam_ll_cdc_dp_strength_dark	dddd dddd	$\begin{gathered} 8 \\ (0 \times 08) \end{gathered}$
$\begin{gathered} 0 \times C A 1 B \\ \operatorname{VAR}(0 \times 12,0 \times 021 B) \end{gathered}$	cam_ll_cdc_dp_strength_bright	dddd dddd	$\begin{gathered} 15 \\ (0 \times 0 \mathrm{~F}) \end{gathered}$
$\begin{gathered} 0 \times C A 1 C \\ \operatorname{VAR}(0 \times 12,0 \times 021 \mathrm{C}) \end{gathered}$	cam_ll_cdc_hp_dark_bm	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
$\begin{gathered} 0 \times C A 1 E \\ \operatorname{VAR}(0 \times 12,0 \times 021 E) \end{gathered}$	cam_ll_cdc_hp_bright_bm	dddd dddd dddd dddd	$\begin{gathered} 2900 \\ \text { (0x0B54) } \end{gathered}$
$\begin{gathered} 0 \times C A 20 \\ \operatorname{VAR}(0 \times 12,0 \times 0220) \end{gathered}$	cam_ll_cdc_hp_strength_dark	dddd dddd	$\begin{gathered} 8 \\ (0 \times 08) \end{gathered}$
$\begin{gathered} \hline 0 \times C A 21 \\ \operatorname{VAR}(0 \times 12,0 \times 0221) \end{gathered}$	cam_ll_cdc_hp_strength_bright	dddd dddd	$\begin{gathered} 15 \\ (0 \times 0 \mathrm{~F}) \end{gathered}$

Table 22. CAM CONTROL VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times C A 22 \\ \text { VAR(0x12,0x0222) } \end{gathered}$	cam_II_cdc_crossfactor_dark_bm	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
$\begin{gathered} 0 \times C A 24 \\ \operatorname{VAR}(0 \times 12,0 \times 0224) \end{gathered}$	cam_॥_cdc_crossfactor_bright_bm	dddd dddd dddd dddd	$\begin{gathered} 2900 \\ (0 \times 0 B 54) \end{gathered}$
$\begin{gathered} 0 \times C A 26 \\ \text { VAR(0x12,0x0226) } \end{gathered}$	cam_ll_cdc_crossfactor_strength_dark	dddd dddd	$\begin{gathered} 4 \\ (0 \times 04) \end{gathered}$
$\begin{gathered} 0 \times C A 27 \\ \operatorname{VAR}(0 \times 12,0 \times 0227) \end{gathered}$	cam_ll_cdc_crossfactor_strength_bright	dddd dddd	$\begin{gathered} 12 \\ (0 \times 0 \mathrm{C}) \end{gathered}$
$\begin{gathered} 0 \times C A 28 \\ \operatorname{VAR}(0 \times 12,0 \times 0228) \end{gathered}$	cam_ll_cdc_th_bm	dddd dddd dddd dddd	$\begin{gathered} 4096 \\ (0 \times 1000) \end{gathered}$
$\begin{gathered} 0 \times C A 2 C \\ \operatorname{VAR}(0 \times 12,0 \times 022 C) \end{gathered}$	cam_II_adacd_gr_weights_strength_low	dddd dddd dddd dddd	$\begin{gathered} 6 \\ (0 \times 0006) \end{gathered}$
$\begin{gathered} 0 \times C A 2 E \\ \operatorname{VAR}(0 \times 12,0 \times 022 E) \end{gathered}$	cam_ll_adacd_gr_weights_strength_high	dddd dddd dddd dddd	$\begin{gathered} 3 \\ (0 \times 0003) \end{gathered}$
$\begin{gathered} 0 \times C A 30 \\ \operatorname{VAR}(0 \times 12,0 \times 0230) \end{gathered}$	cam_ll_adacd_gr_weights_low_snr	dddd dddd dddd dddd	$\begin{gathered} 1000 \\ (0 x 03 E 8) \end{gathered}$
$\begin{gathered} 0 \times C A 32 \\ \text { VAR(0x12,0x0232) } \end{gathered}$	cam_ll_adacd_gr_weights_high_snr	dddd dddd dddd dddd	$\begin{gathered} 3328 \\ (0 x 0 D 00) \end{gathered}$
$\begin{gathered} 0 \times C A 34 \\ \text { VAR(0x12,0x0234) } \end{gathered}$	cam_ll_nr_lut_0_gain	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
$\begin{gathered} 0 \times C A 36 \\ \text { VAR(0x12,0x0236) } \end{gathered}$	cam_ll_nr_lut_0_sigma	dddd dddd dddd dddd	$\begin{gathered} 52 \\ (0 \times 0034) \end{gathered}$
$\begin{gathered} 0 \times C A 38 \\ \text { VAR(0x12,0×0238) } \end{gathered}$	cam_II_nr_lut_0_k0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
$\begin{gathered} 0 \times C A 3 C \\ \operatorname{VAR}(0 \times 12,0 \times 023 C) \end{gathered}$	cam_ll_nr_lut_1_gain	dddd dddd dddd dddd	$\begin{gathered} 88 \\ (0 \times 0058) \end{gathered}$
$\begin{gathered} 0 \times C A 3 E \\ \operatorname{VAR}(0 \times 12,0 \times 023 E) \end{gathered}$	cam_ll_nr_lut_1_sigma	dddd dddd dddd dddd	$\begin{gathered} 55 \\ (0 \times 0037) \end{gathered}$
$\begin{gathered} 0 \times C A 40 \\ \text { VAR(0x12,0x0240) } \end{gathered}$	cam_II_nr_lut_1_k0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
$\begin{gathered} 0 \times C A 44 \\ \operatorname{VAR}(0 \times 12,0 \times 0244) \end{gathered}$	cam_ll_nr_lut_2_gain	dddd dddd dddd dddd	$\begin{gathered} 352 \\ (0 \times 0160) \end{gathered}$
$\begin{gathered} 0 \times C A 46 \\ \text { VAR(0x12,0x0246) } \end{gathered}$	cam_ll_nr_lut_2_sigma	dddd dddd dddd dddd	$\begin{gathered} 263 \\ (0 \times 0107) \end{gathered}$
$\begin{gathered} 0 \times C A 48 \\ \operatorname{VAR}(0 \times 12,0 \times 0248) \end{gathered}$	cam_ll_nr_lut_2_k0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
$\begin{gathered} 0 \times C A 4 C \\ \operatorname{VAR}(0 \times 12,0 \times 024 C) \end{gathered}$	cam_ll_nr_lut_3_gain	dddd dddd dddd dddd	$\begin{gathered} 704 \\ (0 \times 02 \mathrm{C} 0) \end{gathered}$
$\begin{gathered} 0 \times C A 4 E \\ \operatorname{VAR}(0 \times 12,0 \times 024 E) \end{gathered}$	cam_ll_nr_lut_3_sigma	dddd dddd dddd dddd	$\begin{gathered} 261 \\ (0 \times 0105) \end{gathered}$
$\begin{gathered} 0 \times C A 50 \\ \operatorname{VAR}(0 \times 12,0 \times 0250) \end{gathered}$	cam_ll_nr_lut_3_k0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
$\begin{gathered} 0 \times C A 58 \\ \operatorname{VAR}(0 \times 12,0 \times 0258) \end{gathered}$	cam_ll_ck_0_snr	dddd dddd dddd dddd	$\begin{gathered} 2816 \\ (0 \times 0 B 00) \end{gathered}$
$\begin{gathered} 0 \times C A 60 \\ \text { VAR(0x12,0x0260) } \end{gathered}$	cam_ll_ck_0_chroma_gain_high	dddd dddd dddd dddd	$\begin{gathered} 512 \\ (0 \times 0200) \end{gathered}$
$\begin{gathered} 0 \times C A 64 \\ \operatorname{VAR}(0 \times 12,0 \times 0264) \end{gathered}$	cam_ll_ck_1_snr	dddd dddd dddd dddd	$\begin{gathered} 2560 \\ (0 \times 0 A 00) \end{gathered}$
$\begin{gathered} 0 \times C A 6 C \\ \text { VAR(0x12,0x026C) } \end{gathered}$	cam_ll_ck_1_chroma_gain_high	dddd dddd dddd dddd	$\begin{gathered} 512 \\ (0 \times 0200) \end{gathered}$
$\begin{gathered} 0 \times C A 70 \\ \operatorname{VAR}(0 \times 12,0 \times 0270) \end{gathered}$	cam_ll_ck_2_snr	dddd dddd dddd dddd	$\begin{gathered} 102 \\ (0 \times 0066) \end{gathered}$

Table 22. CAM CONTROL VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times C A 80 \\ \operatorname{VAR}(0 \times 12,0 \times 0280) \end{gathered}$	cam_pga_pga_control	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times C A 84 \\ \operatorname{VAR}(0 \times 12,0 \times 0284) \end{gathered}$	cam_sysctl_pll_control	dddd dddd	$\begin{gathered} 1 \\ (0 \times 01) \end{gathered}$
$\begin{gathered} 0 \times C A 88 \\ \operatorname{VAR}(0 \times 12,0 \times 0288) \end{gathered}$	cam_sysctl_pll_divider_m_n_1_clk	dddd dddd dddd dddd	$\begin{gathered} 272 \\ (0 \times 0110) \end{gathered}$
$\begin{gathered} 0 \times C A 8 C \\ \operatorname{VAR}(0 \times 12,0 \times 028 \mathrm{C}) \end{gathered}$	cam_sysctl_pll_divider_p_1_clk	dddd dddd dddd dddd	$\begin{gathered} 51 \\ (0 \times 0033) \end{gathered}$
$\begin{gathered} 0 \times C A 90 \\ \operatorname{VAR}(0 \times 12,0 \times 0290) \end{gathered}$	cam_output_width	dddd dddd dddd dddd	$\begin{gathered} 1280 \\ (0 \times 0500) \end{gathered}$
$\begin{gathered} 0 \times C A 92 \\ \operatorname{VAR}(0 \times 12,0 \times 0292) \end{gathered}$	cam_output_height	dddd dddd dddd dddd	$\begin{gathered} 960 \\ (0 \times 03 \mathrm{CO}) \end{gathered}$
$\begin{gathered} \hline 0 \times C A 94 \\ \operatorname{VAR}(0 \times 12,0 \times 0294) \end{gathered}$	cam_output_format_yuv	dddd dddd dddd dddd	$\begin{gathered} 16 \\ (0 \times 0010) \end{gathered}$
$\begin{gathered} \hline 0 \times C A 96 \\ \operatorname{VAR}(0 \times 12,0 \times 0296) \end{gathered}$	cam_output_format	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times C A 97 \\ \operatorname{VAR}(0 \times 12,0 \times 0297) \end{gathered}$	cam_output_format_bayer_path	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times C A 98 \\ \operatorname{VAR}(0 \times 12,0 \times 0298) \end{gathered}$	cam_output_format_bayer_width	???? ????	$\begin{gathered} 12 \\ (0 \times 0 \mathrm{C}) \end{gathered}$
$\begin{gathered} 0 \times C A 99 \\ \operatorname{VAR}(0 \times 12,0 \times 0299) \end{gathered}$	cam_output_y_offset	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} \hline 0 \times C A 9 C \\ \operatorname{VAR}(0 \times 12,0 \times 029 C) \end{gathered}$	cam_port_parallel_control	dddd dddd dddd dddd	$\begin{gathered} 645 \\ (0 \times 0285) \end{gathered}$
$\begin{gathered} 0 \times C A A O \\ \operatorname{VAR}(0 \times 12,0 \times 02 A 0) \end{gathered}$	cam_port_composite_control	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times C A A 8 \\ \operatorname{VAR}(0 \times 12,0 \times 02 A 8) \end{gathered}$	cam_tempmon_tcontrol	dddd dddd dddd dddd	$\begin{gathered} 1 \\ (0 \times 0001) \end{gathered}$
$\begin{gathered} 0 \times C A A A \\ \operatorname{VAR}(0 \times 12,0 \times 02 A A) \end{gathered}$	cam_tempmon_tstatus	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times C A A C \\ \operatorname{VAR}(0 \times 12,0 \times 02 A C) \end{gathered}$	cam_tempmon_damping_factor	dddd dddd	$\begin{gathered} 16 \\ (0 \times 10) \end{gathered}$
$\begin{gathered} 0 \times C A A D \\ \operatorname{VAR}(0 \times 12,0 \times 02 A D) \end{gathered}$	cam_tempmon_high_threshold	dddd dddd	$\begin{gathered} 70 \\ (0 \times 46) \end{gathered}$
$0 \times C A A E$ $\operatorname{VAR}(0 \times 12,0 \times 02 A E)$	cam_tempmon_low_threshold	dddd dddd	$\begin{gathered} 10 \\ (0 \times O A) \end{gathered}$
$\begin{gathered} \hline 0 \times C A A F \\ \operatorname{VAR}(0 \times 12,0 \times 02 A F) \end{gathered}$	cam_tempmon_temperature	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times C A B 0 \\ \operatorname{VAR}(0 \times 12,0 \times 02 B 0) \end{gathered}$	cam_tempmon_temperature_min	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 x C A B 1 \\ \operatorname{VAR}(0 x 12,0 \times 02 B 1) \end{gathered}$	cam_tempmon_temperature_max	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times C A B 4 \\ \operatorname{VAR}(0 \times 12,0 \times 02 B 4) \end{gathered}$	cam_flicker_detect_fd_mode	dddd dddd dddd dddd	$\begin{gathered} 1 \\ (0 \times 0001) \end{gathered}$
$\begin{gathered} 0 \times C A B 8 \\ \operatorname{VAR}(0 \times 12,0 \times 02 B 8) \end{gathered}$	cam_adaptation_ta_mode	dddd dddd dddd dddd	$\begin{gathered} 1 \\ (0 \times 0001) \end{gathered}$
$\begin{gathered} 0 \times C A B C \\ \operatorname{VAR}(0 \times 12,0 \times 02 B C) \end{gathered}$	cam_sensor_control2_hispi	dddd dddd dddd dddd	$\begin{gathered} \stackrel{2}{(0 x 0002)} \end{gathered}$

AND9568/D

Sensor Manager Variables List

Table 23. SENSOR MANAGER VARIABLES LIST
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$0 \times C C 00$ VAR(0x13,0x0000)	sensor_mgr_status	???? ???? ???? ????	0 (0×0000)
$0 \times C C O 2$ VAR(0x13,0x0002)	sensor_mgr_mode	dddd dddd dddd dddd	3 (0×0003)
$0 \times C C B 2$ VAR(0x13,0x00B2)	sensor_mgr_min_manual_gain	???? ???? ???? ????	0 (0×0000)
$0 \times C C B 4$ VAR(0x13,0x00B4)	sensor_mgr_max_manual_gain	???? ???? ???? ????	0 (0×0000)
$0 \times C C B 6$ VAR(0x13,0x00B6)	sensor_mgr_min_manual_it_ms	???? ???? ???? ????	0 (0×0000)
$0 \times C C B 8$ VAR(0x13,0x00B8)	sensor_mgr_max_manual_it_ms	???? ???? ???? ????	0 (0×0000)

System Manager Variables List

Table 24. SYSTEM MANAGER VARIABLES LIST
(1 = Read-Only, Always 1; $0=$ Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times D C 00 \\ \operatorname{VAR}(0 \times 17,0 \times 0000) \end{gathered}$	sysmgr_status	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times D C 07 \\ \operatorname{VAR}(0 \times 17,0 \times 0007) \end{gathered}$	sysmgr_config_mode	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times D C 09 \\ \operatorname{VAR}(0 \times 17,0 \times 0009) \end{gathered}$	sysmgr_flash_config_status	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times D C 0 A \\ \operatorname{VAR}(0 \times 17,0 \times 000 A) \end{gathered}$	sysmgr_cmd_status	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times D C 0 B \\ \operatorname{VAR}(0 \times 17,0 \times 000 B) \end{gathered}$	sysmgr_cmd_comp_id	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times D C 0 C \\ \operatorname{VAR}(0 \times 17,0 \times 000 C) \end{gathered}$	sysmgr_cmd_comp_failure_id	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times D C 1 E \\ \operatorname{VAR}(0 \times 17,0 \times 001 E) \end{gathered}$	sysmgr_config_flash_status_table_id	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$

Patch Loader Variables List

Table 25. PATCH LOADER VARIABLES LIST
(1 = Read-Only, Always 1; $0=$ Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$0 \times E 000$ VAR(0x18,0x0000)	patchldr_load_address	dddd dddd dddd dddd	0 (0×0000)
$0 \times E 002$ VAR(0x18,0x0002)	patchldr_size_bytes	dddd dddd dddd dddd	0 (0×0000)
$0 \times E 004$ VAR(0x18,0x0004)	patchldr_loader_address	dddd dddd dddd dddd	0 (0×0000)
$0 \times E 006$ VAR(0x18,0x0006)	patchldr_patch_id	dddd dddd dddd dddd	0 (0×0000)

Table 25. PATCH LOADER VARIABLES LIST (continued)
(1 = Read-Only, Always 1; 0 = Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} 0 \times E 008 \\ \operatorname{VAR}(0 \times 18,0 \times 0008) \end{gathered}$	patchldr_firmware_id	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$\begin{gathered} \hline 0 \times E 00 C \\ \operatorname{VAR}(0 \times 18,0 \times 000 \mathrm{C}) \end{gathered}$	patchldr_apply_status	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times E O 0 D \\ \operatorname{VAR}(0 \times 18,0 \times 000 \mathrm{D}) \end{gathered}$	patchldr_num_patches	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
$\begin{gathered} 0 \times E 00 \mathrm{E} \\ \operatorname{VAR}(0 \times 18,0 \times 000 \mathrm{E}) \end{gathered}$	patchldr_patch_id_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times E 010 \\ \operatorname{VAR}(0 \times 18,0 \times 0010) \end{gathered}$	patchldr_patch_id_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times E 012 \\ \operatorname{VAR}(0 \times 18,0 \times 0012) \end{gathered}$	patchldr_patch_id_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xE014 VAR(0x18,0x0014)	patchldr_patch_id_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times E 016 \\ \operatorname{VAR}(0 \times 18,0 \times 0016) \end{gathered}$	patchldr_patch_id_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times E 018 \\ \operatorname{VAR}(0 \times 18,0 \times 0018) \end{gathered}$	patchldr_patch_id_5	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times E 01 \mathrm{~A} \\ \operatorname{VAR}(0 \times 18,0 \times 001 \mathrm{~A}) \end{gathered}$	patchldr_patch_id_6	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times E 01 C \\ \operatorname{VAR}(0 \times 18,0 \times 001 \mathrm{C}) \end{gathered}$	patchldr_patch_id_7	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Command Handler Variables List

Table 26. COMMAND HANDLER VARIABLES LIST
(1 = Read-Only, Always 1; $0=$ Read-Only, Always 0; d = Programmable; ? = Read-Only, Dynamic)

Register Dec (Hex)	Name	Data Format (Binary)	Default Value Dec (Hex)
$\begin{gathered} \hline 0 \times F C 00 \\ \operatorname{VAR}(0 \times 1 \mathrm{~F}, 0 \times 0000) \end{gathered}$	cmd_handler_params_pool_0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times F C 02 \\ \operatorname{VAR}(0 \times 1 \mathrm{~F}, 0 \times 0002) \end{gathered}$	cmd_handler_params_pool_1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times F C 04 \\ \operatorname{VAR}(0 \times 1 \mathrm{~F}, 0 \times 0004) \end{gathered}$	cmd_handler_params_pool_2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} \hline 0 \times F C 06 \\ \operatorname{VAR}(0 \times 1 \mathrm{~F}, 0 \times 0006) \end{gathered}$	cmd_handler_params_pool_3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times F C 08 \\ \operatorname{VAR}(0 \times 1 \mathrm{~F}, 0 \times 0008) \end{gathered}$	cmd_handler_params_pool_4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times F C 0 A \\ \operatorname{VAR}(0 \times 1 \mathrm{~F}, 0 \times 000 \mathrm{~A}) \end{gathered}$	cmd_handler_params_pool_5	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times F C 0 C \\ \operatorname{VAR}(0 \times 1 \mathrm{~F}, 0 \times 000 \mathrm{C}) \end{gathered}$	cmd_handler_params_pool_6	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$\begin{gathered} 0 \times F \mathrm{FCOE} \\ \operatorname{VAR}(0 \times 1 \mathrm{~F}, 0 \times 000 \mathrm{E}) \end{gathered}$	cmd_handler_params_pool_7	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 27. SYSCTL REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \\ \text { R0x0000 } \end{gathered}$	15:0	0x0062	chip_version_reg (RO)
	Chip Identification. Read-only.		
$\begin{gathered} 6 \\ \text { R0x0006 } \end{gathered}$	15:0	0xBA90	user_defined_device_address_id (R/W)
	15:9	0x005D	user_defined_device_address_id1 Device used on the two-wire serial interface (CCI) when SADDR $=1$ (even num only).
	8	X	Reserved
	7:1	0x0048	user_defined_device_address_id0 Device used $\overline{\text { on }}$ the two-wire serial interface (CCl) when SADDR $=0$ (even num only).
	0	X	Reserved
$\begin{gathered} 26 \\ R 0 \times 001 \mathrm{~A} \end{gathered}$	15:0	0x0E04	reset_and_misc_control (R/W)
	15:12	X	Reserved
	11	0x0001	Reserved
	10	0×0001	Reserved
	9	0×0001	Reserved
	8	0x0000	Reserved
	7	X	Reserved
	6:4	RO	Reserved
	3	X	Reserved
	2	0×0001	Reserved
	1	0x0000	Reserved
	0	0x0000	reset_soft Soft system reset. 0 : Normal operation. 1: Reset.
	Miscellaneous Control bits		
$\begin{gathered} 32 \\ R 0 \times 0020 \end{gathered}$	15:0	0x0000	mcu_boot_options (R/W)
	15:8	X	Reserved
	7:6	0x0000	Reserved
	5	0x0000	spi_config_disable Disable firmware loading any configuration data from an SPI device. 0 : Normal operation with SPI configuration enabled. 1: Disable configuration from SPI device.
	4	0x0000	mcu_boot_pll_bypass Enable PLL to be bypassed and unconfigured on boot-up. 0 : Normal PLL operation when using a 27 MHz clock. Firmware will configure the PLL for external 27 MHz clock input, enable it and wait for lock. 1: PLL bypass operation. Firmware will not configure or enable the PLL, the PLL is bypassed and the system will run from the pin clock.
	3	0x0000	Reserved
	2	0x0000	Reserved
	1	X	Reserved
	0	0x0000	Reserved
	MCU Boot Control		

Table 27. SYSCTL REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 64 \\ \text { R0x0040 } \end{gathered}$	15:0	0x8000	command_register (R/W)
	15	0×0001	doorbell Doorbell bit. Set to 1 by the host to indicate that host_command holds a valid command. Set to 0 by firmware to indicate that host_command holds a valid response for the host. Write of 0 by the host is ignored; the host can only set this bit to 1.
	14:0	0x0000	host_command Host command.
	Host Command Register		
$\begin{gathered} 88 \\ \mathrm{R} 0 \times 0058 \end{gathered}$	15:0	0x0201	customer_rev (R/W)
	Silicon Revision.		

CPIPE Control Register Descriptions

Table 28. CPIPE CONTROL REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 12816 \\ R 0 \times 3210 \end{gathered}$	15:0	0x08B0	color_pipeline_control (R/W)
	15:13	X	Reserved
	12	0x0000	Reserved
	11	0×0001	grb_enable Enāble Green Channel Rebalance (GRB). Legal values: $[0,1]$.
	10	0×0000	hue enable Enab̄le hue adjustment. Legal values: [0,1].
	9	0×0000	pcr_enable Enāble preferred color reproduction (PCR). Legal values: $[0,1]$.
	8	0x0000	Reserved
	7	0×0001	gamma_en Enable gamma correction.
	6	X	Reserved
	5	0x0001	```en_ccm Enäble color correction. A color correction matrix (CCM) is applied to the RGB data. The equations are: Rout = CCM_CC1 * Rin + CCM_CC2 * Gin + CCM_CC3 * Bin Gout = CCM_-CC4 * Rin + CCM__CC5 * Gin + CCM_CC6 * Bin Bout = CCM_-CC7 * Rin + CCM_-CC8 * Gin + CCM_CCC9 * Bin```
	4	0x0001	Reserved
	3	0x0000	Reserved
	2:0	X	Reserved

CPIPE Kernel Register Descriptions

Table 29. CPIPE KENREL REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 12832 \\ R 0 \times 3220 \end{gathered}$	15:0	0x000C	dm_edge_th (R/W)
	Demosaic Edge Threshold. This is the value used in demosaic to determine if the current pixel is on an edge. Legal values: [0, 255].		
$\begin{gathered} 12834 \\ \text { R0x3222 } \end{gathered}$	15:0	0x1008	grb_pos_thresholds (R/W)
	15:8	0×0010	grb_apos GRB - maximum positive delta_g slope. This is the slope of the line denoting the maximum positive delta_g. This number is multiplied by the median green. In position dependent mode, this is a0pos. Legal values: [0,255].
	7:0	0x0008	grb_bpos GR \bar{B} - maximum positive delta_g offset. This is the offset of the line denoting the maximum positive delta_g. This number is added to the scaled center green pixel. In position dependent mode, this is bOpos. Legal values: [0,255].
$\begin{gathered} 12836 \\ R 0 \times 3224 \end{gathered}$	15:0	0x1008	grb_neg_thresholds (R/W)
	15:8	0×0010	grb_aneg $\mathrm{GR} \overline{\mathrm{B}}$ - maximum negative delta_g slope. This is the slope of the line denoting the maximum negative delta_g. This number is multiplied by the median green. In position dependent mode, this is a0neg. Legal values: [0,255].
	7:0	0x0008	grb_bneg GR \bar{B} - maximum negative delta_g offset. This is the offset of the line denoting the maximum negative delta_g. This number is added to the scaled center green pixel. In position dependent mode, this is bOneg. Legal values: $[0,255]$.

CPIPE YUV Pipe Register Descriptions

Table 30. CPIPE YUV PIPE REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 13312 \\ \text { R0×3400 } \end{gathered}$	15:0	0x0000	hue1_q1q2 (R/W)
	15:14	X	Reserved
	13:8	0x0000	hue_rotation_10 Hue Rotation angle for Q2,CR/CB=0.02 Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0×0000	hue_rotation_1 Hue Rotation angle for Q1,CR/CB=0.02 Legal values: [-22,22].
$\begin{gathered} 13314 \\ R 0 \times 3402 \end{gathered}$	15:0	0x0000	hue2_q1q2 (R/W)
	15:14	X	Reserved
	13:8	0x0000	hue_rotation_11 Hue Rotation ${ }^{-}$angle for Q2, $\mathrm{CR} / \mathrm{CB}=0.3$ Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	hue_rotation_2 Hue Rotation angle for Q1,CR/CB=0.3 Legal values: [-22,22].

AND9568/D

Table 30. CPIPE YUV PIPE REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 13316 \\ R 0 \times 3404 \end{gathered}$	15:0	0x0000	hue3_q1q2 (R/W)
	15:14	X	Reserved
	13:8	0x0000	hue_rotation_12 Hue Rotation angle for Q2,CR/CB=0.6 Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	hue_rotation_3 Hue Rotation angle for Q1,CR/CB=0.6 Legal values: [-22,22].
$\begin{gathered} 13318 \\ \text { R0×3406 } \end{gathered}$	15:0	0x0000	hue4_q1q2 (R/W)
	15:14	X	Reserved
	13:8	0x0000	hue_rotation_13 Hue Rotation angle for Q2,CR/CB=0.84 Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	hue_rotation_4 Hue Rotation angle for Q1,CR/CB=0.84 Legal values: [-22,22].
$\begin{gathered} 13320 \\ R 0 \times 3408 \end{gathered}$	15:0	0x0000	hue5_q1q2 (R/W)
	15:14	X	Reserved
	13:8	0x0000	hue_rotation_14 Hue Rotation angle for Q2,CR/CB=1.0 Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	hue_rotation_5 Hue Rotation angle for Q1,CR/CB=1.0 Legal values: [-22,22].
$\begin{gathered} 13322 \\ \mathrm{R} 0 \times 340 \mathrm{~A} \end{gathered}$	15:0	0x0000	hue6_q1q2 (R/W)
	15:14	X	Reserved
	13:8	0x0000	hue_rotation_15 Hue Rotation angle for Q2,CB/CR=0.84 Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	hue_rotation_6 Hue Rotation angle for Q1,CB/CR=0.84 Legal values: [-22,22].
$\begin{gathered} 13324 \\ \mathrm{R} 0 \times 340 \mathrm{C} \end{gathered}$	15:0	0×0000	hue7_q1q2 (R/W)
	15:14	x	Reserved
	13:8	0x0000	hue_rotation_16 Hue Rotation angle for Q2,CB/CR=0.6 Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	hue_rotation_7 Hue Rotation angle for Q1,CB/CR=0.6 Legal values: [-22,22].

Table 30. CPIPE YUV PIPE REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 13326 \\ \text { R0x340E } \end{gathered}$	15:0	0x0000	hue8_q1q2 (R/W)
	15:14	X	Reserved
	13:8	0x0000	hue_rotation_17 Hue Rotation angle for Q2,CB/CR=0.3 Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	hue_rotation_8 Hue Rotation angle for Q1,CB/CR=0.3 Legal values: [-22,22].
$\begin{gathered} 13328 \\ \text { R0×3410 } \end{gathered}$	15:0	0x0000	hue9_q1q2 (R/W)
	15:14	X	Reserved
	13:8	0x0000	hue_rotation_18 Hue Rotation angle for Q2,CB/CR=0.02 Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	hue_rotation_9 Hue Rotation angle for Q1,CB/CR=0.02 Legal values: [-22,22].
$\begin{gathered} 13330 \\ R 0 \times 3412 \end{gathered}$	15:0	0x0000	hue10_q3q4 (R/W)
	15:14	X	Reserved
	13:8	0x0000	hue_rotation_28 Hue Rotation angle for Q4 CR/CB=0.02 Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	hue_rotation_19 Hue-Rotation angle for Q3 CR/CB=0.02 Legal values: [-22,22].
$\begin{gathered} 13332 \\ R 0 \times 3414 \end{gathered}$	15:0	0x0000	hue11_q3q4 (R/W)
	15:14	X	Reserved
	13:8	0x0000	hue_rotation_29 Hue Rotation angle for Q4 CR/CB=0.3 Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	hue_rotation_20 Hue Rotation angle for Q3 CR/CB=0.3 Legal values: [-22,22].
$\begin{gathered} 13334 \\ \mathrm{R} 0 \times 3416 \end{gathered}$	15:0	0×0000	hue12_q3q4 (R/W)
	15:14	x	Reserved
	13:8	0x0000	hue_rotation_30 Hue Rotation angle for Q4 CR/CB=0.6 Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	hue_rotation_21 Hue Rotation angle for Q3 CR/CB=0.6 Legal values: [-22,22].

Table 30. CPIPE YUV PIPE REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 13336 \\ \text { R0x3418 } \end{gathered}$	15:0	0x0000	hue13_q3q4 (R/W)
	15:14	X	Reserved
	13:8	0x0000	hue_rotation_31 Hue Rotation angle for Q4 CR/CB=0.84 Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	hue_rotation_22 Hue Rotation angle for Q3 CR/CB=0.84 Legal values: [-22,22].
$\begin{gathered} 13338 \\ \text { R0x341A } \end{gathered}$	15:0	0x0000	hue14_q3q4 (R/W)
	15:14	X	Reserved
	13:8	0x0000	hue_rotation_32 Hue Rotation angle for Q4 CR/CB=1.0 Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	hue_rotation_23 Hue Rotation angle for Q3 CR/CB=1.0 Legal values: [-22,22].
$\begin{gathered} 13340 \\ \text { R0x341C } \end{gathered}$	15:0	0x0000	hue15_q3q4 (R/W)
	15:14	X	Reserved
	13:8	0x0000	hue_rotation_33 Hue Rotation angle for Q4 CB/CR=0.84 Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	hue_rotation_24 Hue-Rotation angle for Q3 CB/CR=0.84 Legal values: [-22,22].
$\begin{gathered} 13342 \\ \mathrm{R} 0 \times 341 \mathrm{E} \end{gathered}$	15:0	0x0000	hue16_q3q4 (R/W)
	15:14	X	Reserved
	13:8	0x0000	hue_rotation_34 Hue Rotation angle for Q4 CB/CR=0.6 Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	hue_rotation_25 Hue Rotation angle for Q3 CB/CR=0.6 Legal values: [-22,22].
$\begin{gathered} 13344 \\ \text { R0x3420 } \end{gathered}$	15:0	0x0000	hue17_q3q4 (R/W)
	15:14	x	Reserved
	13:8	0x0000	hue_rotation_35 Hue Rotation angle for Q4 CB/CR=0.3 Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	hue_rotation_26 Hue Rotation angle for Q3 CB/CR=0.3 Legal values: [-22,22].

AND9568/D

Table 30. CPIPE YUV PIPE REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 13346 \\ R 0 \times 3422 \end{gathered}$	15:0	0x0000	hue18_q3q4 (R/W)
	15:14	X	Reserved
	13:8	0x0000	hue_rotation_36 Hue Rotation angle for Q4 CB/CR=0.02 Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	hue_rotation_27 Hue Rotation angle for Q3 CB/CR=0.02 Legal values: [-22,22].
$\begin{gathered} 13348 \\ R 0 \times 3424 \end{gathered}$	15:0	0x0000	pcr_color_gain1_region_1 (R/W)
	PCR saturation gain1, region 1 Legal values: $[0,15]$.		
$\begin{gathered} 13350 \\ R 0 \times 3426 \end{gathered}$	15:0	0x0000	pcr_color_gain1_region_10 (R/W)
	PCR saturation gain1, region 10 Legal values: $[0,15]$.		
$\begin{gathered} 13352 \\ \mathrm{R} 0 \times 3428 \end{gathered}$	15:0	0x0000	pcr_color_gain1_region_19 (R/W)
	PCR saturation gain1, region 19 Legal values: $[0,15]$.		
$\begin{gathered} 13354 \\ \text { R0x342A } \end{gathered}$	15:0	0x0000	pcr_color_gain1_region_28(R/W)
	PCR saturation gain1, region 28 Legal values: $[0,15]$.		
$\begin{gathered} 13356 \\ \text { R0×342C } \end{gathered}$	15:0	0x0000	pcr_color_gain2_region_2 (R/W)
	PCR saturation gain2, region 2 Legal values: $[0,15]$.		
$\begin{gathered} 13358 \\ \text { R0x342E } \end{gathered}$	15:0	0x0000	pcr_color_gain2_region_11 (R/W)
	PCR saturation gain2, region 11 Legal values: $[0,15]$.		
$\begin{gathered} 13360 \\ R 0 \times 3430 \end{gathered}$	15:0	0x0000	pcr_color_gain2_region_20 (R/W)
	PCR saturation gain2, region 20 Legal values: $[0,15]$.		
$\begin{gathered} 13362 \\ \mathrm{R} 0 \times 3432 \end{gathered}$	15:0	0x0000	pcr_color_gain2_region_29 (R/W)
	PCR saturation gain2, region 29 Legal values: $[0,15]$.		
$\begin{gathered} 13364 \\ R 0 \times 3434 \end{gathered}$	15:0	0x0000	pcr_color_gain3_region_3 (R/W)
	PCR saturation gain3, region 3 Legal values: $[0,15]$.		
$\begin{gathered} 13366 \\ \mathrm{R} 0 \times 3436 \end{gathered}$	15:0	0x0000	pcr_color_gain3_region_12 (R/W)
	PCR saturation gain3, region 12 Legal values: $[0,15]$.		
$\begin{gathered} 13368 \\ \text { R0×3438 } \end{gathered}$	15:0	0x0000	pcr_color_gain3_region_21 (R/W)
	PCR saturation gain3, region 21 Legal values: $[0,15]$.		
$\begin{gathered} 13370 \\ \text { R0x343A } \end{gathered}$	15:0	0x0000	pcr_color_gain3_region_30 (R/W)
	PCR saturation gain3, region 30 Legal values: $[0,15]$.		
$\begin{gathered} 13372 \\ \text { R0x343C } \end{gathered}$	15:0	0x0000	pcr_color_gain4_region_4 (R/W)
	PCR saturation gain4, region 4 Legal values: $[0,15]$.		

Table 30. CPIPE YUV PIPE REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} 13374 \\ \text { R0×343E } \end{gathered}$	15:0	0x0000	pcr_color_gain4_region_13 (R/W)	
	PCR saturation gain4 region 13 Legal values: $[0,15]$.			
$\begin{gathered} 13376 \\ R 0 \times 3440 \end{gathered}$	15:0	0x0000	pcr_color_gain4_region_22 (R/W)	
	PCR saturation gain4, region 22 Legal values: $[0,15]$.			
$\begin{gathered} 13378 \\ \text { R0×3442 } \end{gathered}$	15:0	0x0000	pcr_color_gain4_region_31 (R/W)	
	PCR saturation gain4, region 31 Legal values: $[0,15]$.			
$\begin{gathered} 13380 \\ R 0 \times 3444 \end{gathered}$	15:0	0x0000	pcr_color_gain5_region_5 (R/W)	
	PCR saturation gain5, region 5 Legal values: $[0,15]$.			
$\begin{gathered} 13382 \\ R 0 \times 3446 \end{gathered}$	15:0	0x0000	pcr_color_gain5_region_14 (R/W)	
	PCR saturation gain5 region 14 Legal values: $[0,15]$.			
$\begin{gathered} 13384 \\ R 0 \times 3448 \end{gathered}$	15:0	0x0000	pcr_color_gain5_region_23 (R/W)	
	PCR saturation gain5, region 23 Legal values: $[0,15]$.			
$\begin{gathered} 13386 \\ \text { R0x344A } \end{gathered}$	15:0	0x0000	pcr_color_gain5_region_32 (R/W)	
	PCR saturation gain5, region 32 Legal values: $[0,15]$.			
$\begin{gathered} 13388 \\ \text { R0×344C } \end{gathered}$	15:0	0x0000	pcr_color_gain6_region_6 (R/W)	
	PCR saturation gain6, region 6 Legal values: $[0,15]$.			
$\begin{gathered} 13390 \\ R 0 \times 344 E \end{gathered}$	15:0	0x0000	pcr_color_gain6_region_15 (R/W)	
	PCR saturation gain6 region 15 Legal values: [0,15].			
$\begin{gathered} 13392 \\ \text { R0x3450 } \end{gathered}$	15:0	0x0000	pcr_color_gain6_region_24 (R/W)	
	PCR saturation gain6, region 24 Legal values: $[0,15]$.			
$\begin{gathered} 13394 \\ R 0 \times 3452 \end{gathered}$	15:0	0x0000	pcr_color_gain6_region_33 (R/W)	
	PCR saturation gain6, region 33 Legal values: $[0,15]$.			
$\begin{gathered} 13396 \\ \text { R0x3454 } \end{gathered}$	15:0	0x0000	pcr_color_gain7_region_7 (R/W)	
	PCR saturation gain7, region 7 Legal values: $[0,15]$.			
$\begin{gathered} 13398 \\ R 0 \times 3456 \end{gathered}$	15:0	0x0000	pcr_color_gain7_region_16 (R/W)	
	PCR saturation gain7 region 16 Legal values: [0,15].			
$\begin{gathered} 13400 \\ R 0 \times 3458 \end{gathered}$	15:0	0x0000	pcr_color_gain7_region_25 (R/W)	
	PCR saturation gain7, region 25 Legal values: $[0,15]$.			
$\begin{gathered} 13402 \\ R 0 \times 345 A \end{gathered}$	15:0	0x0000	pcr_color_gain7_region_34 (R/W)	
	PCR saturation gain7, region 34 Legal values: $[0,15]$.			
$\begin{gathered} 13404 \\ \text { R0×345C } \end{gathered}$	15:0	0x0000	pcr_color_gain8_region_8 (R/W)	
	PCR saturation gain8, region 8 Legal values: $[0,15]$.			

Table 30. CPIPE YUV PIPE REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name	
$\begin{gathered} 13406 \\ R 0 \times 345 \mathrm{E} \end{gathered}$	15:0	0x0000	pcr_color_gain8_region_17 (R/W)	
	PCR saturation gain8 region 17 Legal values: $[0,15]$.			
$\begin{gathered} 13408 \\ R 0 \times 3460 \end{gathered}$	15:0	0x0000	pcr_color_gain8_region_26 (R/W)	
	PCR saturation gain8, region 26 Legal values: $[0,15]$.			
$\begin{gathered} 13410 \\ \text { R0x3462 } \end{gathered}$	15:0	0x0000	pcr_color_gain8_region_35 (R/W)	
	PCR saturation gain8, region 35 Legal values: $[0,15]$.			
$\begin{gathered} 13412 \\ R 0 \times 3464 \end{gathered}$	15:0	0x0000	pcr_color_gain9_region_9 (R/W)	
	PCR saturation gain9, region 9 Legal values: [0,15].			
$\begin{gathered} 13414 \\ \text { R0x3466 } \end{gathered}$	15:0	0x0000	pcr_color_gain9_region_18 (R/W)	
	PCR saturation gain9 region 18 Legal values: $[0,15]$.			
$\begin{gathered} 13416 \\ R 0 \times 3468 \end{gathered}$	15:0	0x0000	pcr_color_gain9_region_27 (R/W)	
	PCR saturation gain9, region 27 Legal values: $[0,15]$.			
$\begin{gathered} 13418 \\ R 0 \times 346 A \end{gathered}$	15:0	0x0000	pcr_color_gain9_region_36 (R/W)	
	PCR saturation gain9, region 36 Legal values: $[0,15]$.			

CPIPE Reconstruct Register Descriptions

Table 31. CPIPE RECONSTRUCT REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name	
$\begin{gathered} 13824 \\ \text { R0x3600 } \end{gathered}$	15:0	0×0010	p_g1_p0q0 (R/W)	
	P0 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13826 \\ R 0 \times 3602 \end{gathered}$	15:0	0x0000	p_g1_p0q1 (R/W)	
	P0 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13828 \\ \text { R0x3604 } \end{gathered}$	15:0	0×0000	p_g1_p0q2 (R/W)	
	P0 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13830 \\ \text { R0x3606 } \end{gathered}$	15:0	0×0000	p_g1_p0q3 (R/W)	
	P0 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13832 \\ \text { R0x3608 } \end{gathered}$	15:0	0x0000	p_g1_p0q4 (R/W)	
	P0 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13834 \\ \text { R0x360A } \end{gathered}$	15:0	0×0010	p_r_p0q0 (R/W)	
	P0 coefficients for Red. Legal values: [0, 65535].			

Table 31. CPIPE RECONSTRUCT REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Table 31. CPIPE RECONSTRUCT REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} 13868 \\ \text { R0x362C } \end{gathered}$	15:0	0x0000	p_g1_p1q2 (R/W)	
	P1 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13870 \\ \text { R0x362E } \end{gathered}$	15:0	0×0000	p_g1_p1q3 (R/W)	
	P1 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13872 \\ R 0 \times 3630 \end{gathered}$	15:0	0x0000	p_g1_p1q4 (R/W)	
	P1 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13874 \\ R 0 \times 3632 \end{gathered}$	15:0	0x0000	p_r_p1q0 (R/W)	
	P1 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 13876 \\ R 0 \times 3634 \end{gathered}$	15:0	0x0000	p_r_p1q1 (R/W)	
	P1 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 13878 \\ \text { R0x3636 } \end{gathered}$	15:0	0x0000	p_r_p1q2 (R/W)	
	P1 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 13880 \\ \text { R0x3638 } \end{gathered}$	15:0	0x0000	p_r_p1q3 (R/W)	
	P1 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 13882 \\ \text { R0x363A } \end{gathered}$	15:0	0x0000	p_r_p1q4 (R/W)	
	P1 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 13884 \\ \text { R0x363C } \end{gathered}$	15:0	0x0000	p_b_p1q0 (R/W)	
	P1 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 13886 \\ \text { R0x363E } \end{gathered}$	15:0	0x0000	p_b_p1q1 (R/W)	
	P1 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 13888 \\ R 0 \times 3640 \end{gathered}$	15:0	0×0000	p_b_p1q2 (R/W)	
	P1 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 13890 \\ R 0 \times 3642 \end{gathered}$	15:0	0x0000	p_b_p1q3 (R/W)	
	P1 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 13892 \\ R 0 \times 3644 \end{gathered}$	15:0	0x0000	p_b_p1q4 (R/W)	
	P1 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 13894 \\ R 0 \times 3646 \end{gathered}$	15:0	0x0000	p_g2_p1q0 (R/W)	
	P1 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 13896 \\ \text { R0x3648 } \end{gathered}$	15:0	0x0000	p_g2_p1q1 (R/W)	
	P1 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 13898 \\ \text { R0x364A } \end{gathered}$	15:0	0×0000	p_g2_p1q2 (R/W)	
	P1 coefficients for Green2. Legal values: [0, 65535].			

Table 31. CPIPE RECONSTRUCT REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} 13900 \\ \text { R0x364C } \end{gathered}$	15:0	0x0000	p_g2_p1q3 (R/W)	
	P1 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 13902 \\ \text { R0×364E } \end{gathered}$	15:0	0x0000	p_g2_p1q4 (R/W)	
	P1 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 13904 \\ R 0 \times 3650 \end{gathered}$	15:0	0x0000	p_g1_p2q0 (R/W)	
	P2 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13906 \\ \text { R0×3652 } \end{gathered}$	15:0	0x0000	p_g1_p2q1 (R/W)	
	P2 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13908 \\ \text { R0×3654 } \end{gathered}$	15:0	0x0000	p_g1_p2q2 (R/W)	
	P2 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13910 \\ R 0 \times 3656 \end{gathered}$	15:0	0x0000	p_g1_p2q3 (R/W)	
	P2 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13912 \\ \text { R0x3658 } \end{gathered}$	15:0	0x0000	p_g1_p2q4 (R/W)	
	P2 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13914 \\ \text { R0x365A } \end{gathered}$	15:0	0x0000	p_r_p2q0 (R/W)	
	P2 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 13916 \\ \text { R0x365C } \end{gathered}$	15:0	0x0000	p_r_p2q1 (R/W)	
	P2 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 13918 \\ \text { R0×365E } \end{gathered}$	15:0	0x0000	p_r_p2q2 (R/W)	
	P2 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 13920 \\ R 0 \times 3660 \end{gathered}$	15:0	0x0000	p_r_p2q3 (R/W)	
	P2 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 13922 \\ R 0 \times 3662 \end{gathered}$	15:0	0x0000	p_r_p2q4 (R/W)	
	P2 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 13924 \\ R 0 \times 3664 \end{gathered}$	15:0	0x0000	p_b_p2q0 (R/W)	
	P2 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 13926 \\ \text { R0x3666 } \end{gathered}$	15:0	0x0000	p_b_p2q1 (R/W)	
	P2 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 13928 \\ \text { R0x3668 } \end{gathered}$	15:0	0x0000	p_b_p2q2 (R/W)	
	P2 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 13930 \\ R 0 \times 366 A \end{gathered}$	15:0	0x0000	p_b_p2q3 (R/W)	
	P2 coefficients for Blue. Legal values: [0, 65535].			

Table 31. CPIPE RECONSTRUCT REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} 13932 \\ \text { R0x366C } \end{gathered}$	15:0	0x0000	p_b_p2q4 (R/W)	
	P2 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 13934 \\ \text { R0×366E } \end{gathered}$	15:0	0x0000	p_g2_p2q0 (R/W)	
	P2 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 13936 \\ R 0 \times 3670 \end{gathered}$	15:0	0x0000	p_g2_p2q1 (R/W)	
	P2 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 13938 \\ R 0 \times 3672 \end{gathered}$	15:0	0x0000	p_g2_p2q2 (R/W)	
	P2 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 13940 \\ \text { R0×3674 } \end{gathered}$	15:0	0x0000	p_g2_p2q3 (R/W)	
	P2 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 13942 \\ \text { R0x3676 } \end{gathered}$	15:0	0x0000	p_g2_p2q4 (R/W)	
	P2 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 13944 \\ \mathrm{R} 0 \times 3678 \end{gathered}$	15:0	0x0000	p_g1_p3q0 (R/W)	
	P3 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13946 \\ \text { R0x367A } \end{gathered}$	15:0	0x0000	p_g1_p3q1 (R/W)	
	P3 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13948 \\ \text { R0×367C } \end{gathered}$	15:0	0x0000	p_g1_p3q2 (R/W)	
	P3 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13950 \\ \text { R0×367E } \end{gathered}$	15:0	0x0000	p_g1_p3q3 (R/W)	
	P3 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13952 \\ \text { R0×3680 } \end{gathered}$	15:0	0x0000	p_g1_p3q4 (R/W)	
	P3 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13954 \\ \text { R0×3682 } \end{gathered}$	15:0	0x0000	p_r_p3q0 (R/W)	
	P3 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 13956 \\ R 0 \times 3684 \end{gathered}$	15:0	0x0000	p_r_p3q1 (R/W)	
	P3 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 13958 \\ \text { R0x3686 } \end{gathered}$	15:0	0x0000	p_r_p3q2 (R/W)	
	P3 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 13960 \\ \text { R0×3688 } \end{gathered}$	15:0	0x0000	p_r_p3q3 (R/W)	
	P3 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 13962 \\ \text { R0x368A } \end{gathered}$	15:0	0x0000	p_r_p3q4 (R/W)	
	P3 coefficients for Red. Legal values: [0, 65535].			

Table 31. CPIPE RECONSTRUCT REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} 13964 \\ \text { R0x368C } \end{gathered}$	15:0	0x0000	p_b_p3q0 (R/W)	
	P3 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 13966 \\ \text { R0×368E } \end{gathered}$	15:0	0x0000	p_b_p3q1 (R/W)	
	P3 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 13968 \\ R 0 \times 3690 \end{gathered}$	15:0	0x0000	p_b_p3q2 (R/W)	
	P3 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 13970 \\ R 0 \times 3692 \end{gathered}$	15:0	0x0000	p_b_p3q3 (R/W)	
	P3 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 13972 \\ \text { R0×3694 } \end{gathered}$	15:0	0x0000	p_b_p3q4 (R/W)	
	P3 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 13974 \\ R 0 \times 3696 \end{gathered}$	15:0	0x0000	p_g2_p3q0 (R/W)	
	P3 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 13976 \\ \text { R0x3698 } \end{gathered}$	15:0	0x0000	p_g2_p3q1 (R/W)	
	P3 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 13978 \\ \text { R0x369A } \end{gathered}$	15:0	0x0000	p_g2_p3q2 (R/W)	
	P3 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 13980 \\ \text { R0x369C } \end{gathered}$	15:0	0x0000	p_g2_p3q3 (R/W)	
	P3 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 13982 \\ \text { R0x369E } \end{gathered}$	15:0	0x0000	p_g2_p3q4 (R/W)	
	P3 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 13984 \\ \text { R0x36A0 } \end{gathered}$	15:0	0x0000	p_g1_p4q0 (R/W)	
	P4 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13986 \\ \text { R0x36A2 } \end{gathered}$	15:0	0x0000	p_g1_p4q1 (R/W)	
	P4 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13988 \\ \text { R0x36A4 } \end{gathered}$	15:0	0x0000	p_g1_p4q2 (R/W)	
	P4 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13990 \\ \text { R0x36A6 } \end{gathered}$	15:0	0x0000	p_g1_p4q3 (R/W)	
	P4 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13992 \\ \text { R0x36A8 } \end{gathered}$	15:0	0x0000	p_g1_p4q4 (R/W)	
	P4 coefficients for Green1. Legal values: [0, 65535].			
$\begin{gathered} 13994 \\ \text { R0x36AA } \end{gathered}$	15:0	0x0000	p_r_p4q0 (R/W)	
	P4 coefficients for Red. Legal values: [0, 65535].			

Table 31. CPIPE RECONSTRUCT REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} 13996 \\ \text { R0x36AC } \end{gathered}$	15:0	0x0000	p_r_p4q1 (R/W)	
	P4 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 13998 \\ \text { R0x36AE } \end{gathered}$	15:0	0x0000	p_r_p4q2 (R/W)	
	P4 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 14000 \\ \text { R0×36B0 } \end{gathered}$	15:0	0x0000	p_r_p4q3 (R/W)	
	P4 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 14002 \\ \text { R0x36B2 } \end{gathered}$	15:0	0x0000	p_r_p4q4 (R/W)	
	P4 coefficients for Red. Legal values: [0, 65535].			
$\begin{gathered} 14004 \\ \text { R0x36B4 } \end{gathered}$	15:0	0x0000	p_b_p4q0 (R/W)	
	P4 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 14006 \\ \text { R0x36B6 } \end{gathered}$	15:0	0x0000	p_b_p4q1 (R/W)	
	P4 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 14008 \\ \text { R0x36B8 } \end{gathered}$	15:0	0x0000	p_b_p4q2 (R/W)	
	P4 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 14010 \\ \text { R0x36BA } \end{gathered}$	15:0	0x0000	p_b_p4q3 (R/W)	
	P4 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 14012 \\ \text { R0x36BC } \end{gathered}$	15:0	0x0000	p_b_p4q4 (R/W)	
	P4 coefficients for Blue. Legal values: [0, 65535].			
$\begin{gathered} 14014 \\ \text { R0x36BE } \end{gathered}$	15:0	0x0000	p_g2_p4q0 (R/W)	
	P4 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 14016 \\ \text { R0x36C0 } \end{gathered}$	15:0	0x0000	p_g2_p4q1 (R/W)	
	P4 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 14018 \\ \text { R0x36C2 } \end{gathered}$	15:0	0x0000	p_g2_p4q2 (R/W)	
	P4 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 14020 \\ \text { R0×36C4 } \end{gathered}$	15:0	0x0000	p_g2_p4q3 (R/W)	
	P4 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 14022 \\ \text { R0x36C6 } \end{gathered}$	15:0	0x0000	p_g2_p4q4 (R/W)	
	P4 coefficients for Green2. Legal values: [0, 65535].			
$\begin{gathered} 14024 \\ \text { R0x36C8 } \end{gathered}$	15:0	0x01E4	center_row (R/W)	
	Center Row Legal values: [0, 1023].			
$\begin{gathered} 14026 \\ \text { R0×36CA } \end{gathered}$	15:0	0x0284	center_column (R/W)	
	Center Column Legal values: [0, 2047].			

XDMA Register Descriptions

Table 32. XDMA REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 2434 \\ R 0 \times 0982 \end{gathered}$	15:0	0x0000	access_ctl_stat (R/W)
	15:8	X	Reserved
	7:6	0x0000	phy_region 00: Physical access to Patch RAM 01: UNDEFINED 10: Reserved 11: Reserved
	5	X	Reserved
	4	RO	byte_access_state Read-only cōpy of logical_byte_access (in Logical Access state) or physical_byte_ access (in Physical Access state) 1: Byte Access state 0 : Word Access state (2 bytes) The value of this field is UNDEFINED after reset. Read-only.
	3:2	RO	physical_access_state 11: Physical Access state 10: Logical Access state 0x: Indeterminate (DMA address is invalid). The DMA address is invalid if Logical Access state is established but the tabptr SFR has not been initialised. Read-only.
	1	RO	upper_32k_access_state Physical address[15] for current access. In Logical Access state (physical_access_state=10), this bit provides debug information: after at least one data access has been performed, this bit represents the physical address[15] of the variables base for the current driver number. In Physical Access state (physical_access_state=11), this bit is a read-only copy of en_upper_32k_phy_access. The value of this field is UNDEFINED after reset. Read-only.
	0	0×0000	en_upper_32k_phy_access This bit provides physical address[15] for physical address accesses. Physical address[14:0] are provided by R0x098A
	Controls the access and conveys access status		
$\begin{gathered} 2442 \\ \text { R0x098A } \end{gathered}$	15:0	0x0000	physical_address_access (R/W)
	15	0×0000	physical_byte_access Select byte access for indirect data accesses in Physical Access state. In Physical Access state this bit affects the behavior of Indirect data accesses (reads and writes to the mcu_variable_dataN registers). This bit has no effect on the behavior of Direct data accesses (reads and writes by the host to addresses above 0x7FFF). 1: Byte Access 0: Word Access (2 bytes) The value of this field is UNDEFINED after reset.
	14:0	0×0000	physical_address physical_address[14:0] for current access. physical_address[15] is set by R0x0982[0]. The programmed 16-bit address specifies an offset from the start of the region specified by phy_region (R0x0982[7:6]). The value of this field is UNDEFINED after reset. Legal values: [0, 32767].
	Address of physical access; Used for Patch RAM uploads. A write to this address establishes the Physical Access state (See R0x0982[2]). When the Logical Access state is established, a read from this register and from R0x0982[1] provides debug information: after at least one data access has been performed, this bit represents the physical address of the variables base for the current driver number.		

Table 32. XDMA REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 2446 \\ \text { R0x098E } \end{gathered}$	15:0	0x0000	logical_address_access (R/W)
	15	0x0000	logical_byte_access Select byte access for indirect data accesses in Logical Access state. In Logical Access state this bit affects the behavior of Indirect data accesses (reads and writes to the mcu_variable_dataN registers). This bit has no effect on the behavior of Direct datā accesses (reads and writes by the host to addresses above $0 \times 7 F F F$). 1: Byte Access 0 : Word Access (2 bytes) The value of this field is UNDEFINED after reset.
	14:10	0×0000	logical_access_drv_num Address of logical access driver number - logical_address[14:10]. Base address of this driver's variables can be obtained by adding 2*logical_ access_drv_num to the value of the tabptr SFR. Physical address of re-directed location can be obtained by adding this offset to the SFR 0×50 return value. The value of this field is UNDEFINED after reset. Legal values: [0, 31].
	9:0	0×0000	logical_access_offset Address of logical access offset - logical_address[9:0]. Physical address can be obtained by adding this offset to the base address of the selected driver's variables (the driver is selected by logical_access_drv_num). The value of this field is UNDEFINED after reset. Legal values: [0, 1023].
	Address of logical access; Used for camera control (i.e. register/variable updates) by user. A write to this address establishes the Logical Access state (See R0x0982[2]).		
$\begin{gathered} 2448 \\ \text { R0x0990 } \end{gathered}$	15:0	0x0000	mcu_variable_data0 (R/W)
	DMA word 0 (Indirect data access) Legal values: [0, 65535].		
$\begin{gathered} 2450 \\ \text { R0x0992 } \end{gathered}$	15:0	0x0000	mcu_variable_data1 (R/W)
	DMA word 1 (Indirect data access) Legal values: [0, 65535].		
$\begin{gathered} 2452 \\ \text { R0x0994 } \end{gathered}$	15:0	0x0000	mcu_variable_data2 (R/W)
	DMA word 2 (Indirect data access) Legal values: [0, 65535].		
$\begin{gathered} 2454 \\ \text { R0x0996 } \end{gathered}$	15:0	0x0000	mcu_variable_data3 (R/W)
	DMA word 3 (Indirect data access) Legal values: [0, 65535].		
$\begin{gathered} 2456 \\ \text { R0x0998 } \end{gathered}$	15:0	0x0000	mcu_variable_data4 (R/W)
	DMA word 4 (Indirect data access) Legal values: [0, 65535].		
$\begin{gathered} 2458 \\ \text { R0x099A } \end{gathered}$	15:0	0x0000	mcu_variable_data5 (R/W)
	DMA word 5 (Indirect data access) Legal values: [0, 65535].		
$\begin{gathered} 2460 \\ \text { R0x099C } \end{gathered}$	15:0	0x0000	mcu_variable_data6 (R/W)
	DMA word 6 (Indirect data access) Legal values: [0, 65535].		
$\begin{gathered} 2462 \\ \text { R0x099E } \end{gathered}$	15:0	0x0000	mcu_variable_data7 (R/W)
	DMA word 7 (Indirect data access) Legal values: [0, 65535].		

TX_SS Register Descriptions
Table 33. TX_SS REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 15364 \\ \text { R0x3C04 } \end{gathered}$	15:0	0x0000	vdac_ctrl_1 (R/W)
	15:7	X	Reserved
	6	RO	Reserved
	5:0	0x0000	dac gain Video programmable gain value Legal values: $[0,63]$.
	Video DAC calibration (1)		
$\begin{gathered} 15492 \\ \text { R0x3C84 } \end{gathered}$	15:0	0x0606	tx_frontporch_backporch (R/W)
	15:8	0x0006	tx_back_porch Back porch of frame valid. Legal values: $[0,255]$.
	7:0	0x0006	tx_front_porch Front porch of frame valid. Legal values: [0, 255].

OTPM Register Descriptions

Table 34. OTPM REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} 14336 \\ \text { R0x3800 } \end{gathered}$	15:0	0×0000	otpm_data_0 (R/W)	
	Data for OTPM automatic read sequences. After an OTPM automatic read sequence, read data is presented in the OTPM_DATA_* registers. These registers cannot be accessed when the system is in soft standby (writes will be ignored and reads will return 0). Legal values: [0,65535].			
$\begin{gathered} 14338 \\ \text { R0x3802 } \end{gathered}$	15:0	0×0000	otpm_data_1 (R/W)	
	Legal values: [0,65535].			
$\begin{gathered} 14340 \\ \text { R0×3804 } \end{gathered}$	15:0	0x0000	otpm_data_2 (R/W)	
	Legal values: [0,65535].			
$\begin{gathered} 14342 \\ \text { R0x3806 } \end{gathered}$	15:0	0x0000	otpm_data_3 (R/W)	
	Legal values: [0,65535].			
$\begin{gathered} 14344 \\ \text { R0×3808 } \end{gathered}$	15:0	0×0000	otpm_data_4 (R/W)	
	Legal values: [0,65535].			
$\begin{gathered} 14346 \\ \text { R0x380A } \end{gathered}$	15:0	0×0000	otpm_data_5 (R/W)	
	Legal values: [0,65535].			
$\begin{gathered} 14348 \\ \text { R0x380C } \end{gathered}$	15:0	0×0000	otpm_data_6 (R/W)	
	Legal values: [0,65535].			
$\begin{gathered} 14350 \\ \text { R0x380E } \end{gathered}$	15:0	0×0000	otpm_data_7 (R/W)	
	Legal values: [0,65535].			

Table 34. OTPM REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 14592 \\ \text { R0x3900 } \end{gathered}$	15:0	0x0000	otpm_control (R/W)
	15:11	X	Reserved
	10	0x0000	otpm_enable_standby OTPM standby enable. When this bit is 0 , the "standby" signal will never be asserted to the HV switch. When this bit is 1 , the "standby" signal will be controlled automatically to the HV switch: negated when an OTPM read or write operation is being performed, and asserted otherwise. Asserting the "standby" signal to the HV switch connects the internal vcmn signal to gndio preventing leakage though any programmed anti-fuses. Legal values: $[0,1]$.
	9	0×0000	otpm_single_record_only OTPM single record only. 1: Automatic read sequence will end after one record has been read from OTPM. 0 : Automatic read sequence will end after all records (of specicied record type) have been read from OTPM. The total size of the records read must not exceed the space available; the total size of the otpm_data_* registers. Legal values: $[0,1]$.
	8	0×0000	otpm_auto_rd_start_next Automatic read start next. When bypass_record (in otpm_expr) = 0, and single_record_only $=1$, determine the start address for an automatic read sequence triggered by auto_rd_start: 0 : read first record that matches (search from start of OTPM). 1: read next record that matches (search from current location in OTPM). Legal values: $[0,1]$.
	7	X	Reserved
	6	RO	otpm_auto_rd_success Indicates whether the automatic read sequence was successful. Read-only. Legal values: $[0,1]$.
	5	RO	otpm_auto_rd_end Indicates whether the automatic read sequence has finished. Read-only. Legal values: $[0,1]$.
	4	0×0000	otpm_auto_rd_start Trigger sOT $\bar{T} \bar{M}$ automatic read sequence. bypass_record (in otpm_expr) $=0$: Search for the next record of a type specified by the otpm_record register. If the record is found, its payload can be read from the otpm_data* registers. When this bit is set and auto_rd_start_next=0, the search starts at the first location in the OTPM. When this bit is sēt and auto_rd_start_next=1, the search starts at the current location in the OTPM (the location following the record most recently read). bypass_record =1: Read data from OTPM. The OTPM address at which to start the read is taken from the otpm_manual_addr register. The length of the data to read is taken from the otpm_record register. The data can be read from the otpm_data* registers. Legal values: $[0,1]$.
	3	X	Reserved
	Legal values: [0,1911].		

Table 34. OTPM REGISTER DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Monitor Variable Descriptions

Table 35. MONITOR VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Table 35. MONITOR VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} 0 \times 8014 \\ \text { VAR(0x00, } \\ 0 \times 0014) \end{gathered}$	15:0	0x0000	mon_watc	
	Watchdog Monitor activity counter. The counter will increment every five seconds, prior to the Watchdog Monitor's status checks. The host should regularly read the counter value and ensure that it is incrementing. The counter will continuously wrap back to zero and continue counting. The counter is frozen when device is in hard- or soft-standby. This value is unsigned. Updates immediately (unsynchronized).			
$\begin{gathered} 0 \times 8016 \\ \text { VAR(0x00, } \\ 0 \times 0016) \end{gathered}$	15:0	0x0000	mon_watc	
	7	0x00	Reserved	
	6	0x00	Reserved	
	5	0x00	Reserved	
	4	0x00	Reserved	
	3	0x00	Reserved	
	2	0x00	Reserved	
	1	0x00	Reserved	
	0	0x00	Reserved	
	Watchdog Monitor status indicator. A zero value indicates that the Watchdog has not detected any failures. A non-zero value indicates a failure has occurred and the host should take corrective action. This value is unsigned. Updates immediately (unsynchronized).			

Sequencer Variable Descriptions

Table 36. SEQUENCER VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits		Default

KeepSync Manager Variable Descriptions

Table 37. KEEPSYNC MANAGER VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times 8 C 01 \\ \text { VAR(0x03, } \\ 0 \times 0001) \end{gathered}$	7:0	0x00	keepsyncmgr_control (R/W)
	7:1	X	Reserved
	0	0×00	keepsyncmgr_control_enable_frame_sync Controls if the external FRAM $\overline{\mathrm{E}}$ _SYNC $\overline{\text { pin }}$ is enabled: 0 : FRAME_SYNC pin is disabled. 1: FRAME_SYNC pin is enabled. This value is unsigned. Changes take effect after a Change-Config command.
	KeepSync Manager control flags. This value is unsigned. Changes take effect immediately (unsynchronized).		

NTSC Variable Descriptions

Table 38. NTSC VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times 9400 \\ \text { VAR(0x05, } \\ 0 \times 0000) \end{gathered}$	15:0	0x001C	ntsc_interlaced_output_format_yuv (R/W)
	15:11	X	Reserved
	10:9	RO	Reserved
	8	0x0000	ntsc_interlaced_output_format_yuv_mono_enable Enable monochrome output: 0 : Monochrome disabled. 1: Monochrome enabled. This value is unsigned. Changes take effect after a Change-Config command.
	7	RO	Reserved
	6:5	RO	Reserved
	4	RO	Reserved
	3	RO	Reserved
	2	RO	Reserved
	1:0	RO	Reserved
	Output format YUV control flags. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} \hline 0 \times 9403 \\ \text { VAR(0x05, } \\ \text { 0x0003) } \end{gathered}$	7:0	0x10	ntsc_interlaced_output_y_offset (R/W)
	Pedestal control. This value is unsigned. Changes take effect after a Change-Config command.		
0×9404VAR(0x05,$0 \times 0004)$	7:0	0x3C	ntsc_aet_flicker_freq_hz (R/W)
	The desired flicker avoidance frequency in Hertz (50 Hz or 60 Hz) for NTSC operation. This value is unsigned. Changes take effect after a Change-Config command.		

Table 38. NTSC VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times 9408 \\ \text { VAR(0x05, } \\ 0 \times 0008) \end{gathered}$	15:0	0x0082	ntsc_interlaced_port_parallel_control (R/W)
	15:12	X	Reserved
	11:10	RO	Reserved
	9	RO	Reserved
	8	RO	Reserved
	7	RO	Reserved
	6	0×00	ntsc_interlaced_port_parallel_pixclk_invert Invert output pixel clock in NTSC mode: 0 : pixel clock not inverted. 1: pixel clock inverted. This value is unsigned. Changes take effect after a Change-Config command.
	5	0×00	ntsc_interlaced_port_parallel_fv_Iv_enable Enable the FV and LV strobes in $\overline{N T} \bar{T} C$ mode: $0: \mathrm{FV} / \mathrm{LV}$ strobes disabled. 1: FV/LV strobes enabled. This value is unsigned. Changes take effect after a Change-Config command.
	4	0×00	ntsc_interlaced_port_parallel_pixclk_gate_on Control pixel clock gating in NTSC mode: 0: pixel clock free-runs. 1: pixel clock gated (only runs when FV/LV asserted). This value is unsigned. Changes take effect after a Change-Config command.
	3	X	Reserved
	2:1	RO	Reserved
	0	0×00	ntsc_interlaced_port_parallel_enable Enable the parallel port for NT̄SC mode: 0 : Port disabled. 1: Port enabled. This value is unsigned. Changes take effect after a Change-Config command.
	Parallel port control (bitfield). This value is unsigned. Changes take effect after a Change-Config command.		

Table 38. NTSC VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 x 940 \mathrm{~A} \\ \text { VAR(0x05, } \\ \text { 0x000A) } \end{gathered}$	15:0	0x0001	ntsc_interlaced_port_composite_control (R/W)
	15:3	X	Reserved
	2	0×00	ntsc_interlaced_port_composite_enable_pedestal Enables the pedestal for NTSC mode: 0: Disabled. 1: Enabled. This value is unsigned. Changes take effect after a Change-Config command.
	1	0×00	ntsc_interlaced_port_composite_enable_bw Enable monochrome (black and white) for NTSC mode: 0: Color. 1: Monochrome. This value is unsigned. Changes take effect after a Change-Config command.
	0	0×01	ntsc_interlaced_port_composite_enable Enable the composite port for NTSC mode: 0 : Port disabled. 1: Port enabled. This value is unsigned. Changes take effect after a Change-Config command.
	Composite port control (bitfield). This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times 940 \mathrm{C} \\ \text { VAR(0x05, } \\ 0 \times 000 \mathrm{C}) \end{gathered}$	15:0	0xFEC0	ntsc_interlaced_port_composite_burst_cb (R/W)
	Controls the peak-to-peak amplitude of the NTSC colorburst (in combination with ntsc_interlaced_port composite_burst_cr). By default this value is -320 . If the color burst needs to be adjusted this value could need to be multiplied by the adjustment factor ($1.5 x$ adjustment would need a value of -480) This value is signed 2's complement. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times 940 \mathrm{E} \\ \text { VAR(0x05, } \\ \text { 0x000E) } \end{gathered}$	15:0	0x0000	ntsc_interlaced_port_composite_burst_cr (R/W)
	Controls the peak-to-peak amplitude of the NTSC colorburst (in combination with ntsc_interlaced_port_ composite_burst_cb). If the color burst needs to be adjusted this value could need to be multiplied by the adjustment factor (1.5 x adjustment would need a value of -480) This value is signed 2's complement. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times 9410 \\ \text { VAR(0x05, } \\ 0 \times 0010) \end{gathered}$	15:0	0x0000	ntsc_interlaced_port_composite_sub_phase_offset (R/W)
	Controls up to +/-90 degrees adjustment of the subcarrier reference phase for colorburst reference generation and chroma modulation, where 90 degrees $=-256$. Note: If more phase is required, then negating ntsc_interlaced_port_composite_burst_cb/cr would increase the phase by 180 degrees, allowing the full range to be achieved. This value is signed 2's complement. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times 9412 \\ \text { VAR(0x05, } \\ 0 \times 0012) \end{gathered}$	15:0	0x02C6	ntsc_interlaced_port_composite_active_pixels (R/W)
	Controls the number of active pixels output by the composite port during the active line time. Inactive pixels will be black. Note there are constraints on the legal values: (ntsc_interlaced_port_composite_active_pixels - ntsc_interlaced_port_composite_first_active_pixel) >= 698 (ntsc_interlaced_port_composite_active_pixels + ntsc_interlaced_port_composite_first_active_pixel) <= 716 This value is unsigne \bar{d}. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times 9414 \\ \text { VAR(0x05, } \\ 0 \times 0014) \end{gathered}$	7:0	0x03	ntsc_interlaced_port_composite_first_active_pixel (R/W)
	Controls first active pixel output by the composite port during the active line time. Pixels prior to the first active pixel will be black. Pixels after first_active_pixel + active_pixels will be black. This value is unsigned. Changes take effect after a Change-Config command.		

PAL Variable Descriptions

Table 39. PAL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times 9800 \\ \text { VAR(0x06, } \\ 0 \times 0000) \end{gathered}$	15:0	0x001C	pal_interlaced_output_format_yuv (R/W)
	15:11	X	Reserved
	10:9	RO	Reserved
	8	0×0000	pal_interlaced_output_format_yuv_mono_enable Enable monochrome output: 0 : Monochrome disabled. 1: Monochrome enabled. This value is unsigned. Changes take effect after a Change-Config command.
	7	RO	Reserved
	6:5	RO	Reserved
	4	RO	Reserved
	3	RO	Reserved
	2	RO	Reserved
	1:0	RO	Reserved
	Output format YUV control flags. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times 9803 \\ \text { VAR(0x06, } \\ 0 \times 0003) \end{gathered}$	7:0	0×10	pal_interlaced_output_y_offset (R/W)
	Pedestal control. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times 9804 \\ \text { VAR(0x06, } \\ 0 \times 0004) \end{gathered}$	7:0	0x32	pal_aet_flicker_freq_hz (R/W)
	The desired flicker avoidance frequency in Hertz $(50 \mathrm{~Hz}$ or 60 Hz$)$ for PAL operation. This value is unsigned. Changes take effect after a Change-Config command.		

Table 39. PAL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times 9808 \\ \text { VAR(0x06, } \\ 0 \times 0008) \end{gathered}$	15:0	0x0082	pal_interlaced_port_parallel_control (R/W)
	15:12	X	Reserved
	11:10	RO	Reserved
	9	RO	Reserved
	8	RO	Reserved
	7	RO	Reserved
	6	0×00	pal_interlaced_port_parallel_pixclk_invert Invert output pixel clock in PAL mode: 0: pixel clock not inverted. 1: pixel clock inverted. This value is unsigned. Changes take effect after a Change-Config command.
	5	0×00	pal_interlaced_port_parallel_fv_Iv_enable Enāble the FV and $\overline{\mathrm{L}} \mathrm{V}$ strobes in $\overline{\mathrm{PA} L}$ mode: $0: \mathrm{FV} / \mathrm{LV}$ strobes disabled. 1: FV/LV strobes enabled. This value is unsigned. Changes take effect after a Change-Config command.
	4	0×00	pal_interlaced_port_parallel_pixclk_gate_on Control pixel clock gating in PAL mode: 0: pixel clock free-runs. 1: pixel clock gated (only runs when FV/LV asserted). This value is unsigned. Changes take effect after a Change-Config command.
	3	X	Reserved
	2:1	RO	Reserved
	0	0×00	pal_interlaced_port_parallel_enable Enāble the parallel port for PAL mode: 0 : Port disabled. 1: Port enabled. This value is unsigned. Changes take effect after a Change-Config command.
	Parallel port control (bitfield). This value is unsigned. Changes take effect after a Change-Config command.		

Table 39. PAL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 x 980 \mathrm{~A} \\ \text { VAR(0x06, } \\ \text { 0x000A) } \end{gathered}$	15:0	0x0001	pal_interlaced_port_composite_control (R/W)
	15:3	X	Reserved
	2	0×00	pal_interlaced_port_composite_enable_pedestal Enables the pedestal for PAL mode: 0 : Disabled. 1: Enabled. This value is unsigned. Changes take effect after a Change-Config command.
	1	0×00	pal_interlaced_port_composite_enable_bw Enāble monochrome (black and white) for PAL mode: 0 : Color. 1: Monochrome. This value is unsigned. Changes take effect after a Change-Config command.
	0	0×01	pal_interlaced_port_composite_enable Enāble the composite port for PAL mode: 0 : Port disabled. 1: Port enabled. This value is unsigned. Changes take effect after a Change-Config command.
	Composite port control (bitfield). This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times 980 \mathrm{C} \\ \text { VAR(0x06, } \\ \text { 0x000C) } \end{gathered}$	15:0	0xFFF11	pal_interlaced_port_composite_burst_cb (R/W)
	Controls the peak-to-peak amplitude of the PAL colorburst (in combination with pal_interlaced_port composite_burst_cr). When the colorburst needs to be adjusted both (pal_interlaced_port_composite_ burst_cb, pal_interlaced_port_composite_burst_cr) default values need to be multiplied by the same adjustment factor. This value is signed 2's complement. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times 980 \mathrm{E} \\ \text { VAR(0x06, } \\ \text { 0x000E) } \end{gathered}$	15:0	0x00AA	pal_interlaced_port_composite_burst_cr (R/W)
	Controls the peak-to-peak amplitude of the PAL colorburst (in combination with pal_interlaced_port_ composite_burst_cb). When the colorburst needs to be adjusted both (pal_interlaced_port_composite_burst_cb, pal_interlaced_port_composite_burst_cr) default values need to be multiplied by the same adjustment factor. This value is signed 2's complement. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times 9810 \\ \text { VAR(0x06, } \\ 0 \times 0010) \end{gathered}$	15:0	0x0000	pal_interlaced_port_composite_sub_phase_offset (R/W)
	This value adjusts color burst phase $+/-90(-256=-90)$. Note: If more phase is required then negating pal_interlaced_port_composite_burst_cb/cr would increase the phase by 180 degrees, then the full range can be achieved. This value is signed 2 's complement. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times 9812 \\ \text { VAR(0x06, } \\ 0 \times 0012) \end{gathered}$	15:0	0x02C0	pal_interlaced_port_composite_active_pixels (R/W)
	Controls the number of active pixels output by the composite port during the active line time. Inactive pixels will be black. Note there are constraints on the legal values: (pal_interlaced_port_composite_active_pixels - pal_interlaced_port_composite_first_active_pixel) >= 698 (pal_interlaced_port_composite_active_pixels + pal_interlaced_port_composite_first_active_pixel) <= 716 This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times 9814 \\ \text { VAR(0x06, } \\ 0 \times 0014) \end{gathered}$	7:0	0x05	pal_interlaced_port_composite_first_active_pixel (R/W)
	Controls first active pixel output by the composite port during the active line time. Pixels prior to the first active pixel will be black. Pixels after first_active_pixel + active_pixels will be black. This value is unsigned. Changes take effect after a Change-Config command.		

AE_Rule Variable Descriptions

Table 40. AE_RULE VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \text { 0xA404 } \\ \text { VAR(0x09, } \\ 0 \times 0004) \end{gathered}$	15:0	0x0003	ae_rule_algo (R/W)
	15:3	X	Reserved
	2:0	0×03	ae_rule_exec_rule_avgy_algo Aūto exposure rule algorithm control. 0 : Average Brightness 1: Weighted Brightness 2: Average Log Brightness 3: Weighted Log Brightness. Note: Modes 0 and 1 are only intended for usage in SDR mode (for backwards compatibility with previous automotive SOCs). This value is unsigned. Changes take effect during Vertical Blanking.
	AE Rule algorithm control. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xA408 } \\ \text { VAR(0x09, } \\ \text { 0x0008) } \end{gathered}$	15:0	0x0000	ae_rule_avg_log_y_from_stats (RO)
	Average of the log of each AE zone luminance statistics This value is unsigned fixed-point with 8 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} \text { 0xA40A } \\ \text { VAR(0x09, } \\ \text { 0x000A) } \end{gathered}$	7:0	0x19	ae_rule_ae_weight_table_0_0 (R/W)
	Percentage weight for window row 0 , column 0 . This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xA40B } \\ \text { VAR(0x09, } \\ \text { 0x000B) } \end{gathered}$	7:0	0x19	ae_rule_ae_weight_table_0_1 (R/W)
	Percentage weight for window row 0 , column 1 . This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times A 40 C \\ \text { VAR(0x09, } \\ 0 \times 000 \mathrm{C}) \end{gathered}$	7:0	0x19	ae_rule_ae_weight_table_0_2 (R/W)
	Percentage weight for window row 0, column 2. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xA40D } \\ \text { VAR(0x09, } \\ \text { 0x000D) } \end{gathered}$	7:0	0x19	ae_rule_ae_weight_table_0_3 (R/W)
	Percentage weight for window row 0 , column 3. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { OXA40E } \\ \text { VAR(0x09, } \\ \text { 0x000E) } \end{gathered}$	7:0	0x19	ae_rule_ae_weight_table_0_4 (R/W)
	Percentage weight for window row 0, column 4. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xA40F } \\ \text { VAR(0x09, } \\ 0 \times 000 F) \end{gathered}$	7:0	0x19	ae_rule_ae_weight_table_1_0 (R/W)
	Percentage weight for window row 1 , column 0. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times A 410 \\ \text { VAR(0x09, } \\ 0 \times 0010) \end{gathered}$	7:0	0x4B	ae_rule_ae_weight_table_1_1 (R/W)
	Percentage weight for window row 1 , column 1. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times A 411 \\ \text { VAR(0x09, } \\ 0 \times 0011) \end{gathered}$	7:0	0x4B	ae_rule_ae_weight_table_1_2 (R/W)
	Percentage weight for window row 1, column 2. This value is unsigned. Changes take effect during Vertical Blanking.		

Table 40. AE_RULE VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Table 40. AE_RULE VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

AE_Track Variable Descriptions

Table 41. AE_TRACK VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 x A 800 \\ \text { VAR(0x0A, } \\ 0 \times 0000) \end{gathered}$	15:0	0x0000	ae_track_status (RO)
	15:8	X	Reserved
	7	RO	Reserved
	6	RO	ae_track_ae_status_settled Status of $A E$ track settling: 0x0: AE not settled 0×1 : AE has settled This value is unsigned. Updates during Vertical Blanking.
	5	RO	Reserved
	4	RO	Reserved
	3	RO	ae_track_ae_status_ready When this bit is 1 it indicates that the AE Track algorithm has settled, or exposure and gain limits have been reached. This value is unsigned. Updates during Vertical Blanking.
	2	RO	Reserved
	1	RO	ae_track_ae_status_limithigh When this bit is 1 it indicates that the AE Track algorithm has reached the high limit (the maximum permitted coarse/fine integration times and virtual gain). This value is unsigned. Updates during Vertical Blanking.
	0	RO	ae_track_ae_status_limitlow When this bit is 1 it indicates that the AE Track algorithm has reached the low limit (the minimum permitted coarse/fine integration times and virtual gain). This value is unsigned. Updates during Vertical Blanking.
	AE Track status flags. This value is unsigned. Updates during Vertical Blanking.		

AND9568/D

Table 41. AE_TRACK VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times A 802 \\ \text { VAR(0x0A, } \\ 0 \times 0002) \end{gathered}$	15:0	0x001C	ae_track_mode (R/W)
	15:7	X	Reserved
	6	0×00	Reserved
	5	X	Reserved
	4	0×01	ae_track_ae_mode_min_digital_gain Enāble minimum digital gain calculation: 0 : Disabled. 1: Enabled. Note this mode is disabled when in SDR. The minimum digital gain feature is used to exchange integration time for digital gain since the noise degradation from exchanging integration time for digital can be smaller compared to the noise improvement by deriving those pixels using the long exposure instead of the short exposure. In order to calculate the amount of exposure reduction in terms of integration time, the histogram valley point is computed. The valley is the lowest point between the 2 peaks of a bimodal histogram. The goal is to move that valley point to within the t1 saturation point. In order to achieve this, the digital gain must be greater than the ratio of the histogram valley point luminance over a programmable target value which should be less than or equal to the T1 saturation point. Note this mode is not supported in SDR exposure mode. This value is unsigned. Changes take effect during Vertical Blanking.
	3	0×01	Reserved
	2	0×01	ae_track_ae_mode_percentile Enable histogram percentile target mode: 0: Disabled. 1: Enabled. When enabled, AE ensures that highlight clipping is within a set tolerance. AE tries to place a histogram high end percentile point below a target value. The amount of highlight clipping permitted varies with the number of pixels in the histogram low end. The more pixels that are in the histogram low end, the more important the low end pixels are and thus more clipping is allowed. The maximum exposure adjustment by histogram percentile is controlled by ae_track_max_perc_exp_adjust. This value is unsigned. Changes take effect during Vertical Blanking.
	1	0×00	Reserved
	0	X	Reserved
	AE Track mode control. This value is unsigned. Changes take effect during Vertical Blanking.		

Table 41. AE_TRACK VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times A 804 \\ \text { VAR(0x0A, } \\ 0 \times 0004) \end{gathered}$	15:0	0x003F	ae_track_algo (R/W)
	15:6	X	Reserved
	5	0×01	Reserved
	4	0×01	Reserved
	3	0×01	ae_track_exec_calc_target_luma Exēcute $\overline{\text { target }}$ Iuma calculation routine 0 : Disabled. 1: Enabled. When disabled, the ae_track_avg_log_y_target variable is read-write, allowing the host to set the target luma (in $\log 2$). This value is unsigned. Changes take effect during Vertical Blanking.
	2	0×01	Reserved
	1	0×01	Reserved
	0	0×01	Reserved
	AE Track algorithm control. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xA806 } \\ \text { VAR(0x0A, } \\ \text { 0x0006) } \end{gathered}$	15:0	0x0000	ae_track_avg_log_y_target (RO)
	Current luma target in log2 space. Read-write if target luma calculation algorithm is disabled with ae_track_exec_calc_target_luma $=0$. This value is unsigned fixed-point with 8 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times A 812 \\ \text { VAR(0x0A, } \\ \text { Ox0012) } \end{gathered}$	15:0	0x0080	ae_track_track_exp_speed (R/W)
	This controls the speed in which auto-exposure will settle ($0=$ slow reaction to changes, 256=fast reaction to changes). This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times A 814 \\ \text { VAR(0x0A, } \\ 0 \times 0014) \end{gathered}$	7:0	0×04	ae_track_adapt_thresh (R/W)
	AE tracking threshold. This is equivalent to a gate around the target within which AE can settle. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times A 815 \\ \text { VAR(0x0A } \\ 0 \times 0015) \end{gathered}$	7:0	0x03	ae_track_damp_max (R/W)
	Maximum AE damping. This value is the damping speed when the exposure is near the target (0 is the slowest adaptation). This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times A 816 \\ \text { VAR(0x0A, } \\ 0 \times 0016) \end{gathered}$	7:0	0x03	ae_track_damp_slope (R/W)
	Adaptive AE damping slope. This increases the distance between damp_max and damp_min. The smaller the value the bigger the distance. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times A 817 \\ \text { VAR(0x0A, } \\ \text { Ox0017) } \end{gathered}$	7:0	0x1C	ae_track_damp_min (R/W)
	Minimum AE damping. This value is the damping speed when the exposure is far from the target (0 is the slowest adaptation). This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xA81E } \\ \text { VAR(0x0A, } \\ 0 \times 001 E) \end{gathered}$	7:0	0x86	ae_track_min_gain_gate (R/W)
	Gate around the minimum digital gain. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		

Table 41. AE_TRACK VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Table 41. AE_TRACK VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times A 840 \\ \text { VAR(0x0A } \\ 0 \times 0040) \end{gathered}$	15:0	0x0880	ae_track_log_y_target_hdr_2 (R/W)
	Target table for multiple exposure HDR. These variables can be tuned to provide, for example, high noise immunity or high flicker avoidance. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times A 842 \\ \text { VAR(0x0A, } \\ 0 \times 0042) \end{gathered}$	15:0	0x08D1	ae_track_log_y_target_hdr_3 (R/W)
	Target table for multiple exposure HDR. These variables can be tuned to provide, for example, high noise immunity or high flicker avoidance. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times A 844 \\ \text { VAR(0x0A, } \\ 0 \times 0044) \end{gathered}$	15:0	0×0921	ae_track_log_y_target_hdr_4 (R/W)
	Target table for multiple exposure HDR. These variables can be tuned to provide, for example, high noise immunity or high flicker avoidance. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times A 846 \\ \text { VAR(0x0A, } \\ 0 \times 0046) \end{gathered}$	15:0	0x09A5	ae_track_log_y_target_hdr_5 (R/W)
	Target table for multiple exposure HDR. These variables can be tuned to provide, for example, high noise immunity or high flicker avoidance. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times A 848 \\ \text { VAR(0x0A, } \\ 0 \times 0048) \end{gathered}$	15:0	0x09D0	ae_track_log_y_target_hdr_6 (R/W)
	Target table for multiple exposure HDR. These variables can be tuned to provide, for example, high noise immunity or high flicker avoidance. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xA84A } \\ \text { VAR(0x0A, } \\ 0 \times 004 A) \end{gathered}$	15:0	0x09F7	ae_track_log_y_target_hdr_7 (R/W)
	Target table for multiple exposure HDR. These variables can be tuned to provide, for example, high noise immunity or high flicker avoidance. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		

AWB Variable Descriptions

Table 42. AWB VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times A C 00 \\ \text { VAR(0x0B, } \\ 0 \times 0000) \end{gathered}$	15:0	0x0000	awb_status (RO)
	15:5	X	Reserved
	4	RO	awb_limits_reached 0×0 : AWB has not reached the gain limits. 0×1 : AWB has reached the gain limits. This value is unsigned. Updates during Vertical Blanking.
	3	RO	awb_no_stats 0×0 : AWB has white balance statistics. 0×1 : AWB has no white balance statistics to process. This value is unsigned. Updates during Vertical Blanking.
	2	X	Reserved
	1	RO	awb_color_temperature_limits 0×0 : AWB is within valid color temperature limits. 0×1 : AWB has reached the color temperature limits. This value is unsigned. Updates during Vertical Blanking.
	0	RO	awb_steady $0 x 0$: AWB is busy. 0×1 : AWB has reached a steady state. This value is unsigned. Updates during Vertical Blanking.
	AWB status flags. This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times A C 02 \\ \text { VAR(0x0B, } \\ 0 \times 0002) \end{gathered}$	15:0	0x01C8	awb_mode (R/W)
	15:9	X	Reserved
	8	0×0001	awb_3rd_ccm_enable Enables the 'middle' (3rd) CCM: 0 : AWB interpolates between the 'left' and 'right' CCMs. 1: AWB interpolates between the 'left' and 'middle' CCMs, and the 'middle' and 'right' CCMs, dependent upon the calculated color temperature. This value is unsigned. Changes take effect during Vertical Blanking.
	7	0×01	Reserved
	6	0×01	Reserved
	5:4	X	Reserved
	3	0×01	Reserved
	2:0	X	Reserved
	AWB mode control. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times A C 06 \\ \text { VAR(0x0B, } \\ 0 \times 0006) \end{gathered}$	7:0	0x63	awb_r_ratio_lower (R/W)
	Lower value for the awb_r_ratio_post_awb threshold. This threshold is used to stop AWB calculating new ratios when the difference is small. This value is unsigned. Changes take effect during Vertical Blanking.		

Table 42. AWB VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times A C 07 \\ \text { VAR(0x0B, } \\ 0 \times 0007) \end{gathered}$	7:0	0x65	awb_r_ratio_upper (R/W)
	Upper value for the awb_r_ratio_post_awb threshold. This threshold is used to stop AWB calculating new ratios when the difference is small. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times A C 08 \\ \text { VAR(0x0B, } \\ 0 \times 0008) \end{gathered}$	7:0	0x63	awb_b_ratio_lower (R/W)
	Lower value for the awb_b_ratio_post_awb threshold. This threshold is used to stop AWB calculating new ratios when the difference is small. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xAC09 } \\ \text { VAR(0x0B, } \\ \text { 0x0009) } \end{gathered}$	7:0	0x65	awb_b_ratio_upper (R/W)
	Upper value for the awb_b_ratio_post_awb threshold. This threshold is used to stop AWB calculating new ratios when the difference is small. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xACOA } \\ \text { VAR(0x0B, } \\ \text { 0x000A) } \end{gathered}$	7:0	0x19	awb_r_scene_ratio_lower (R/W)
	Lower limit value for awb_r_ratio_pre_awb. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xACOB } \\ \text { VAR(0x0B, } \\ \text { 0x000B) } \end{gathered}$	7:0	0xFF	awb_r_scene_ratio_upper (R/W)
	Upper limit value for awb_r_ratio_pre_awb. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xACOC } \\ \text { VAR(0x0B, } \\ 0 \times 000 \mathrm{C}) \end{gathered}$	7:0	0x19	awb_b_scene_ratio_lower (R/W)
	Lower limit value for awb_b_ratio_pre_awb. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xACOD } \\ \text { VAR(0x0B, } \\ \text { 0x000D) } \end{gathered}$	7:0	0xFF	awb_b_scene_ratio_upper (R/W)
	Upper limit value for awb_b_ratio_pre_awb. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { OxACOE } \\ \text { VAR(0x0B, } \\ \text { 0x000E) } \end{gathered}$	7:0	0x64	awb_r_ratio_pre_awb (RO)
	R/G ratio from the statistics (before AWB gains applied). This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} \text { 0xACOF } \\ \text { VAR(0x0B, } \\ \text { 0x000F) } \end{gathered}$	7:0	0x64	awb_b_ratio_pre_awb (RO)
	B / G ratio from the statistics (before AWB gains applied). This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times A C 10 \\ \text { VAR(0x0B, } \\ 0 \times 0010) \end{gathered}$	7:0	0x64	awb_r_ratio_post_awb (RO)
	Scene R/G color ratio calculated from raw AWB statistics, unity is 100 (read only). This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times A C 11 \\ \text { VAR(0x0B, } \\ 0 \times 0011) \end{gathered}$	7:0	0x64	awb_b_ratio_post_awb (RO)
	Scene B/G color ratio calculated from raw AWB statistics, unity is 100 (read only). This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} \text { 0xAC12 } \\ \text { VAR(0x0B, } \\ \text { 0x0012) } \end{gathered}$	15:0	0x0080	awb_r_gain (RO)
	Red channel gain in effect for next frame. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		

Table 42. AWB VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times A C 14 \\ \text { VAR(0x0B, } \\ 0 \times 0014) \end{gathered}$	15:0	0x0080	awb_b_gain (RO)
	Blue channel gain in effect for next frame. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times A C 16 \\ \text { VAR(0x0B, } \\ 0 \times 0016) \end{gathered}$	7:0	0x0A	awb_pre_awb_ratios_tracking_speed (R/W)
	Controls the damping speed for pre-AWB ratios tracking: 0 : Maximum damping. 32: No damping. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times A C 24 \\ \text { VAR(0x0B, } \\ 0 \times 0024) \end{gathered}$	15:0	0x0900	awb_ir_control_brightness_th (R/W)
	Threshold for brightness metric log to force Daylight CCM (unity = 256). This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { OxAC28 } \\ \text { VAR(0x0B, } \\ 0 \times 0028) \end{gathered}$	15:0	0x00CD	awb_ir_control_threshold_1 (R/W)
	Threshold parameter for the A-F boundary line. Unity is 128 (7 bit precision). This value is signed 2's complement fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times A C 2 A \\ \text { VAR(0x0B } \\ 0 \times 002 A) \end{gathered}$	15:0	0x0004	awb_ir_control_threshold_1_gate (R/W)
	Hysteresis gate for awb_ir_control_threshold_1. Unity is 128 (7 bit precision). This value is signed 2's complement fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xAC2C } \\ \text { VAR(0x0B } \\ 0 \times 002 C) \end{gathered}$	15:0	0xFF40	awb_ir_control_slope_k1 (R/W)
	Slope for the A-F boundary line. Unity is 128 (7 bit precision). This value is signed 2's complement fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xAC2E } \\ \text { VAR(0x0B, } \\ 0 \times 002 E) \end{gathered}$	15:0	0x000D	awb_ir_control_threshold_2 (R/W)
	Threshold parameter for the Day-A boundary line. Unity is 128 (7 bit precision). This value is signed 2's complement fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times A C 30 \\ \text { VAR(0x0B, } \\ 0 \times 0030) \end{gathered}$	15:0	0x0004	awb_ir_control_threshold_2_gate (R/W)
	Hysteresis gate for awb_ir_control_threshold_2. Unity is 128 (7 bit precision). This value is signed 2's complement fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times A C 32 \\ \text { VAR(0x0B, } \\ \text { 0x0032) } \end{gathered}$	15:0	0x00A4	awb_ir_control_slope_k2 (R/W)
	Slope for the Day-A boundary line. Unity is 128 (7 bit precision). This value is signed 2's complement fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		

Blacklevel Variable Descriptions

Table 43. BLACKLEVEL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times 8 B 004 \\ \text { VAR(0x0C, } \\ 0 \times 0004) \end{gathered}$	15:0	0x0004	blacklevel_algo (R/W)
	15:3	X	Reserved
	2	0x01	blacklevel_exec_calc_blacklevel Controls the automatic blacklevel calculation: 0: Disabled: use cam_cpipe_control_second_black_level to enable manual control. 1: Automatic: firmware calculates the second black level subtraction and stretch. This value is unsigned. Changes take effect during Vertical Blanking.
	1:0	X	Reserved
	Blacklevel algorithm control. This value is unsigned. Changes take effect during Vertical Blanking.		
0xB00C VAR(0x0C, 0x000C)	7:0	0x80	blacklevel_max_black_level (R/W)
	Controls the maximum black level that the firmware can subtract. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xB00D } \\ \text { VAR(0x0C, } \\ \text { 0x000D) } \end{gathered}$	7:0	0x06	blacklevel_black_level_damping (R/W)
	Controls the damping speed for the current blacklevel: 0: Maximum damping. 32: No damping. This value is unsigned. Changes take effect during Vertical Blanking.		

CCM Variable Descriptions

Table 44. CCM VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times B 402 \\ \text { VAR(0x0D } \\ 0 \times 0002) \end{gathered}$	15:0	0x0000	ccm_mode (R/W)
	15:5	X	Reserved
	4	0×00	ccm_disable_norm CCM 0 : Enabled - CCMs are normalized to unity gain. 1: Disabled - CCMs are unmodified. Note: This control does not disable the blacklevel histogram equalization. This value is unsigned. Changes take effect during Vertical Blanking.
	3:0	X	Reserved
	CCM mode control. This value is unsigned. Changes take effect during Vertical Blanking.		

Table 44. CCM VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Stat Variable Descriptions

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times B 804 \\ \text { VAR(0x0E, } \\ 0 \times 0004) \end{gathered}$	31:0	0x00000000	stat_average_luma (RO)
	Weighted average luma of included pixels (zones with excluded pixels have lower weight). Unity=1. This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times B 808 \\ \text { VAR(0x0E, } \\ 0 \times 0008) \end{gathered}$	15:0	0x0000	stat_log_average_luma (RO)
	Log2(average_luma). Unity=256. This value is unsigned fixed-point with 8 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} \text { 0xB80A } \\ \text { VAR(0x0E, } \\ \text { Ox000A) } \end{gathered}$	15:0	0x0000	stat_average_logy (RO)
	Weighted average $\log 2(Y)$ of included pixels (zones with excluded pixels have lower weight). Unity=2048. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} \text { 0xB80C } \\ \text { VAR(0x0E, } \\ \text { 0x000C) } \end{gathered}$	31:0	0x00000000	stat_altm_I_min (RO)
	Minimum L value from statistics engine, default $2^{\wedge} 16^{\star} 0.01$. L is the illuminant component which is estimated from the Shape Adaptive Filter operating on Luma Y. This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} 0 x B 810 \\ \text { VAR(0x0E, } \\ 0 \times 0010) \end{gathered}$	31:0	0x00000000	stat_altm_I_max (RO)
	Maximum L value from statistics engine, $2^{\wedge} 16^{\star} 0.99$. L is the illuminant component which is estimated from the Shape Adaptive Filter operating on Luma Y. This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times B 814 \\ \text { VAR(0x0E, } \\ 0 \times 0014) \end{gathered}$	31:0	0x00000000	stat_awb_pixels_in_stat (RO)
	Total pixels used to generate AWB statistics. This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times B 818 \\ \text { VAR(0x0E, } \\ 0 \times 0018) \end{gathered}$	15:0	0x0000	stat_awb_norm_sum_weighted_red (RO)
	Normalized sum of weighted red. This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} 0 x B 81 A \\ \text { VAR(0x0E, } \\ 0 \times 001 A) \end{gathered}$	15:0	0x0000	stat_awb_norm_sum_weighted_green (RO)
	Normalized sum of weighted green. This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} \text { 0xB81C } \\ \text { VAR(0x0E, } \\ 0 \times 001 C) \end{gathered}$	15:0	0x0000	stat_awb_norm_sum_weighted_blue (RO)
	Normalized sum of weighted blue. This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times B 820 \\ \text { VAR(0x0E, } \\ 0 \times 0020) \end{gathered}$	31:0	0x00000000	stat_clip_total_pixels_win (RO)
	Total number of pixels in CLIP window. This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} 0 x B 824 \\ \text { VAR(0x0E, } \\ 0 \times 0024) \end{gathered}$	15:0	0x0000	stat_clip_num_lowlights (RO)
	Percentage of pixels in the 'dark' region (1024 = 100\%). This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} 0 x B 850 \\ \text { VAR(0x0E, } \\ 0 \times 0050) \end{gathered}$	15:0	0x0000	stat_ae_zone_size_cells (RO)
	Number of cells in each AE zone. This value is unsigned. Updates after a Refresh command.		

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} 0 \times B 852 \\ \text { VAR(0x0E, } \\ 0 \times 0052) \end{gathered}$	15:0	0x0000	stat_ae_histogram_size (RO)	
	Total number of cells in AE luma histogram. This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 854 \\ \text { VAR(0x0E, } \\ 0 \times 0054) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_0_0 (RO)	
	Average luminance for AE window zone $[0,0$] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 858 \\ \text { VAR(0x0E, } \\ 0 \times 0058) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_0_1 (RO)	
	Average luminance for AE window zone [0, 1] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 85 C \\ \text { VAR(0x0E, } \\ 0 \times 005 \mathrm{C}) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_0_2 (RO)	
	Average luminance for AE window zone [0, 2] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 860 \\ \text { VAR(0x0E, } \\ 0 \times 0060) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_0_3 (RO)	
	Average luminance for AE window zone [0, 3] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 864 \\ \text { VAR(0x0E, } \\ 0 \times 0064) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_0_4 (RO)	
	Average luminance for AE window zone [0, 4] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 868 \\ \text { VAR(0x0E, } \\ 0 \times 0068) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_1_0 (RO)	
	Average luminance for AE window zone [1, 0] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 86 C \\ \text { VAR(0x0E, } \\ 0 \times 006 C) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_1_1 (RO)	
	Average luminance for AE window zone [1, 1] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 870 \\ \text { VAR(0x0E, } \\ 0 \times 0070) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_1_2 (RO)	
	Average luminance for AE window zone [1, 2] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 874 \\ \text { VAR(0x0E, } \\ 0 \times 0074) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_1_3 (RO)	
	Average luminance for AE window zone [1, 3] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 878 \\ \text { VAR(0x0E, } \\ 0 \times 0078) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_1_4 (RO)	
	Average luminance for AE window zone [1, 4] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 87 C \\ \text { VAR(0x0E, } \\ 0 \times 007 \mathrm{C}) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_2_0 (RO)	
	Average luminance for AE window zone [2, 0] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 880 \\ \text { VAR(0x0E, } \\ 0 \times 0080) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_2_1 (RO)	
	Average luminance for AE window zone [2, 1] This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} 0 \times B 884 \\ \text { VAR(0x0E, } \\ 0 \times 0084) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_2_2 (RO)	
	Average luminance for AE window zone [2, 2] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 888 \\ \text { VAR(0x0E, } \\ 0 \times 0088) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_2_3 (RO)	
	Average luminance for AE window zone [2, 3] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 88 C \\ \text { VAR(0x0E, } \\ 0 \times 008 C) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_2_4 (RO)	
	Average luminance for AE window zone [2, 4] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 890 \\ \text { VAR(0x0E, } \\ 0 \times 0090) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_3_0 (RO)	
	Average luminance for $A E$ window zone [3, 0] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 894 \\ \text { VAR(0x0E, } \\ 0 \times 0094) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_3_1 (RO)	
	Average luminance for AE window zone [3, 1] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 898 \\ \text { VAR(0x0E, } \\ 0 \times 0098) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_3_2 (RO)	
	Average luminance for AE window zone [3, 2] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 89 C \\ \text { VAR(0x0E, } \\ 0 \times 009 C) \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_3_3 (RO)	
	Average luminance for AE window zone $[3,3]$ This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8A0 } \\ \text { VAR(0x0E, } \\ \text { Ox00A0) } \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_3_4 (RO)	
	Average luminance for AE window zone [3, 4] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8A4 } \\ \text { VAR(0x0E, } \\ \text { 0x00A4) } \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_4_0 (RO)	
	Average luminance for AE window zone [4, 0] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8A8 } \\ \text { VAR(0x0E, } \\ \text { 0x00A8) } \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_4_1 (RO)	
	Average luminance for AE window zone [4, 1] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8AC } \\ \text { VAR(0x0E, } \\ \text { 0x00AC) } \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_4_2 (RO)	
	Average luminance for AE window zone [4, 2] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8B0 } \\ \text { VAR(0x0E, } \\ \text { Ox00B0) } \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_4_3 (RO)	
	Average luminance for AE window zone [4, 3] This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8B4 } \\ \text { VAR(0x0E, } \\ \text { 0x00B4) } \end{gathered}$	31:0	0x00000000	stat_ae_zone_avgluma_4_4 (RO)	
	Average luminance for AE window zone [4, 4] This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} \text { 0xB8B8 } \\ \text { VAR(0x0E, } \\ \text { 0x00B8) } \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_0_0 (RO)	
	Average of the log2 of luminance for AE window zone [0,0] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8BA } \\ \text { VAR(0x0E, } \\ \text { 0x00BA) } \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_0_1 (RO)	
	Average of the log2 of luminance for AE window zone [0,1] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8BC } \\ \text { VAR(0x0E, } \\ \text { 0x00BC) } \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_0_2 (RO)	
	Average of the log2 of luminance for AE window zone [0, 2] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8BE } \\ \text { VAR(0x0E, } \\ \text { 0x00BE) } \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_0_3 (RO)	
	Average of the log2 of luminance for AE window zone [0,3] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 8 C 0 \\ \text { VAR(0x0E, } \\ 0 \times 00 C 0) \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_0_4 (RO)	
	Average of the log2 of luminance for AE window zone [0, 4] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8C2 } \\ \text { VAR(0x0E, } \\ \text { 0x00C2) } \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_1_0 (RO)	
	Average of the log2 of luminance for AE window zone [1, 0] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 8 C 4 \\ \text { VAR(0x0E, } \\ 0 \times 00 \mathrm{C} 4) \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_1_1 (RO)	
	Average of the log2 of luminance for AE window zone [1, 1] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 8 C 6 \\ \text { VAR(0x0E, } \\ 0 \times 00 C 6) \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_1_2 (RO)	
	Average of the log2 of luminance for AE window zone [1, 2] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8C8 } \\ \text { VAR(0x0E, } \\ 0 \times 00 C 8) \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_1_3 (RO)	
	Average of the log2 of luminance for AE window zone [1, 3] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8CA } \\ \text { VAR(0x0E, } \\ \text { 0x00CA) } \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_1_4 (RO)	
	Average of the log2 of luminance for AE window zone [1, 4] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 8 C C \\ \text { VAR(0x0E, } \\ 0 \times 00 C C) \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_2_0 (RO)	
	Average of the log2 of luminance for AE window zone [2, 0] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8CE } \\ \text { VAR(0x0E, } \\ \text { 0x00CE) } \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_2_1 (RO)	
	Average of the log2 of luminance for AE window zone [2, 1] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8DO } \\ \text { VAR(0x0E, } \\ \text { 0x00D0) } \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_2_2 (RO)	
	Average of the log2 of luminance for AE window zone [2, 2] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} \hline \text { 0xB8D2 } \\ \text { VAR(0x0E, } \\ \text { 0x00D2) } \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_2_3 (RO)	
	Average of the log2 of luminance for AE window zone [2, 3] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8D4 } \\ \text { VAR(0x0E, } \\ \text { 0x00D4) } \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_2_4 (RO)	
	Average of the log2 of luminance for AE window zone [2, 4] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8D6 } \\ \text { VAR(0x0E, } \\ \text { Ox00D6) } \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_3_0 (RO)	
	Average of the log2 of luminance for AE window zone [3, 0] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8D8 } \\ \text { VAR(0x0E, } \\ \text { 0x00D8) } \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_3_1 (RO)	
	Average of the log2 of luminance for AE window zone [3, 1] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8DA } \\ \text { VAR(0x0E, } \\ \text { 0x00DA) } \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_3_2 (RO)	
	Average of the log2 of luminance for AE window zone [3, 2] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8DC } \\ \text { VAR(0x0E, } \\ \text { 0x00DC) } \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_3_3 (RO)	
	Average of the log2 of luminance for AE window zone [3, 3] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8DE } \\ \text { VAR(0x0E, } \\ \text { 0x00DE) } \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_3_4 (RO)	
	Average of the log2 of luminance for AE window zone [3, 4] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 8 E 0 \\ \text { VAR(0x0E, } \\ 0 \times 00 E 0) \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_4_0 (RO)	
	Average of the log2 of luminance for AE window zone [4, 0] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8E2 } \\ \text { VAR(0x0E, } \\ \text { Ox00E2) } \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_4_1 (RO)	
	Average of the log2 of luminance for AE window zone [4, 1] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 8 E 4 \\ \text { VAR(0x0E, } \\ 0 \times 00 E 4) \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_4_2 (RO)	
	Average of the log2 of luminance for AE window zone [4, 2] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 8 E 6 \\ \text { VAR(0x0E, } \\ 0 \times 00 \mathrm{E} 6) \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_4_3 (RO)	
	Average of the log2 of luminance for AE window zone [4, 3] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB8E8 } \\ \text { VAR(0x0E, } \\ 0 \times 00 E 8) \end{gathered}$	15:0	0x0000	stat_ae_zone_avglogy_4_4 (RO)	
	Average of the log2 of luminance for AE window zone [4, 4] This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB91C } \\ \text { VAR(0x0E, } \\ \text { 0x011C) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_0 (RO)	
	luminance statistics histogram bin 0 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} \text { 0xB91E } \\ \text { VAR(0x0E, } \\ \text { 0x011E) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_1 (RO)	
	luminance statistics histogram bin 1 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 920 \\ \text { VAR(0x0E, } \\ 0 \times 0120) \end{gathered}$	15:0	0x0000	stat_ae_histogram_2 (RO)	
	luminance statistics histogram bin 2 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 922 \\ \text { VAR(0x0E, } \\ 0 \times 0122) \end{gathered}$	15:0	0x0000	stat_ae_histogram_3 (RO)	
	luminance statistics histogram bin 3 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 924 \\ \text { VAR(0x0E, } \\ 0 \times 0124) \end{gathered}$	15:0	0x0000	stat_ae_histogram_4 (RO)	
	luminance statistics histogram bin 4 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 926 \\ \text { VAR(0x0E, } \\ 0 \times 0126) \end{gathered}$	15:0	0x0000	stat_ae_histogram_5 (RO)	
	luminance statistics histogram bin 5 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 928 \\ \text { VAR(0x0E, } \\ 0 \times 0128) \end{gathered}$	15:0	0x0000	stat_ae_histogram_6 (RO)	
	luminance statistics histogram bin 6 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 92 A \\ \text { VAR(0x0E, } \\ 0 \times 012 A) \end{gathered}$	15:0	0x0000	stat_ae_histogram_7 (RO)	
	luminance statistics histogram bin 7 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 92 C \\ \text { VAR(0x0E, } \\ 0 \times 012 C) \end{gathered}$	15:0	0x0000	stat_ae_histogram_8 (RO)	
	luminance statistics histogram bin 8 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { OxB92E } \\ \text { VAR(0x0E, } \\ \text { 0x012E) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_9 (RO)	
	luminance statistics histogram bin 9 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 930 \\ \text { VAR(0x0E, } \\ 0 \times 0130) \end{gathered}$	15:0	0x0000	stat_ae_histogram_10 (RO)	
	luminance statistics histogram bin 10 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 932 \\ \text { VAR(0x0E, } \\ 0 \times 0132) \end{gathered}$	15:0	0x0000	stat_ae_histogram_11 (RO)	
	luminance statistics histogram bin 11 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 934 \\ \text { VAR(0x0E, } \\ 0 \times 0134) \end{gathered}$	15:0	0x0000	stat_ae_histogram_12 (RO)	
	luminance statistics histogram bin 12 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 936 \\ \text { VAR(0x0E, } \\ 0 \times 0136) \end{gathered}$	15:0	0x0000	stat_ae_histogram_13 (RO)	
	luminance statistics histogram bin 13 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} 0 \times B 938 \\ \text { VAR(0x0E, } \\ 0 \times 0138) \end{gathered}$	15:0	0x0000	stat_ae_histogram_14 (RO)	
	luminance statistics histogram bin 14 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB93A } \\ \text { VAR(0x0E, } \\ 0 \times 013 A) \end{gathered}$	15:0	0x0000	stat_ae_histogram_15 (RO)	
	luminance statistics histogram bin 15 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB93C } \\ \text { VAR(0x0E, } \\ 0 \times 013 C) \end{gathered}$	15:0	0x0000	stat_ae_histogram_16 (RO)	
	luminance statistics histogram bin 16 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { OxB93E } \\ \text { VAR(0x0E, } \\ \text { 0x013E) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_17(RO)	
	luminance statistics histogram bin 17 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 940 \\ \text { VAR(0x0E, } \\ 0 \times 0140) \end{gathered}$	15:0	0x0000	stat_ae_histogram_18(RO)	
	luminance statistics histogram bin 18 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 942 \\ \text { VAR(0x0E, } \\ 0 \times 0142) \end{gathered}$	15:0	0x0000	stat_ae_histogram_19 (RO)	
	luminance statistics histogram bin 19 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 944 \\ \text { VAR(0x0E, } \\ 0 \times 0144) \end{gathered}$	15:0	0x0000	stat_ae_histogram_20 (RO)	
	luminance statistics histogram bin 20 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 946 \\ \text { VAR(0x0E, } \\ 0 \times 0146) \end{gathered}$	15:0	0x0000	stat_ae_histogram_21 (RO)	
	luminance statistics histogram bin 21 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 948 \\ \text { VAR(0x0E, } \\ 0 \times 0148) \end{gathered}$	15:0	0x0000	stat_ae_histogram_22 (RO)	
	luminance statistics histogram bin 22 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB94A } \\ \text { VAR(0x0E, } \\ \text { 0x014A) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_23 (RO)	
	luminance statistics histogram bin 23 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 94 C \\ \text { VAR(0x0E, } \\ 0 \times 014 \mathrm{C}) \end{gathered}$	15:0	0x0000	stat_ae_histogram_24 (RO)	
	luminance statistics histogram bin 24 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 94 E \\ \text { VAR(0x0E, } \\ 0 \times 014 E) \end{gathered}$	15:0	0x0000	stat_ae_histogram_25 (RO)	
	luminance statistics histogram bin 25 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 950 \\ \text { VAR(0x0E, } \\ 0 \times 0150) \end{gathered}$	15:0	0x0000	stat_ae_histogram_26 (RO)	
	luminance statistics histogram bin 26 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} 0 \times B 952 \\ \text { VAR(0x0E, } \\ 0 \times 0152) \end{gathered}$	15:0	0x0000	stat_ae_histogram_27 (RO)	
	luminance statistics histogram bin 27 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 954 \\ \text { VAR(0x0E, } \\ 0 \times 0154) \end{gathered}$	15:0	0x0000	stat_ae_histogram_28(RO)	
	luminance statistics histogram bin 28 This value is unsigned. Updates during Vertical Blanking.			
$0 x B 956$VAR(0x0E,$0 \times 0156)$	15:0	0x0000	stat_ae_histogram_29 (RO)	
	luminance statistics histogram bin 29 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 958 \\ \text { VAR(0x0E, } \\ 0 \times 0158) \end{gathered}$	15:0	0x0000	stat_ae_histogram_30 (RO)	
	luminance statistics histogram bin 30 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 95 A \\ \text { VAR(0x0E, } \\ 0 \times 015 A) \end{gathered}$	15:0	0x0000	stat_ae_histogram_31 (RO)	
	luminance statistics histogram bin 31 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB95C } \\ \text { VAR(0x0E, } \\ 0 \times 015 \mathrm{C}) \end{gathered}$	15:0	0x0000	stat_ae_histogram_32 (RO)	
	luminance statistics histogram bin 32 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB95E } \\ \text { VAR(0x0E, } \\ 0 \times 015 E) \end{gathered}$	15:0	0x0000	stat_ae_histogram_33 (RO)	
	luminance statistics histogram bin 33 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 960 \\ \text { VAR(0x0E, } \\ 0 \times 0160) \end{gathered}$	15:0	0x0000	stat_ae_histogram_34 (RO)	
	luminance statistics histogram bin 34 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 962 \\ \text { VAR(0x0E, } \\ 0 \times 0162) \end{gathered}$	15:0	0x0000	stat_ae_histogram_35 (RO)	
	luminance statistics histogram bin 35 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 964 \\ \text { VAR(0x0E, } \\ 0 \times 0164) \end{gathered}$	15:0	0x0000	stat_ae_histogram_36 (RO)	
	luminance statistics histogram bin 36 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 966 \\ \text { VAR(0x0E,0x } \\ 0166) \end{gathered}$	15:0	0x0000	stat_ae_histogram_37 (RO)	
	luminance statistics histogram bin 37 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 968 \\ \text { VAR(0x0E, } \\ 0 \times 0168) \end{gathered}$	15:0	0x0000	stat_ae_histogram_38(RO)	
	luminance statistics histogram bin 38 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB96A } \\ \text { VAR(0x0E, } \\ \text { 0x016A) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_39 (RO)	
	luminance statistics histogram bin 39 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} \text { 0xB96C } \\ \text { VAR(0x0E, } \\ \text { 0x016C) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_40 (RO)	
	luminance statistics histogram bin 40 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 96 E \\ \text { VAR(0x0E, } \\ 0 \times 016 E) \end{gathered}$	15:0	0x0000	stat_ae_histogram_41 (RO)	
	luminance statistics histogram bin 41 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 970 \\ \text { VAR(0x0E, } \\ 0 \times 0170) \end{gathered}$	15:0	0x0000	stat_ae_histogram_42 (RO)	
	luminance statistics histogram bin 42 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 972 \\ \text { VAR(0x0E, } \\ 0 \times 0172) \end{gathered}$	15:0	0x0000	stat_ae_histogram_43 (RO)	
	luminance statistics histogram bin 43 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 974 \\ \text { VAR(0x0E, } \\ 0 \times 0174) \end{gathered}$	15:0	0x0000	stat_ae_histogram_44 (RO)	
	luminance statistics histogram bin 44 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 976 \\ \text { VAR(0x0E, } \\ 0 \times 0176) \end{gathered}$	15:0	0x0000	stat_ae_histogram_45 (RO)	
	luminance statistics histogram bin 45 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 978 \\ \text { VAR(0x0E, } \\ 0 \times 0178) \end{gathered}$	15:0	0x0000	stat_ae_histogram_46 (RO)	
	luminance statistics histogram bin 46 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 97 A \\ \text { VAR(0x0E, } \\ 0 \times 017 A) \end{gathered}$	15:0	0x0000	stat_ae_histogram_47 (RO)	
	luminance statistics histogram bin 47 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 97 C \\ \text { VAR(0x0E, } \\ 0 \times 017 C) \end{gathered}$	15:0	0x0000	stat_ae_histogram_48 (RO)	
	luminance statistics histogram bin 48 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB97E } \\ \text { VAR(0x0E, } \\ \text { Ox017E) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_49 (RO)	
	luminance statistics histogram bin 49 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 980 \\ \text { VAR(0x0E, } \\ 0 \times 0180) \end{gathered}$	15:0	0x0000	stat_ae_histogram_50 (RO)	
	luminance statistics histogram bin 50 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 982 \\ \text { VAR(0x0E, } \\ 0 \times 0182) \end{gathered}$	15:0	0x0000	stat_ae_histogram_51 (RO)	
	luminance statistics histogram bin 51 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 984 \\ \text { VAR(0x0E, } \\ 0 \times 0184) \end{gathered}$	15:0	0x0000	stat_ae_histogram_52 (RO)	
	luminance statistics histogram bin 52 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} 0 \times B 986 \\ \text { VAR(0x0E, } \\ 0 \times 0186) \end{gathered}$	15:0	0x0000	stat_ae_histogram_53(RO)	
	luminance statistics histogram bin 53 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 988 \\ \text { VAR(0x0E, } \\ 0 \times 0188) \end{gathered}$	15:0	0x0000	stat_ae_histogram_54 (RO)	
	luminance statistics histogram bin 54 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 98 A \\ \text { VAR(0x0E, } \\ 0 \times 018 A) \end{gathered}$	15:0	0x0000	stat_ae_histogram_55 (RO)	
	luminance statistics histogram bin 55 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 98 C \\ \text { VAR(0x0E, } \\ 0 \times 018 \mathrm{C}) \end{gathered}$	15:0	0x0000	stat_ae_histogram_56(RO)	
	luminance statistics histogram bin 56 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 98 E \\ \text { VAR(0x0E, } \\ 0 \times 018 \mathrm{E}) \end{gathered}$	15:0	0x0000	stat_ae_histogram_57 (RO)	
	luminance statistics histogram bin 57 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 990 \\ \text { VAR(0x0E, } \\ 0 \times 0190) \end{gathered}$	15:0	0x0000	stat_ae_histogram_58(RO)	
	luminance statistics histogram bin 58 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 992 \\ \text { VAR(0x0E, } \\ 0 \times 0192) \end{gathered}$	15:0	0x0000	stat_ae_histogram_59 (RO)	
	luminance statistics histogram bin 59 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 994 \\ \text { VAR(0x0E, } \\ 0 \times 0194) \end{gathered}$	15:0	0x0000	stat_ae_histogram_60 (RO)	
	luminance statistics histogram bin 60 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 996 \\ \text { VAR(0x0E, } \\ 0 \times 0196) \end{gathered}$	15:0	0x0000	stat_ae_histogram_61 (RO)	
	luminance statistics histogram bin 61 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 998 \\ \text { VAR(0x0E, } \\ 0 \times 0198) \end{gathered}$	15:0	0x0000	stat_ae_histogram_62 (RO)	
	luminance statistics histogram bin 62 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB99A } \\ \text { VAR(0x0E, } \\ \text { 0x019A) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_63 (RO)	
	luminance statistics histogram bin 63 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB99C } \\ \text { VAR(0x0E, } \\ \text { 0x019C) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_64 (RO)	
	luminance statistics histogram bin 64 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB99E } \\ \text { VAR(0x0E, } \\ \text { 0x019E) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_65 (RO)	
	luminance statistics histogram bin 65 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} 0 \times B 9 A 0 \\ \text { VAR(0x0E, } \\ 0 \times 01 A 0) \end{gathered}$	15:0	0x0000	stat_ae_histogram_66 (RO)	
	luminance statistics histogram bin 66 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9A2 } \\ \text { VAR(0x0E, } \\ \text { 0x01A2) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_67 (RO)	
	luminance statistics histogram bin 67 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9A4 } \\ \text { VAR(0x0E, } \\ 0 \times 01 \mathrm{~A} 4) \end{gathered}$	15:0	0x0000	stat_ae_histogram_68(RO)	
	luminance statistics histogram bin 68 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9A6 } \\ \text { VAR(0x0E, } \\ \text { 0x01A6) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_69 (RO)	
	luminance statistics histogram bin 69 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9A8 } \\ \text { VAR(0x0E, } \\ 0 \times 01 A 8) \end{gathered}$	15:0	0x0000	stat_ae_histogram_70 (RO)	
	luminance statistics histogram bin 70 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9AA } \\ \text { VAR(0x0E, } \\ 0 \times 01 A A) \end{gathered}$	15:0	0x0000	stat_ae_histogram_71 (RO)	
	luminance statistics histogram bin 71 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9AC } \\ \text { VAR(0x0E, } \\ 0 \times 01 A C) \end{gathered}$	15:0	0x0000	stat_ae_histogram_72 (RO)	
	luminance statistics histogram bin 72 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9AE } \\ \text { VAR(0x0E, } \\ 0 \times 01 A E) \end{gathered}$	15:0	0x0000	stat_ae_histogram_73 (RO)	
	luminance statistics histogram bin 73 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9B0 } \\ \text { VAR(0x0E, } \\ \text { 0x01B0) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_74 (RO)	
	luminance statistics histogram bin 74 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9B2 } \\ \text { VAR(0x0E, } \\ \text { 0x01B2) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_75 (RO)	
	luminance statistics histogram bin 75 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9B4 } \\ \text { VAR(0x0E, } \\ \text { 0x01B4) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_76 (RO)	
	luminance statistics histogram bin 76 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9B6 } \\ \text { VAR(0x0E, } \\ \text { 0x01B6) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_77 (RO)	
	luminance statistics histogram bin 77 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9B8 } \\ \text { VAR(0x0E, } \\ 0 \times 01 \mathrm{~B} 8) \end{gathered}$	15:0	0x0000	stat_ae_histogram_78 (RO)	
	luminance statistics histogram bin 78 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} \text { 0xB9BA } \\ \text { VAR(0x0E, } \\ \text { 0x01BA) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_79 (RO)	
	luminance statistics histogram bin 79 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 9 B C \\ \text { VAR(0x0E, } \\ 0 \times 01 B C) \end{gathered}$	15:0	0x0000	stat_ae_histogram_80 (RO)	
	luminance statistics histogram bin 80 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9BE } \\ \text { VAR(0x0E, } \\ \text { 0x01BE) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_81 (RO)	
	luminance statistics histogram bin 81 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 9 C 0 \\ \text { VAR(0x0E, } \\ 0 \times 01 \mathrm{C} 0) \end{gathered}$	15:0	0x0000	stat_ae_histogram_82 (RO)	
	luminance statistics histogram bin 82 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 9 C 2 \\ \text { VAR(0x0E, } \\ 0 \times 01 \mathrm{C} 2) \end{gathered}$	15:0	0x0000	stat_ae_histogram_83 (RO)	
	luminance statistics histogram bin 83 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9C4 } \\ \text { VAR(0x0E, } \\ 0 \times 01 \mathrm{C} 4) \end{gathered}$	15:0	0x0000	stat_ae_histogram_84 (RO)	
	luminance statistics histogram bin 84 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 9 C 6 \\ \text { VAR(0x0E, } \\ 0 \times 01 \mathrm{C} 6) \end{gathered}$	15:0	0x0000	stat_ae_histogram_85 (RO)	
	luminance statistics histogram bin 85 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 9 C 8 \\ \text { VAR(0x0E, } \\ 0 \times 01 \mathrm{C} 8) \end{gathered}$	15:0	0x0000	stat_ae_histogram_86 (RO)	
	luminance statistics histogram bin 86 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9CA } \\ \text { VAR(0x0E, } \\ 0 \times 01 C A) \end{gathered}$	15:0	0x0000	stat_ae_histogram_87 (RO)	
	luminance statistics histogram bin 87 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B 9 C C \\ \text { VAR(0x0E, } \\ 0 \times 01 C C) \end{gathered}$	15:0	0x0000	stat_ae_histogram_88(RO)	
	luminance statistics histogram bin 88 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { OxB9CE } \\ \text { VAR(0x0E, } \\ \text { 0x01CE) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_89 (RO)	
	luminance statistics histogram bin 89 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9D0 } \\ \text { VAR(0x0E, } \\ \text { 0x01D0) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_90 (RO)	
	luminance statistics histogram bin 90 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9D2 } \\ \text { VAR(0x0E, } \\ \text { 0x01D2) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_91 (RO)	
	luminance statistics histogram bin 91 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} \text { 0xB9D4 } \\ \text { VAR(0x0E, } \\ \text { 0x01D4) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_92 (RO)	
	luminance statistics histogram bin 92 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9D6 } \\ \text { VAR(0x0E, } \\ \text { 0x01D6) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_93 (RO)	
	luminance statistics histogram bin 93 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9D8 } \\ \text { VAR(0x0E, } \\ \text { 0x01D8) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_94 (RO)	
	luminance statistics histogram bin 94 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9DA } \\ \text { VAR(0x0E, } \\ \text { 0x01DA) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_95 (RO)	
	luminance statistics histogram bin 95 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9DC } \\ \text { VAR(0x0E, } \\ \text { 0x01DC) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_96 (RO)	
	luminance statistics histogram bin 96 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9DE } \\ \text { VAR(0x0E, } \\ \text { 0x01DE) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_97(RO)	
	luminance statistics histogram bin 97 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9E0 } \\ \text { VAR(0x0E, } \\ 0 \times 01 E 0) \end{gathered}$	15:0	0x0000	stat_ae_histogram_98(RO)	
	luminance statistics histogram bin 98 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9E2 } \\ \text { VAR(0x0E, } \\ \text { 0x01E2) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_99 (RO)	
	luminance statistics histogram bin 99 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9E4 } \\ \text { VAR(0x0E, } \\ \text { 0x01E4) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_100 (RO)	
	luminance statistics histogram bin 100 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9E6 } \\ \text { VAR(0x0E, } \\ 0 \times 01 E 6) \end{gathered}$	15:0	0x0000	stat_ae_histogram_101 (RO)	
	luminance statistics histogram bin 101 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9E8 } \\ \text { VAR(0x0E, } \\ \text { 0x01E8) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_102 (RO)	
	luminance statistics histogram bin 102 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9EA } \\ \text { VAR(0x0E, } \\ \text { 0x01EA) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_103 (RO)	
	luminance statistics histogram bin 103 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { OxB9EC } \\ \text { VAR(0x0E, } \\ \text { 0x01EC) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_104 (RO)	
	luminance statistics histogram bin 104 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} \text { 0xB9EE } \\ \text { VAR(0x0E, } \\ \text { 0x01EE) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_105 (RO)	
	luminance statistics histogram bin 105 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 9 F 0 \\ \text { VAR(0x0E, } \\ 0 \times 01 F 0) \end{gathered}$	15:0	0x0000	stat_ae_histogram_106 (RO)	
	luminance statistics histogram bin 106 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9F2 } \\ \text { VAR(0x0E, } \\ \text { 0x01F2) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_107 (RO)	
	luminance statistics histogram bin 107 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { OxB9F4 } \\ \text { VAR(0x0E, } \\ \text { 0x01F4) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_108(RO)	
	luminance statistics histogram bin 108 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9F6 } \\ \text { VAR(0x0E, } \\ \text { 0x01F6) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_109 (RO)	
	luminance statistics histogram bin 109 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9F8 } \\ \text { VAR(0x0E, } \\ \text { 0x01F8) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_110 (RO)	
	luminance statistics histogram bin 110 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B 9 F A \\ \text { VAR(0x0E, } \\ 0 \times 01 F A) \end{gathered}$	15:0	0x0000	stat_ae_histogram_111 (RO)	
	luminance statistics histogram bin 111 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xB9FC } \\ \text { VAR(0x0E, } \\ \text { 0x01FC) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_112 (RO)	
	luminance statistics histogram bin 112 This value is unsigned. Updates during Vertical Blanking.			
0xB9FE VAR(0x0E, 0x01FE)	15:0	0x0000	stat_ae_histogram_113 (RO)	
	luminance statistics histogram bin 113 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA00 } \\ \text { VAR(0x0E, } \\ 0 \times 0200) \end{gathered}$	15:0	0x0000	stat_ae_histogram_114 (RO)	
	luminance statistics histogram bin 114 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA02 } \\ \text { VAR(0x0E, } \\ \text { 0x0202) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_115 (RO)	
	luminance statistics histogram bin 115 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA04 } \\ \text { VAR(0x0E, } \\ 0 \times 0204) \end{gathered}$	15:0	0x0000	stat_ae_histogram_116 (RO)	
	luminance statistics histogram bin 116 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { OxBA06 } \\ \text { VAR(0x0E, } \\ 0 \times 0206) \end{gathered}$	15:0	0x0000	stat_ae_histogram_117 (RO)	
	luminance statistics histogram bin 117 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} \text { 0xBA08 } \\ \text { VAR(0x0E, } \\ 0 \times 0208) \end{gathered}$	15:0	0x0000	stat_ae_histogram_118(RO)	
	luminance statistics histogram bin 118 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { OxBAOA } \\ \text { VAR(0x0E, } \\ \text { 0x020A) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_119 (RO)	
	luminance statistics histogram bin 119 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAOC } \\ \text { VAR(0x0E, } \\ \text { 0x020C) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_120 (RO)	
	luminance statistics histogram bin 120 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { OxBAOE } \\ \text { VAR(0x0E, } \\ \text { 0x020E) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_121 (RO)	
	luminance statistics histogram bin 121 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B A 10 \\ \text { VAR(0x0E, } \\ 0 \times 0210) \end{gathered}$	15:0	0x0000	stat_ae_histogram_122 (RO)	
	luminance statistics histogram bin 122 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B A 12 \\ \text { VAR(0x0E, } \\ 0 \times 0212) \end{gathered}$	15:0	0x0000	stat_ae_histogram_123 (RO)	
	luminance statistics histogram bin 123 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B A 14 \\ \text { VAR(0x0E, } \\ 0 \times 0214) \end{gathered}$	15:0	0x0000	stat_ae_histogram_124 (RO)	
	luminance statistics histogram bin 124 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B A 16 \\ \text { VAR(0x0E, } \\ 0 \times 0216) \end{gathered}$	15:0	0x0000	stat_ae_histogram_125 (RO)	
	luminance statistics histogram bin 125 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B A 18 \\ \text { VAR(0x0E, } \\ 0 \times 0218) \end{gathered}$	15:0	0x0000	stat_ae_histogram_126 (RO)	
	luminance statistics histogram bin 126 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA1A } \\ \text { VAR(0x0E, } \\ \text { 0x021A) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_127 (RO)	
	luminance statistics histogram bin 127 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA1C } \\ \text { VAR(0x0E, } \\ \text { 0x021C) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_128(RO)	
	luminance statistics histogram bin 128 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA1E } \\ \text { VAR(0x0E, } \\ \text { 0x021E) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_129 (RO)	
	luminance statistics histogram bin 129 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B A 20 \\ \text { VAR(0x0E, } \\ 0 \times 0220) \end{gathered}$	15:0	0x0000	stat_ae_histogram_130 (RO)	
	luminance statistics histogram bin 130 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} \text { 0xBA22 } \\ \text { VAR(0x0E, } \\ \text { 0x0222) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_131 (RO)	
	luminance statistics histogram bin 131 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B A 24 \\ \text { VAR(0x0E, } \\ 0 \times 0224) \end{gathered}$	15:0	0x0000	stat_ae_histogram_132 (RO)	
	luminance statistics histogram bin 132 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B A 26 \\ \text { VAR(0x0E, } \\ 0 \times 0226) \end{gathered}$	15:0	0x0000	stat_ae_histogram_133 (RO)	
	luminance statistics histogram bin 133 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA28 } \\ \text { VAR(0x0E, } \\ 0 \times 0228) \end{gathered}$	15:0	0x0000	stat_ae_histogram_134 (RO)	
	luminance statistics histogram bin 134 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA2A } \\ \text { VAR(0x0E, } \\ \text { 0x022A) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_135 (RO)	
	luminance statistics histogram bin 135 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA2C } \\ \text { VAR(0x0E, } \\ \text { 0x022C) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_136 (RO)	
	luminance statistics histogram bin 136 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA2E } \\ \text { VAR(0x0E, } \\ \text { 0x022E) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_137 (RO)	
	luminance statistics histogram bin 137 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA30 } \\ \text { VAR(0x0E, } \\ 0 \times 0230) \end{gathered}$	15:0	0x0000	stat_ae_histogram_138(RO)	
	luminance statistics histogram bin 138 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B A 32 \\ \text { VAR(0x0E, } \\ 0 \times 0232) \end{gathered}$	15:0	0x0000	stat_ae_histogram_139 (RO)	
	luminance statistics histogram bin 139 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { OxBA34 } \\ \text { VAR(0x0E, } \\ 0 \times 0234) \end{gathered}$	15:0	0x0000	stat_ae_histogram_140 (RO)	
	luminance statistics histogram bin 140 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B A 36 \\ \text { VAR(0x0E, } \\ 0 \times 0236) \end{gathered}$	15:0	0x0000	stat_ae_histogram_141 (RO)	
	luminance statistics histogram bin 141 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA38 } \\ \text { VAR(0x0E, } \\ 0 \times 0238) \end{gathered}$	15:0	0x0000	stat_ae_histogram_142 (RO)	
	luminance statistics histogram bin 142 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA3A } \\ \text { VAR(0x0E, } \\ \text { 0x023A) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_143 (RO)	
	luminance statistics histogram bin 143 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} \text { OxBA3C } \\ \text { VAR(0x0E, } \\ \text { Ox023C) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_144 (RO)	
	luminance statistics histogram bin 144 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA3E } \\ \text { VAR(0x0E, } \\ \text { 0x023E) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_145 (RO)	
	luminance statistics histogram bin 145 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B A 40 \\ \text { VAR(0x0E, } \\ 0 \times 0240) \end{gathered}$	15:0	0x0000	stat_ae_histogram_146 (RO)	
	luminance statistics histogram bin 146 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA42 } \\ \text { VAR(0x0E, } \\ 0 \times 0242) \end{gathered}$	15:0	0x0000	stat_ae_histogram_147 (RO)	
	luminance statistics histogram bin 147 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B A 44 \\ \text { VAR(0x0E, } \\ 0 \times 0244) \end{gathered}$	15:0	0x0000	stat_ae_histogram_148(RO)	
	luminance statistics histogram bin 148 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B A 46 \\ \text { VAR(0x0E, } \\ 0 \times 0246) \end{gathered}$	15:0	0x0000	stat_ae_histogram_149 (RO)	
	luminance statistics histogram bin 149 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B A 48 \\ \text { VAR(0x0E, } \\ 0 \times 0248) \end{gathered}$	15:0	0x0000	stat_ae_histogram_150 (RO)	
	luminance statistics histogram bin 150 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA4A } \\ \text { VAR(0x0E, } \\ \text { 0x024A) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_151 (RO)	
	luminance statistics histogram bin 151 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA4C } \\ \text { VAR(0x0E, } \\ 0 \times 024 C) \end{gathered}$	15:0	0x0000	stat_ae_histogram_152 (RO)	
	luminance statistics histogram bin 152 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA4E } \\ \text { VAR(0x0E, } \\ 0 \times 024 E) \end{gathered}$	15:0	0x0000	stat_ae_histogram_153 (RO)	
	luminance statistics histogram bin 153 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B A 50 \\ \text { VAR(0x0E, } \\ 0 \times 0250) \end{gathered}$	15:0	0x0000	stat_ae_histogram_154 (RO)	
	luminance statistics histogram bin 154 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B A 52 \\ \text { VAR(0x0E, } \\ 0 \times 0252) \end{gathered}$	15:0	0x0000	stat_ae_histogram_155 (RO)	
	luminance statistics histogram bin 155 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B A 54 \\ \text { VAR(0x0E, } \\ 0 \times 0254) \end{gathered}$	15:0	0x0000	stat_ae_histogram_156 (RO)	
	luminance statistics histogram bin 156 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} \text { 0xBA56 } \\ \text { VAR(0x0E, } \\ 0 \times 0256) \end{gathered}$	15:0	0x0000	stat_ae_histogram_157 (RO)	
	luminance statistics histogram bin 157 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B A 58 \\ \text { VAR(0x0E, } \\ 0 \times 0258) \end{gathered}$	15:0	0x0000	stat_ae_histogram_158(RO)	
	luminance statistics histogram bin 158 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA5A } \\ \text { VAR(0x0E, } \\ \text { 0x025A) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_159 (RO)	
	luminance statistics histogram bin 159 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA5C } \\ \text { VAR(0x0E, } \\ 0 \times 025 C) \end{gathered}$	15:0	0x0000	stat_ae_histogram_160 (RO)	
	luminance statistics histogram bin 160 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA5E } \\ \text { VAR(0x0E, } \\ \text { 0x025E) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_161 (RO)	
	luminance statistics histogram bin 161 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B A 60 \\ \text { VAR(0x0E, } \\ 0 \times 0260) \end{gathered}$	15:0	0x0000	stat_ae_histogram_162 (RO)	
	luminance statistics histogram bin 162 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B A 62 \\ \text { VAR(0x0E, } \\ 0 \times 0262) \end{gathered}$	15:0	0x0000	stat_ae_histogram_163 (RO)	
	luminance statistics histogram bin 163 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B A 64 \\ \text { VAR(0x0E, } \\ 0 \times 0264) \end{gathered}$	15:0	0x0000	stat_ae_histogram_164 (RO)	
	luminance statistics histogram bin 164 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B A 66 \\ \text { VAR(0x0E, } \\ 0 \times 0266) \end{gathered}$	15:0	0x0000	stat_ae_histogram_165 (RO)	
	luminance statistics histogram bin 165 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { OxBA68 } \\ \text { VAR(0x0E, } \\ 0 \times 0268) \end{gathered}$	15:0	0x0000	stat_ae_histogram_166 (RO)	
	luminance statistics histogram bin 166 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA6A } \\ \text { VAR(0x0E, } \\ \text { 0x026A) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_167 (RO)	
	luminance statistics histogram bin 167 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA6C } \\ \text { VAR(0x0E, } \\ 0 \times 026 C) \end{gathered}$	15:0	0x0000	stat_ae_histogram_168(RO)	
	luminance statistics histogram bin 168 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA6E } \\ \text { VAR(0x0E, } \\ 0 \times 026 E) \end{gathered}$	15:0	0x0000	stat_ae_histogram_169 (RO)	
	luminance statistics histogram bin 169 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} \text { 0xBA70 } \\ \text { VAR(0x0E, } \\ 0 \times 0270) \end{gathered}$	15:0	0x0000	stat_ae_histogram_170 (RO)	
	luminance statistics histogram bin 170 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA72 } \\ \text { VAR(0x0E, } \\ 0 \times 0272) \end{gathered}$	15:0	0x0000	stat_ae_histogram_171 (RO)	
	luminance statistics histogram bin 171 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B A 74 \\ \text { VAR(0x0E, } \\ 0 \times 0274) \end{gathered}$	15:0	0x0000	stat_ae_histogram_172 (RO)	
	luminance statistics histogram bin 172 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA76 } \\ \text { VAR(0x0E, } \\ 0 \times 0276) \end{gathered}$	15:0	0x0000	stat_ae_histogram_173 (RO)	
	luminance statistics histogram bin 173 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B A 78 \\ \text { VAR(0x0E, } \\ 0 \times 0278) \end{gathered}$	15:0	0x0000	stat_ae_histogram_174 (RO)	
	luminance statistics histogram bin 174 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA7A } \\ \text { VAR(0x0E, } \\ \text { 0x027A) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_175 (RO)	
	luminance statistics histogram bin 175 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA7C } \\ \text { VAR(0x0E, } \\ 0 \times 027 C) \end{gathered}$	15:0	0x0000	stat_ae_histogram_176 (RO)	
	luminance statistics histogram bin 176 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA7E } \\ \text { VAR(0x0E, } \\ 0 \times 027 E) \end{gathered}$	15:0	0x0000	stat_ae_histogram_177 (RO)	
	luminance statistics histogram bin 177 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B A 80 \\ \text { VAR(0x0E, } \\ 0 \times 0280) \end{gathered}$	15:0	0x0000	stat_ae_histogram_178(RO)	
	luminance statistics histogram bin 178 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { OxBA82 } \\ \text { VAR(0x0E, } \\ \text { Ox0282) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_179 (RO)	
	luminance statistics histogram bin 179 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B A 84 \\ \text { VAR(0x0E, } \\ 0 \times 0284) \end{gathered}$	15:0	0x0000	stat_ae_histogram_180 (RO)	
	luminance statistics histogram bin 180 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B A 86 \\ \text { VAR(0x0E, } \\ 0 \times 0286) \end{gathered}$	15:0	0x0000	stat_ae_histogram_181 (RO)	
	luminance statistics histogram bin 181 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B A 88 \\ \text { VAR(0x0E, } \\ 0 \times 0288) \end{gathered}$	15:0	0x0000	stat_ae_histogram_182 (RO)	
	luminance statistics histogram bin 182 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} \text { 0xBA8A } \\ \text { VAR(0x0E, } \\ \text { 0x028A) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_183(RO)	
	luminance statistics histogram bin 183 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA8C } \\ \text { VAR(0x0E, } \\ 0 \times 028 C) \end{gathered}$	15:0	0x0000	stat_ae_histogram_184(RO)	
	luminance statistics histogram bin 184 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA8E } \\ \text { VAR(0x0E, } \\ 0 \times 028 E) \end{gathered}$	15:0	0x0000	stat_ae_histogram_185 (RO)	
	luminance statistics histogram bin 185 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B A 90 \\ \text { VAR(0x0E, } \\ 0 \times 0290) \end{gathered}$	15:0	0x0000	stat_ae_histogram_186(RO)	
	luminance statistics histogram bin 186 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA92 } \\ \text { VAR(0x0E, } \\ 0 \times 0292) \end{gathered}$	15:0	0x0000	stat_ae_histogram_187 (RO)	
	luminance statistics histogram bin 187 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B A 94 \\ \text { VAR(0x0E, } \\ 0 \times 0294) \end{gathered}$	15:0	0x0000	stat_ae_histogram_188(RO)	
	luminance statistics histogram bin 188 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 x B A 96 \\ \text { VAR(0x0E, } \\ 0 \times 0296) \end{gathered}$	15:0	0x0000	stat_ae_histogram_189 (RO)	
	luminance statistics histogram bin 189 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} 0 \times B A 98 \\ \text { VAR(0x0E, } \\ 0 \times 0298) \end{gathered}$	15:0	0x0000	stat_ae_histogram_190 (RO)	
	luminance statistics histogram bin 190 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA9A } \\ \text { VAR(0x0E, } \\ 0 \times 029 A) \end{gathered}$	15:0	0x0000	stat_ae_histogram_191 (RO)	
	luminance statistics histogram bin 191 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA9C } \\ \text { VAR(0x0E, } \\ 0 \times 029 C) \end{gathered}$	15:0	0x0000	stat_ae_histogram_192 (RO)	
	luminance statistics histogram bin 192 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBA9E } \\ \text { VAR(0x0E, } \\ \text { 0x029E) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_193 (RO)	
	luminance statistics histogram bin 193 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAAO } \\ \text { VAR(0x0E, } \\ \text { 0x02A0) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_194 (RO)	
	luminance statistics histogram bin 194 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAA2 } \\ \text { VAR(0x0E, } \\ \text { 0x02A2) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_195 (RO)	
	luminance statistics histogram bin 195 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} \text { 0xBAA4 } \\ \text { VAR(0x0E, } \\ \text { 0x02A4) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_196(RO)	
	luminance statistics histogram bin 196 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAA6 } \\ \text { VAR(0x0E, } \\ \text { 0x02A6) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_197(RO)	
	luminance statistics histogram bin 197 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAA8 } \\ \text { VAR(0x0E, } \\ \text { 0x02A8) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_198(RO)	
	luminance statistics histogram bin 198 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAAA } \\ \text { VAR(0x0E, } \\ \text { 0x02AA) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_199 (RO)	
	luminance statistics histogram bin 199 This value is unsigned. Updates during Vertical Blanking.			
$\begin{aligned} & \text { 0xBAAC } \\ & \text { VAR(0x0E, } \\ & 0 \times 02 A C) \end{aligned}$	15:0	0x0000	stat_ae_histogram_200 (RO)	
	luminance statistics histogram bin 200 This value is unsigned. Updates during Vertical Blanking.			
$\begin{aligned} & \text { 0xBAAE } \\ & \text { VAR(0x0E, } \\ & \text { 0x02AE) } \end{aligned}$	15:0	0x0000	stat_ae_histogram_201 (RO)	
	luminance statistics histogram bin 201 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAB0 } \\ \text { VAR(0x0E, } \\ \text { 0x02B0) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_202 (RO)	
	luminance statistics histogram bin 202 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAB2 } \\ \text { VAR(0x0E, } \\ \text { 0x02B2) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_203 (RO)	
	luminance statistics histogram bin 203 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAB4 } \\ \text { VAR(0x0E, } \\ \text { 0x02B4) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_204 (RO)	
	luminance statistics histogram bin 204 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAB6 } \\ \text { VAR(0x0E, } \\ \text { 0x02B6) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_205 (RO)	
	luminance statistics histogram bin 205 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAB8 } \\ \text { VAR(0x0E, } \\ \text { 0x02B8) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_206 (RO)	
	luminance statistics histogram bin 206 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBABA } \\ \text { VAR(0x0E, } \\ \text { 0x02BA) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_207 (RO)	
	luminance statistics histogram bin 207 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBABC } \\ \text { VAR(0x0E, } \\ 0 \times 02 B C) \end{gathered}$	15:0	0x0000	stat_ae_histogram_208(RO)	
	luminance statistics histogram bin 208 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} \text { 0xBABE } \\ \text { VAR(0x0E, } \\ \text { 0x02BE) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_209 (RO)	
	luminance statistics histogram bin 209 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBACO } \\ \text { VAR(0x0E, } \\ 0 \times 02 C 0) \end{gathered}$	15:0	0x0000	stat_ae_histogram_210 (RO)	
	luminance statistics histogram bin 210 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAC2 } \\ \text { VAR(0x0E, } \\ \text { 0x02C2) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_211(RO)	
	luminance statistics histogram bin 211 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAC4 } \\ \text { VAR(0x0E, } \\ 0 \times 02 \mathrm{C} 4) \end{gathered}$	15:0	0x0000	stat_ae_histogram_212 (RO)	
	luminance statistics histogram bin 212 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAC6 } \\ \text { VAR(0x0E, } \\ \text { 0x02C6) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_213 (RO)	
	luminance statistics histogram bin 213 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAC8 } \\ \text { VAR(0x0E, } \\ 0 \times 02 C 8) \end{gathered}$	15:0	0x0000	stat_ae_histogram_214 (RO)	
	luminance statistics histogram bin 214 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBACA } \\ \text { VAR(0x0E, } \\ 0 \times 02 C A) \end{gathered}$	15:0	0x0000	stat_ae_histogram_215 (RO)	
	luminance statistics histogram bin 215 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBACC } \\ \text { VAR(0x0E, } \\ 0 \times 02 C C) \end{gathered}$	15:0	0x0000	stat_ae_histogram_216 (RO)	
	luminance statistics histogram bin 216 This value is unsigned. Updates during Vertical Blanking.			
$\begin{aligned} & \text { OxBACE } \\ & \text { VAR(0x0E, } \\ & \text { 0x02CE) } \end{aligned}$	15:0	0x0000	stat_ae_histogram_217 (RO)	
	luminance statistics histogram bin 217 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBADO } \\ \text { VAR(0x0E, } \\ \text { 0x02D0) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_218(RO)	
	luminance statistics histogram bin 218 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAD2 } \\ \text { VAR(0x0E, } \\ \text { 0x02D2) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_219 (RO)	
	luminance statistics histogram bin 219 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAD4 } \\ \text { VAR(0x0E, } \\ \text { 0x02D4) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_220 (RO)	
	luminance statistics histogram bin 220 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAD6 } \\ \text { VAR(0x0E, } \\ \text { 0x02D6) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_221 (RO)	
	luminance statistics histogram bin 221 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} \text { 0xBAD8 } \\ \text { VAR(0x0E, } \\ \text { 0x02D8) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_222 (RO)	
	luminance statistics histogram bin 222 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBADA } \\ \text { VAR(0x0E, } \\ \text { 0x02DA) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_223 (RO)	
	luminance statistics histogram bin 223 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBADC } \\ \text { VAR(0x0E, } \\ \text { 0x02DC) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_224 (RO)	
	luminance statistics histogram bin 224 This value is unsigned. Updates during Vertical Blanking.			
$\begin{aligned} & \text { 0xBADE } \\ & \text { VAR(0x0E, } \\ & \text { 0x02DE) } \end{aligned}$	15:0	0x0000	stat_ae_histogram_225 (RO)	
	luminance statistics histogram bin 225 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAE0 } \\ \text { VAR(0x0E, } \\ \text { 0x02E0) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_226(RO)	
	luminance statistics histogram bin 226 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAE2 } \\ \text { VAR(0x0E, } \\ \text { 0x02E2) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_227 (RO)	
	luminance statistics histogram bin 227 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAE4 } \\ \text { VAR(0x0E, } \\ \text { 0x02E4) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_228(RO)	
	luminance statistics histogram bin 228 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAE6 } \\ \text { VAR(0x0E, } \\ \text { 0x02E6) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_229 (RO)	
	luminance statistics histogram bin 229 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAE8 } \\ \text { VAR(0x0E, } \\ \text { 0x02E8) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_230 (RO)	
	luminance statistics histogram bin 230 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAEA } \\ \text { VAR(0x0E, } \\ \text { 0x02EA) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_231 (RO)	
	luminance statistics histogram bin 231 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAEC } \\ \text { VAR(0x0E, } \\ \text { 0x02EC) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_232 (RO)	
	luminance statistics histogram bin 232 This value is unsigned. Updates during Vertical Blanking.			
OxBAEE VAR(0x0E, 0x02EE)	15:0	0x0000	stat_ae_histogram_233 (RO)	
	luminance statistics histogram bin 233 This value is unsigned. Updates during Vertical Blanking.			
$\begin{gathered} \text { 0xBAFO } \\ \text { VAR(0x0E, } \\ \text { 0x02F0) } \end{gathered}$	15:0	0x0000	stat_ae_histogram_234 (RO)	
	luminance statistics histogram bin 234 This value is unsigned. Updates during Vertical Blanking.			

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \text { 0xBBOC } \\ \text { VAR(0x0E, } \\ \text { Ox030C) } \end{gathered}$	15:0	0x0000	stat_exposure_analog_green2_gain (RO)
	Analog gain for the green2 channel during the frame when the statistics were captured. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} \text { OxBBOE } \\ \text { VAR(0x0E, } \\ \text { 0x030E) } \end{gathered}$	15:0	0x0000	stat_exposure_analog_blue_gain (RO)
	Analog gain for the blue channel during the frame when the statistics were captured. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times B B 10 \\ \text { VAR(0x0E, } \\ 0 \times 0310) \end{gathered}$	15:0	0x0000	stat_exposure_frame_length_lines (RO)
	Number of lines within the frame when the statistics were captured. This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times B B 12 \\ \text { VAR(0x0E, } \\ 0 \times 0312) \end{gathered}$	15:0	0x0000	stat_exposure_line_length_pck (RO)
	Number of pixel clocks for each line during the frame when the statistics were captured. This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} \text { OxBB14 } \\ \text { VAR(0x0E, } \\ 0 \times 0314) \end{gathered}$	7:0	0x00	stat_exposure_column_gain (RO)
	Column gain selection for all channels during the frame when the statistics were captured. This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times B B 15 \\ \text { VAR(0x0E, } \\ 0 \times 0315) \end{gathered}$	7:0	0x00	stat_exposure_dcg_gain (RO)
	Dual conversion gain state for all channels during the frame when the statistics were captured. This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times B B 16 \\ \text { VAR(0x0E, } \\ 0 \times 0316) \end{gathered}$	15:0	0x0000	stat_exposure_dgain_red (RO)
	Sensor digital gain for the red channel during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times B B 18 \\ \text { VAR(0x0E, } \\ 0 \times 0318) \end{gathered}$	15:0	0x0000	stat_exposure_dgain_green1 (RO)
	Sensor digital gain for the green1 channel during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} 0 x B B 1 A \\ \text { VAR(0x0E, } \\ 0 \times 031 A) \end{gathered}$	15:0	0x0000	stat_exposure_dgain_green2 (RO)
	Sensor digital gain for the green2 channel during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times B B 1 C \\ \text { VAR(0x0E, } \\ 0 \times 031 C) \end{gathered}$	15:0	0x0000	stat_exposure_dgain_blue (RO)
	Sensor digital gain for the blue channel during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} \text { 0xBB1E } \\ \text { VAR(0x0E, } \\ 0 \times 031 E) \end{gathered}$	15:0	0x0000	stat_exposure_cpipe_dgain_red (RO)
	Cpipe gain for the red channel during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times B B 20 \\ \text { VAR(0x0E, } \\ 0 \times 0320) \end{gathered}$	15:0	0x0000	stat_exposure_cpipe_dgain_green1 (RO)
	Cpipe gain for the green1 channel during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times B B 22 \\ \text { VAR(0x0E, } \\ 0 \times 0322) \end{gathered}$	15:0	0x0000	stat_exposure_cpipe_dgain_green2 (RO)
	Cpipe gain for the green2 channel during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		

Table 45. STAT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times B B 24 \\ \text { VAR(0x0E, } \\ 0 \times 0324) \end{gathered}$	15:0	0x0000	stat_exposure_cpipe_dgain_blue (RO)
	Cpipe gain for the blue channel during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} \text { 0xBB26 } \\ \text { VAR(0x0E, } \\ 0 \times 0326) \end{gathered}$	15:0	0x0000	stat_exposure_cpipe_dgain_second (RO)
	Cpipe secondary gain for all channels during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		

Low Light Variable Descriptions

Table 46. LOW LIGHT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \hline 0 x B C 02 \\ \text { VAR(0x0F, } \\ 0 \times 0002) \end{gathered}$	15:0	0×0007	II_mode (R/W)
	15:5	X	Reserved
	4	0x00	Reserved
	3	0×00	Il_enable_fade_to_black Controls the Fade-To-Black mode: 0 : Fade-To-Black mode will not be active under low light conditions. 1: Fade-To-Black mode will be active under low light conditions. This value is unsigned. Changes take effect during Vertical Blanking.
	2	0×01	II_adacd_gr_pixel_weights This mode automatically controls the strength of the noise reduction filter using ADACD Green pixel weights: 0 : Disabled. 1: Enabled. This value is unsigned. Changes take effect during Vertical Blanking.
	1	0×01	Reserved
	0	0×01	II_nr_enable Enable automatic control of Noise Reduction (DC and AdaCD): 0 : Disabled. 1: Enabled. This value is unsigned. Changes take effect during Vertical Blanking.
	Low light mode control. This value is unsigned. Changes take effect during Vertical Blanking.		

Table 46. LOW LIGHT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 x B C 04 \\ \text { VAR(0x0F, } \\ 0 \times 0004) \end{gathered}$	15:0	0x03FF	II_algo (R/W)
	15:11	X	Reserved
	10	0x0000	Reserved
	9	0×0001	Reserved
	8	0x0001	Reserved
	7	0×01	Reserved
	6	0×01	Reserved
	5	0×01	Reserved
	4	0×01	Reserved
	3	0×01	Reserved
	2	0×01	Reserved
	1	0×01	Reserved
	0	0×01	Reserved
	Controls the low light algorithms: 0: Disable low light adaptation. $0 \times 3 F F$: Enable low light adaptation. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { OxBC07 } \\ \text { VAR(0x0F, } \\ \text { 0x0007) } \end{gathered}$	7:0	0x01	II_gamma_select (R/W)
	Selects between gamma curves. Gamma selection is overridden when the average luma (II_average_luma_fade_to_black) is less than the fade-to-black threshold (cam_ll_bright_fade_to_black_luma).0: Interpolate between the contrast gamma curve in bright light and the noise reduction gamma curve in Tow light. 1: Always use contrast gamma curve. 2: Always use noise reduction gamma curve. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 x B C 0 A \\ \text { VAR(0x0F, } \\ 0 \times 000 \mathrm{~A}) \end{gathered}$	15:0	0×0000	II_gamma_contrast_curve_0 (R/W)
	Gamma curve. This is the knee point value for index 0 This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 x B C 0 C \\ \text { VAR(0x0F, } \\ 0 \times 000 \mathrm{C}) \end{gathered}$	15:0	0x0000	II_gamma_contrast_curve_1 (R/W)
	Gamma curve. This is the knee point value for index 128 This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { OxBCOE } \\ \text { VAR(0x0F, } \\ 0 \times 000 E) \end{gathered}$	15:0	0×0000	II_gamma_contrast_curve_2 (R/W)
	Gamma curve. This is the knee point value for index 256 This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \hline 0 \times B C 10 \\ \text { VAR(0x0F, } \\ 0 \times 0010) \end{gathered}$	15:0	0x0000	II_gamma_contrast_curve_3 (R/W)
	Gamma curve. This is the knee point value for index 384 This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times B C 12 \\ \text { VAR(0x0F, } \\ 0 \times 0012) \end{gathered}$	15:0	0x0000	II_gamma_contrast_curve_4 (R/W)
	Gamma curve. This is the knee point value for index 512 This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times B C 14 \\ \text { VAR(0x0F, } \\ 0 \times 0014) \end{gathered}$	15:0	0x0000	II_gamma_contrast_curve_5 (R/W)
	Gamma curve. This is the knee point value for index 640 This value is unsigned. Changes take effect during Vertical Blanking.		

Table 46. LOW LIGHT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Table 46. LOW LIGHT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Table 46. LOW LIGHT VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \text { 0xBC4A } \\ \text { VAR(0x0F, } \\ 0 \times 004 A) \end{gathered}$	15:0	0x0000	II_gamma_contrast_curve_32 (R/W)
	Gamma curve. This is the knee point value for index 4096 This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 x B C 8 E \\ \text { VAR(0x0F, } \\ 0 \times 008 E) \end{gathered}$	15:0	0x0000	II_average_luma_fade_to_black (RO)
	When fade to black is enabled this internal variable contains the maximum average luma from the current statistics AE zones, otherwise it is set to cam_ll_bright_fade_to_black_luma. This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} \text { 0xBCB4 } \\ \text { VAR(0x0F, } \\ \text { 0x00B4) } \end{gathered}$	15:0	0x003F	II_altm_damping_fast (R/W)
	Damping value for the fast response This value is unsigned fixed-point with 6 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times B C B 6 \\ \text { VAR(0x0F, } \\ \text { 0x00B6) } \end{gathered}$	15:0	0x000F	II_altm_damping_med (R/W)
	Damping value for the medium response This value is unsigned fixed-point with 6 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 x B C B 8 \\ \text { VAR(0x0F, } \\ \text { 0x00B8) } \end{gathered}$	15:0	0×0007	II_altm_damping_slow (R/W)
	Damping value for the slow response. Normally used also as default. This value is unsigned fixed-point with 6 fractional bits. Changes take effect during Vertical Blanking.		

Flicker Detect Variables Descriptions

Table 47. FLICKER DETECT VARIABLES DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C 000 \\ \text { VAR(0x10, } \\ 0 \times 0000) \end{gathered}$	15:0	0x0000	flicker_detect_status (RO)
	15:8	X	Reserved
	7	RO	Reserved
	6	X	Reserved
	5	RO	flicker_detect_fd_status_running Flicker Detection status: 0 : Flicker Detection is idle. 1: Flicker Detection is active. This value is unsigned. Updates during Vertical Blanking.
	4	RO	flicker_detect_fd_status_flicker_change_detected Flicker detection status: 0 : No flicker has been detected. 1: Flicker detected in the current scene. Note: This flag is automatically cleared after a Change-Config, Refresh, or Standby operation. This value is unsigned. Updates during Vertical Blanking.
	3	RO	flicker_detect_fd_status_sync_frame_rate Synchronized frame rate status: 0 : Flicker Detection can run. 1: Flicker Detection cannot run because the current frame rate is in sync (or nearly) with the period of the flicker source to be detected. (For example, 60 frames-persecond and 60 Hz flicker source). This value is unsigned. Updates during Vertical Blanking.
	2:1	X	Reserved
	0	RO	Reserved
	Flicker Detection status. This value is unsigned. Updates during Vertical Blanking.		

CamControl Variable Descriptions

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C 804 \\ \text { VAR(0x12, } \\ 0 \times 0004) \end{gathered}$	15:0	0x0008	cam_sensor_cfg_y_addr_start (R/W)
	The first row of visible pixels to be read out (not counting any dark rows that may be read). Must be an even value. This value is unsigned. Changes take effect after a Change-Config command.		
0xC806 VAR(0x12, 0x0006)	15:0	0x0002	cam_sensor_cfg_x_addr_start (R/W)
	The first column of visible pixels to be read out (not counting any dark columns that may be read). Must be an even value. This value is unsigned. Changes take effect after a Change-Config command.		
$0 \times C 808$VAR(0x12,$0 \times 0008)$	15:0	0x03C7	cam_sensor_cfg_y_addr_end (R/W)
	The last row of visible pixels to be read out. Must be an odd value. This value is unsigned. Changes take effect after a Change-Config command.		
0xC80A VAR(0×12, 0x000A)	15:0	0x0501	cam_sensor_cfg_x_addr_end (R/W)
	The last column of visible pixels to be read out. Must be an odd value. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times C 80 C \\ \text { VAR(0x12, } \\ 0 \times 000 \mathrm{C}) \end{gathered}$	31:0	0x0337F980	cam_sensor_cfg_pixclk (R/W)
	The sensor's pixel clock speed in Hertz. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times C 810 \\ \text { VAR(0x12, } \\ 0 \times 0010) \end{gathered}$	15:0	0x02BC	cam_sensor_cfg_fine_integ_time_min (R/W)
	Minimum fine integration time. This value is unsigned. Changes take effect after a Change-Config command.		
0xC812 $\operatorname{VAR}(0 \times 12$, 0x0012)	15:0	0x068C	cam_sensor_cfg_fine_integ_time_max (R/W)
	Maximum fine integration time. This value is unsigned. Changes take effect after a Change-Config command.		
$0 \times \mathrm{C} 814$ VAR(0x12, 0x0014)	15:0	0x0432	cam_sensor_cfg_frame_length_lines (R/W)
	The number of complete lines (rows) in the output frame. This includes visible lines and vertical blanking lines. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} \hline 0 \times C 816 \\ \text { VAR(} 0 \times 12, \\ 0 \times 0016) \end{gathered}$	15:0	0x068C	cam_sensor_cfg_line_length_pck (R/W)
	The number of pixel clock periods in one line (row) time. This includes visible pixels and horizontal blanking. This value is unsigned. Changes take effect after a Change-Config command.		
0xC818 VAR(0x12, 0x0018)	15:0	0x0000	cam_sensor_cfg_fine_correction (R/W)
	Fine Correction (fine integration time). This value is unsigned. Changes take effect after a Change-Config command.		

AND9568/D

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C 830 \\ \text { VAR(0x12, } \\ 0 \times 0030) \end{gathered}$	31:0	0x000024A5	cam_sensor_cfg_tuning (R/W)
	31:26	X	Reserved
	25:23	0x00000000	cam_sensor_cfg_tuning_hispi_delay_data1 Sensor HiSPi data lane 1 delay in $1 / 8$ th of symbol period. This value is unsigned. Changes take effect after a Change-Config command.
	22:20	0x00000000	cam_sensor_cfg_tuning_hispi_delay_data0 Sensor HiSPi data lane 0 delay in $1 / 8$ th of symbol period. This value is unsigned. Changes take effect after a Change-Config command.
	19:17	0x00000000	cam_sensor_cfg_tuning_hispi_delay_clock Sensor HiSPi clock lane delay in $1 / 8$ th of symbol period. This value is unsigned. Changes take effect after a Change-Config command.
	16	0x00000000	Reserved
	15:13	0×0001	Reserved
	12:10	0x0001	Reserved
	9:7	0×0001	Reserved
	6:4	0×02	Reserved
	3:1	0×02	Reserved
	0	0×01	Reserved
	Tuning for the current sensor. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 834 \\ \text { VAR(0x12, } \\ 0 \times 0034) \end{gathered}$	7:0	0x20	cam_sensor_cfg_cci_base_addr_0 (R/W)
	CCI device address for the attached sensor. Used for sensor discovery. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times C 835 \\ \text { VAR(0x12, } \\ 0 \times 0035) \end{gathered}$	7:0	0x30	cam_sensor_cfg_cci_base_addr_1 (R/W)
	Alternate CCI device address for the attached sensor. Used for sensor discovery. This value is unsigned. Changes take effect after a Change-Config command.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \hline 0 \times C 838 \\ \text { VAR(0x12, } \\ 0 \times 0038) \end{gathered}$	31:0	0x04020841	cam_sensor_control_external_pll (R/W)
	31:29	X	Reserved
	28:23	0x00000008	cam_sensor_control_external_pll_p2 The Sensor $\overline{\text { PLLL's }}$ V $\bar{C} O$ P2 output divider. See the data sheet for the attached sensor for the setting of this value. This value is unsigned. Changes take effect after a Change-Config command.
	22:17	0x00000001	cam_sensor_control_external_pll_p1 The Sensor $\overline{\text { PLLL's V }}$ V O P1 output divider. See the data sheet for the attached sensor for the setting of this value. This value is unsigned. Changes take effect after a Change-Config command.
	16:10	0x00000002	cam_sensor_control_external_pll_n The $\overline{\text { Senser }}$ PLL's prescale divider. The Sensor PLL's VCO divider. See the data sheet for the attached sensor for the setting of this value. This value is unsigned. Changes take effect after a Change-Config command.
	9:1	0x0020	cam_sensor_control_external_pll_m The $\overline{\text { Sensor }} \overline{\mathrm{P}} \mathrm{LL}$'s V $\overline{\mathrm{C}}$ O divider. See the data sheet for the attached sensor for the setting of this value. This value is unsigned. Changes take effect after a Change-Config command.
	0	0×01	cam_sensor_control_external_pll_enable Sens̄or's phāse lock $\overline{\text { loop }}$ enable. $\overline{0}=$ disabled (bypassed), $1=$ enabled. The PLL dividers should only be changed when the PLL is disabled. This value is unsigned. Changes take effect after a Change-Config command.
	Sensor's PLL control variable. See individual bit descriptions for function. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times C 83 C \\ \text { VAR(0x12, } \\ 0 \times 003 C) \end{gathered}$	7:0	0x00	cam_sensor_control_base_address (RO)
	This is the actual CCI device address for the attached sensor that was found during sensor discovery. This value is unsigned. Updates after a Change-Config command.		
$\begin{gathered} \text { 0xC83D } \\ \text { VAR(0x12, } \\ \text { 0x003D) } \end{gathered}$	7:0	0x00	cam_sensor_control_revision_number (RO)
	Revision number of the attached sensor. This is updated during sensor discovery and is not valid before then. This value is unsigned. Updates after a Change-Config command.		
$\begin{gathered} 0 x C 83 E \\ \text { VAR(0x12, } \\ 0 \times 003 E) \end{gathered}$	15:0	0x0000	cam_sensor_control_model_id (RO)
	Model ID of the attached sensor. This is updated during sensor discovery and is not valid before then. This value is unsigned. Updates after a Change-Config command.		
$\begin{gathered} 0 \times C 840 \\ \text { VAR(0x12, } \\ 0 \times 0040) \end{gathered}$	15:0	0x0000	cam_sensor_control_external_output_clk_div (R/W)
	15:8	0x0000	cam_sensor_control_external_output_sys_clk_div The sensor's output system clock divider. See the data sheet for the attached sensor for the setting of this value. This value is unsigned. Changes take effect after a Change-Config command.
	7:0	0×00	cam_sensor_control_external_output_pix_clk_div The sensor's output pixel clock divider. See the data sheet for the attached sensor for the setting of this value. This value is unsigned. Changes take effect after a Change-Config command.
	Sensor's output clock controls. See individual bit descriptions for function. This value is unsigned. Changes take effect after a Change-Config command.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C 842 \\ \text { VAR(0x12, } \\ 0 \times 0042) \end{gathered}$	7:0	0x00	cam_sensor_control_request (R/W)
	7:2	X	Reserved
	1	0x00	cam_sensor_control_wb_request When set, requests the Sensor Manager commit a new white balance. Auto-cleared when new white balance is applied. This value is unsigned. Changes take effect during Vertical Blanking.
	0	0×00	cam_sensor_control_exposure_request When set, requests the Sensor Manager commit a new exposure. Auto-cleared when new exposure is applied. This value is unsigned. Changes take effect during Vertical Blanking.
	Sensor exposure and white balance request bits from the host. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 843 \\ \text { VAR(0x12, } \\ 0 \times 0043) \end{gathered}$	7:0	0x00	cam_sensor_control_internal_request (RO)
	7:2	X	Reserved
	1	RO	cam_sensor_control_wb_int_request When set, requests the Sensor Manager commit a new white balance. For internal use only. Auto-cleared when new white balance is applied. This value is unsigned. Updates during Vertical Blanking.
	0	RO	cam_sensor_control_exposure_int_request When set, requests the Sensor Manager commit a new exposure. For internal use only. Auto-cleared when new exposure is applied. This value is unsigned. Updates during Vertical Blanking.
	Exposure/WB request bits to the Sensor Manager (set internal). This value is unsigned. Updates during Vertical Blanking.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C 844 \\ \text { VAR(0x12, } \\ 0 \times 0044) \end{gathered}$	15:0	0x09C2	cam_sensor_control_operation_mode (R/W)
	15:14	X	Reserved
	13	0x0000	cam_sensor_control_embedded_stats_enable Enable output of sensor statistics data embedded in the output video stream: 0 : Disabled. 1: Enabled. Embedded sensor statistics data can only be enabled when operating in Bayer output modes. This value is unsigned. Changes take effect after a Change-Config command.
	12	0x0000	cam_sensor_control_embedded_regs_enable Enable output of sensor register data embedded in the output video stream: 0 : Disabled. 1: Enabled. Embedded sensor register data can only be enabled when operating in Bayer output modes. This value is unsigned. Changes take effect after a Change-Config command.
	11	0x0001	Reserved
	10:6	0x0007	Reserved
	5:4	0x00	cam_sensor_control_output_data Controls the output data format from the sensor to the companion chip ($0=12$ bit parallel, $1=12$ bit HiSpi, $2=14$ bit HiSpi). This value is unsigned. Changes take effect after a Change-Config command.
	3	X	Reserved
	2:0	0x02	cam_sensor_control_exposure_mode Controls the exposure mode ($0=$ =SDR (standard DR), $1=\mathrm{HDR}$ (ME), 2=HDR (DLO)). This value is unsigned. Changes take effect after a Change-Config command.
	Mode of operation for the sensor. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times C 846 \\ \text { VAR(0x12, } \\ 0 \times 0046) \end{gathered}$	15:0	0x0000	cam_sensor_control_read_mode (R/W)
	15:2	X	Reserved
	1	0x00	cam_sensor_control_vert_flip_en 0 : Readout is not flipped (mirrored) vertically. 1: Readout is flipped (mirrored) vertically. This value is unsigned. Changes take effect after a Change-Config command.
	0	0x00	cam_sensor_control_horz_mirror_en 0 : Readout is not mirrored horizontally. 1: Readout is mirrored horizontally. This value is unsigned. Changes take effect after a Change-Config command.
	Controls the sensor read-mode. This value is unsigned. Changes take effect after a Change-Config command.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C 848 \\ \text { VAR(0x12, } \\ 0 \times 0048) \end{gathered}$	15:0	0x000B	cam_hdr_mc_ctrl_mode (R/W)
	15:4	X	Reserved
	3	0×01	cam_hdr_mc_ctrl_mc_enable_noise_filter Enable nōise filtering for motion-compensation algorithm ($0=$ disable, $1=$ enable). This value is unsigned. Changes take effect after a Change-Config command.
	2	0×00	Reserved
	1	0×01	cam_hdr_mc_ctrl_mc_enable_motion_correction_2d 2-D Motion detection/correction control ($0=1-\mathrm{D}, \overline{1}=2-\mathrm{D}$). This value is unsigned. Changes take effect after a Change-Config command.
	0	0×01	cam_hdr_mc_ctrl_mc_enable_motion_correction Motion Detection and Correction control ($0=$ disabled, $1=$ enabled). This value is unsigned. Changes take effect after a Change-Config command.
	Mode bits for motion compensation algorithm. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 x C 84 A \\ \text { VAR(0x12, } \\ 0 \times 004 A) \end{gathered}$	15:0	0x0BAO	cam_hdr_mc_ctrl_s1_threshold (R/W)
	Separate S1 threshold (start of weighting function for smooth HDR pixel combination) for motion compensation. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times C 84 C \\ \text { VAR(0x12, } \\ 0 \times 004 C) \end{gathered}$	15:0	0x0FA0	cam_hdr_mc_ctrl_s2_threshold (R/W)
	Threshold level for end point of weighting transfer function. Pixel values above this level are chosen from exposure 2 only. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 x C 84 E \\ \text { VAR(0x12, } \\ 0 \times 004 E) \end{gathered}$	15:0	0x0800	cam_hdr_mc_ctrl_s12_range (R/W)
	Range of code values for the weighting transfer function defined by S2-S1. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times C 850 \\ \text { VAR(0x12, } \\ 0 \times 0050) \end{gathered}$	15:0	0x0300	cam_hdr_mc_ctrl_diff_threshold (R/W)
	Value specifying how much greater than P2-lin, P1 must be for motion to be detected (the nearer this value is to 0 the less robust to noise it will be). This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times C 854 \\ \text { VAR(0x12, } \\ 0 \times 0054) \end{gathered}$	15:0	0x0001	cam_hdr_dlo_ctrl_mode (R/W)
	15:2	X	Reserved
	1	0x00	cam_hdr_dlo_ctrl_dlo_enable_filter_quad Enable quadratic weighting for DLO- noise filter ($0=$ =linear weighting, $1=$ quadratic weighting). This value is unsigned. Changes take effect after a Change-Config command.
	0	0×01	cam_hdr_dlo_ctrl_dlo_enable_noise_filter Enable nōise $\overline{\text { filtering }}$ in the digital lateral overflow pixel combination ($0=$ disabled, $1=$ enabled). This value is unsigned. Changes take effect after a Change-Config command.
	Mode bits for digital lateral overflow algorithm. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} \text { 0xC856 } \\ \text { VAR(0x12, } \\ 0 \times 0056) \end{gathered}$	15:0	0x0BB8	cam_hdr_dlo_ctrl_t1_barrier (R/W)
	Barrier for clipping T1 data in the digital lateral overflow combination method. This value is unsigned. Changes take effect after a Change-Config command.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 x C 858 \\ \text { VAR(0x12, } \\ 0 \times 0058) \end{gathered}$	15:0	0x0DAC	cam_hdr_dlo_ctrl_t2_barrier (R/W)
	Barrier for clipping T2 data in the digital lateral overflow combination method. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times C 85 A \\ \text { VAR(0x12, } \\ 0 \times 005 A) \end{gathered}$	15:0	0x0FA0	cam_hdr_dlo_ctrl_t3_barrier (R/W)
	Barrier for clipping T3 data in the digital lateral overflow combination method. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 x C 85 C \\ \text { VAR(0x12, } \\ 0 \times 005 \mathrm{C}) \end{gathered}$	15:0	0x0100	cam_hdr_dlo_ctrl_noise_disable_threshold (R/W)
	For the digital lateral overflow method, if either T1 data, T2 data or T3 data is greater than this threshold, noise filtering is turned off. Evaluated on a single pixel. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 x C 85 E \\ \text { VAR(0x12, } \\ 0 \times 005 \mathrm{E}) \end{gathered}$	15:0	0x0020	cam_hdr_dlo_ctrl_noise_s2_threshold (R/W)
	Threshold level for end point of noise filter weighting transfer function for digital lateral overflow. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times C 860 \\ \text { VAR(0x12, } \\ 0 \times 0060) \end{gathered}$	15:0	0×0005	cam_hdr_dlo_ctrl_noise_s12_range (R/W)
	Range of code values for the noise filter weighting transfer function for digital lateral overflow defined by s2_dlo - s1_dlo. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 x C 864 \\ \text { VAR(0x12, } \\ 0 \times 0064) \end{gathered}$	15:0	0x0001	cam_exp_ctrl_coarse_integration_time (R/W)
	Coarse integration time specified in lines. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 866 \\ \text { VAR(0x12, } \\ 0 \times 0066) \end{gathered}$	15:0	0x0000	cam_exp_ctrl_fine_integration_time (R/W)
	Fine integration time specified in pixel clocks. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 868 \\ \text { VAR(0x12, } \\ 0 \times 0068) \end{gathered}$	15:0	0×0020	cam_exp_ctrl_analog_red_gain (R/W)
	Analog gain for the red channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 86 A \\ \text { VAR(0x12, } \\ 0 \times 006 A) \end{gathered}$	15:0	0x0020	cam_exp_ctrl_analog_green1_gain (R/W)
	Analog gain for the green1 channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \hline 0 \times C 86 C \\ \text { VAR(0x12, } \\ 0 \times 006 C) \end{gathered}$	15:0	0x0020	cam_exp_ctrl_analog_green2_gain (R/W)
	Analog gain for the green2 channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 86 E \\ \text { VAR(0x12, } \\ 0 \times 006 E) \end{gathered}$	15:0	0x0020	cam_exp_ctrl_analog_blue_gain (R/W)
	Analog gain for the blue channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C 870 \\ \text { VAR(0x12, } \\ 0 \times 0070) \end{gathered}$	15:0	0x0000	cam_exp_ctrl_frame_length_lines (R/W)
	Number of lines within the frame. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 872 \\ \text { VAR(0x12, } \\ 0 \times 0072) \end{gathered}$	15:0	0x0000	cam_exp_ctrl_line_length_pck (R/W)
	Number of pixel clocks within a line. This value is read-write in host-controlled exposure mode, read-only in all other modes. Changing this value generates a bad frame in the sensor. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 x C 874 \\ \text { VAR(0x12, } \\ 0 \times 0074) \end{gathered}$	7:0	0x00	cam_exp_ctrl_column_gain (R/W)
	Column gain selection for all channels. This value is read-write in host-controlled exposure mode, read-only in all other modes. $0: 1 x$ gain. 1: $2 x$ gain. 2: $4 x$ gain. 3: $8 x$ gain. Note: These values are sensor specific. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 875 \\ \text { VAR(0x12, } \\ 0 \times 0075) \end{gathered}$	7:0	0x00	cam_exp_ctrl_dcg_gain (R/W)
	Dual-conversion gain for all channels. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 876 \\ \text { VAR(0x12, } \\ 0 \times 0076) \end{gathered}$	15:0	0x0080	cam_exp_ctrl_dgain_red (R/W)
	Sensor digital gain for the red channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 878 \\ \text { VAR(0x12, } \\ 0 \times 0078) \end{gathered}$	15:0	0x0080	cam_exp_ctrl_dgain_green1 (R/W)
	Sensor digital gain for the green1 channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \hline 0 x C 87 A \\ \text { VAR(0x12, } \\ 0 \times 007 A) \end{gathered}$	15:0	0x0080	cam_exp_ctrl_dgain_green2 (R/W)
	Sensor digital gain for the green2 channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 87 C \\ \text { VAR(0x12, } \\ 0 \times 007 \mathrm{C}) \end{gathered}$	15:0	0x0080	cam_exp_ctrl_dgain_blue (R/W)
	Sensor digital gain for the blue channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 x C 87 E \\ \text { VAR(0x12, } \\ 0 \times 007 E) \end{gathered}$	15:0	0x0080	cam_exp_ctrl_cpipe_dgain_red (R/W)
	Cpipe gain for the red channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 880 \\ \text { VAR(0x12, } \\ 0 \times 0080) \end{gathered}$	15:0	0x0080	cam_exp_ctrl_cpipe_dgain_green1 (R/W)
	Cpipe gain for the green1 channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \hline 0 x C 882 \\ \text { VAR(0x12, } \\ 0 \times 0082) \end{gathered}$	15:0	0x0080	cam_exp_ctrl_cpipe_dgain_green2 (R/W)
	Cpipe gain for the green2 channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 884 \\ \text { VAR(0x12, } \\ 0 \times 0084) \end{gathered}$	15:0	0x0080	cam_exp_ctrl_cpipe_dgain_blue (R/W)
	Cpipe gain for the blue channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 886 \\ \text { VAR(0x12, } \\ 0 \times 0086) \end{gathered}$	15:0	0x0080	cam_exp_ctrl_cpipe_dgain_second (R/W)
	Cpipe secondary gain for all channels. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 888 \\ \text { VAR(0x12, } \\ 0 \times 0088) \end{gathered}$	15:0	0x00C8	cam_cpipe_control_first_black_level (R/W)
	Applied first blacklevel subtraction, should match sensor data pedestal, host configured. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 x C 88 A \\ \text { VAR(0x12, } \\ 0 \times 008 A) \end{gathered}$	15:0	0x0000	cam_cpipe_control_second_black_level (RO)
	Second Black Level control - this value is calculated based on the scene. This value is then subtracted from each pixel value to enhance contrast. This can be RW if the blacklevel algorithm is disabled. This value is unsigned. Updates during Vertical Blanking.		
$\begin{gathered} 0 x C 88 C \\ \text { VAR(0x12, } \\ 0 \times 008 C) \end{gathered}$	7:0	0x00	cam_mode_select (R/W)
	Selects the camera operation mode: 0: Normal. 1: Lens Calibration. 2: Test Pattern Generator. 3: Synchronized. 4: Raw Bayer. 5: DCNR Bayer. 7: ALTM Bayer-12. 8: ALTM Bayer-10. All other values are reserved. In the Synchronized mode the AP0100 triggers the sensor to start streaming, in response to the TRIGGER input to the AP0100. The sensor window in all modes is controlled by the CAM_SENSOR_CFG... variables. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} \text { 0xC88D } \\ \text { VAR(0x12, } \\ 0 \times 008 D) \end{gathered}$	7:0	0x00	cam_mode_sync_type (R/W)
	Selects type of synchronization: 0 : Trigger (Standard) 1:Trigger (Deterministic) 2: Slave (Standard) 3: Slave (Shutter-Sync) All other values are reserved. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 x C 88 E \\ \text { VAR(0x12, } \\ 0 \times 008 E) \end{gathered}$	7:0	0x00	cam_mode_sync_trigger_mode (R/W)
	Selects type of trigger when synchronization is set to one of the trigger types. 0 : One-Shot: trigger will commence streaming, sensor will stop streaming after read-out completes unless retriggered. 1: Continuous: trigger will commence streaming, sensor will then continue streaming. This value is unsigned. Changes take effect after a Change-Config command.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C 88 F \\ \text { VAR(0x12, } \\ 0 \times 008 F) \end{gathered}$	7:0	0x02	cam_mode_test_pattern_select (R/W)
	Select the test pattern (in Test Pattern Generator mode): 1: Solid color. 4: 100\% color bars. 5: Pseudo-random. 8: Fade-to-gray color bars. 9: Linear ramp. 20: NTSC (EIA full field 7 color bars). 21: NTSC (EIA full field 8 color bars). 22: NTSC (SMPTE EG 1-1990). 23: NTSC (EIA full field 8 color bars 100 IRE). 30: PAL (EBU full field 7 color bars). 31: PAL (EBU full field 8 color bars). NTSC test patterns can only be selected if the device is operating in interlaced NTSC mode. PAL test patterns can only be selected if the device is operating in interlaced PAL mode. All other test patterns can only be selected if the device is operating in progressive-scan mode. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times C 890 \\ \text { VAR(0x12, } \\ 0 \times 0090) \end{gathered}$	31:0	0x000FFFFF	cam_mode_test_pattern_red (R/W)
	Variables cam_mode_test_pattern_red, cam_mode_test_pattern_green, and cam_mode_test_pattern_blue select the color for the sōlid color test pattern. This is a $\overline{2} 20$ bit value when the part is in an H $\bar{D} R$ mode ($0-19$) and bits 20 and above are masked off before use. In non-HDR mode this is limited to a 12 bit value and bits 12 and above are masked off before use. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 x C 894 \\ \text { VAR(0x12, } \\ 0 \times 0094) \end{gathered}$	31:0	0x000FFFFF	cam_mode_test_pattern_green (R/W)
	Variables cam_mode_test_pattern_red, cam_mode_test_pattern_green, and cam_mode_test_pattern_blue select the color for the solid color test pattern. This is a 20 bit value when the part is in an H $\overline{\mathrm{D}} \mathrm{R}$ mode ($0-19$) and bits 20 and above are masked off before use. In non-HDR mode this is limited to a 12 bit value and bits 12 and above are masked off before use. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 x C 898 \\ \text { VAR(0x12, } \\ 0 \times 0098) \end{gathered}$	31:0	0x000FFFFF	cam_mode_test_pattern_blue (R/W)
	Variables cam_mode_test_pattern_red, cam_mode_test_pattern_green, and cam_mode_test_pattern_blue select the color for the solid color test pattern. This is a 20 bit value when the part is in an HDR mode (0-19) and bits 20 and above are masked off before use. In non-HDR mode this is limited to a 12 bit value and bits 12 and above are masked off before use. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} \text { 0xC89C } \\ \text { VAR(0x12, } \\ 0 \times 009 \mathrm{C}) \end{gathered}$	15:0	0x0000	cam_crop_window_xoffset (R/W)
	The horizontal offset in pixels of the crop window relative to the left edge of sensor's Field of View (FOV). This can be used to pan the crop window within the FOV window. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} \text { OxC89E } \\ \text { VAR(0x12, } \\ 0 \times 009 E) \end{gathered}$	15:0	0x0000	cam_crop_window_yoffset (R/W)
	The vertical offset in lines of the crop window relative to the top edge of the sensor's Field of View (FOV) window. This can be used to pan the crop window within the FOV window. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} \text { 0xC8A0 } \\ \text { VAR(0x12, } \\ \text { 0x00A0) } \end{gathered}$	15:0	0x0500	cam_crop_window_width (R/W)
	The horizontal width of the crop window. This selects the number of columns from the sensor that will be used as input into the Scaler. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} \hline \text { 0xC8A2 } \\ \text { VAR(0x12, } \\ \text { 0x00A2) } \end{gathered}$	15:0	0x03C0	cam_crop_window_height (R/W)
	The vertical height in lines of the crop window. This selects the number of rows from the sensor that will be used as input into the Scaler. This value is unsigned. Changes take effect after a Refresh command.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C 8 A 4 \\ \text { VAR(0x12, } \\ 0 \times 00 A 4) \end{gathered}$	15:0	0x0011	cam_frame_scan_control (R/W)
	15:5	X	Reserved
	4:3	0x02	Reserved
	2:1	0x00	cam_frame_scan_interlaced_mode Interlaced-scan control: 0 : NTSC. 1: PAL. 2: Reserved. 3: Reserved. This value is unsigned. Changes take effect after a Change-Config command.
	0	0×01	cam_frame_scan_mode Scanning mode control: 0: Interlaced-scan. 1: Progressive-scan. This value is unsigned. Changes take effect after a Change-Config command.
	Frame scan control This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} \text { 0xC8A8 } \\ \text { VAR(0x12, } \\ 0 \times 00 A 8) \end{gathered}$	7:0	0x00	cam_fov_calib_x_offset (R/W)
	Horizontal calibration offset for the sensor array. This shifts the center of Field of View (FOV) window relative to the center of the sensor. This is used to compensate for manufacturing tolerances when the sensor is mounted in a module, so that the image center is the same for all modules. A value of 0 centers the FOV horizontally on the center of the sensor. The limits for calib_x_offset are (calib_x_offset + CAM_SENSOR_CFG_X_ADDR_START) must be 0 or larger (not negative), and (calib_x_offset + CAM_SENSOR_CFG_X_ADDR_END) must $\bar{b} e$ less than the maximum width of the sensor. When using the flip and mirror feature of the sensor, then the range for calib_x_offset might need to be increased to correct for the sensor's internal starting color adjustment. This value is signed 2's complement. Changes take effect after a Change-Config command.		
$\begin{gathered} \text { 0xC8A9 } \\ \text { VAR(0x12, } \\ 0 \times 00 A 9) \end{gathered}$	7:0	0x00	cam_fov_calib_y_offset (R/W)
	Vertical calibration offset for the sensor array. This shifts the center of Field of View (FOV) window relative to the center of the sensor. This is used to compensate for manufacturing tolerances when the sensor is mounted in a module, so that the image center is the same for all modules. A value of 0 centers the FOV vertically on the center of the sensor. The limits for calib_x_offset are (calib_y_offset + CAM_SENSOR_CFG_Y_ADDR_START) must be 0 or larger (not negative), and (calib_y_offset + CAM_SENSOR_CFG_Y_ADDR_END) must be less than the maximum height of the sensor. When using the flip and mirror feature of the sensor, then the range for calib_y_offset might need to be increased to correct for the sensor's internal starting color adjustment. This value is signed 2's complement. Changes take effect after a Change-Config command.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C 8 C 6 \\ \text { VAR(0x12, } \\ 0 \times 00 \mathrm{C} 6) \end{gathered}$	15:0	0x0080	cam_aet_ae_min_virt_dgain (R/W)
	This is the minimum value for the second digital gain that AE Track is permitted to use. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \hline 0 x C 8 C 8 \\ \text { VAR(0x12, } \\ 0 \times 00 C 8) \end{gathered}$	15:0	0x0280	cam_aet_ae_max_virt_dgain (R/W)
	This the maximum value for the second digital gain that AE Track is permitted to use. The default maximum value is set to allow AE Track to use small amounts of digital gain to supplement system gain values. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xC8CA } \\ \text { VAR(0x12, } \\ 0 \times 00 C A) \end{gathered}$	15:0	0x0020	cam_aet_ae_min_virt_again (R/W)
	This is the minimum value for the sensor analog gain that AE Track is permitted to use. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 8 C C \\ \text { VAR(0x12, } \\ 0 \times 00 C C) \end{gathered}$	15:0	0x0020	cam_aet_ae_max_virt_again (R/W)
	This the maximum value for the sensor analog gain that AE Track is permitted to use. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \hline \text { 0xC8CE } \\ \text { VAR(0x12, } \\ \text { 0x00CE) } \end{gathered}$	15:0	0x0020	cam_aet_ae_virt_gain_th_eg (R/W)
	Threshold for Extended Gain. Note: This value should be set to the minimum gain (cam_aet_ae_min_virt_again * cam_aet_ae_min_virt_dgain). This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xC8D1 } \\ \text { VAR(0x12, } \\ \text { 0x00D1) } \end{gathered}$	7:0	0x3C	cam_aet_flicker_freq_hz (R/W)
	The desired flicker avoidance frequency in Hertz (50 Hz or 60 Hz). In interlaced-scan modes, this variable is initialized automatically from ntsc_aet_flicker_frequency_hz or pal_aet_flicker_frequency_hz as appropriate. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} \hline \text { 0xC8D2 } \\ \text { VAR(0x12, } \\ \text { 0x00D2) } \end{gathered}$	15:0	0x1E00	cam_aet_max_frame_rate (RO)
	The maximum configured frame rate in Hertz (unity $=256$). Note this is the maximum frame-rate as determined by the current sensor configuration. This value is unsigned fixed-point with 8 fractional bits. Updates after a Change-Config command.		
$\begin{gathered} \text { 0xC8D4 } \\ \text { VAR(0x12, } \\ \text { 0x00D4) } \end{gathered}$	15:0	0x0000	cam_aet_frame_rate_0 (R/W)
	First discrete mode frame rate in Hertz. Must be less than cam_aet_max_frame_rate and greater than cam_aet_frame_rate_1. Variable frame räte is not supported in Interlaced modes and HDR exposure modes. This value is unsigned fixed-point with 8 fractional bits. Changes take effect after a Change-Config command.		
$\begin{gathered} \text { 0xC8D6 } \\ \text { VAR(0x12, } \\ \text { 0x00D6) } \end{gathered}$	15:0	0x0000	cam_aet_frame_rate_1 (R/W)
	Second discrete mode frame rate in Hertz. Must be less than cam_aet_frame_rate_0 and greater than cam_aet_frame_rate 2. Variable frame rāte is not supported in Interlaced modes and HDR exposure modes. This value is unsigned fixed-point with 8 fractional bits. Changes take effect after a Change-Config command.		
$\begin{gathered} \text { 0xC8D8 } \\ \text { VAR(0x12, } \\ \text { 0x00D8) } \end{gathered}$	15:0	0x0000	cam_aet_frame_rate_2 (R/W)
	Third discrete mode frame rate in Hertz. Must be less than cam_aet_frame_rate_1. Variable frame rate is not supported in Interlaced modes and HD \mathbf{R} exposure modes. This value is unsigned fixed-point with 8 fractional bits. Changes take effect after a Change-Config command.		
$\begin{gathered} \text { 0xC8DA } \\ \text { VAR(0x12, } \\ \text { 0x00DA) } \end{gathered}$	15:0	0x0100	cam_aet_target_gain (R/W)
	Sets the target analog gain. This value is used by AE Track to determine the maximum gain before starting to reduce the frame rate (in variable frame-rate modes). This is subject to the limitation that the minimum value has to be at least twice the minimum system gain - i.e. 2 x (cam_aet_ae_min_virt_again x cam_aet_ae_min_virt_dgain). This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

| Register |
| :---: | :--- | :--- | :--- | :--- |
| Dec(Hex) |\quad| Bits |
| :--- |

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default		Name
$\begin{gathered} \hline 0 x C 8 F 6 \\ \text { VAR(0x12, } \\ 0 \times 00 F 6) \end{gathered}$	15:0	0x00E7	cam_awb_ccm_m_4 (R/W)	
	Intermediate CCM value for column 1 and row 1. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.			
$\begin{gathered} 0 x C 8 F 8 \\ \text { VAR(0x12, } \\ 0 \times 00 \mathrm{~F} 8) \end{gathered}$	15:0	0x002F	cam_awb_ccm_m_5 (R/W)	
	Intermediate CCM value for column 2 and row 1. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.			
$\begin{gathered} 0 x C 8 F A \\ \text { VAR(0x12, } \\ 0 \times 00 F A) \end{gathered}$	15:0	0x0009	cam_awb_ccm_m_6 (R/W)	
	Intermediate CCM value for column 0 and row 2. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.			
$\begin{gathered} 0 x C 8 F C \\ \text { VAR(0x12, } \\ 0 \times 00 F C) \end{gathered}$	15:0	0xFFF7	cam_awb_ccm_m_7 (R/W)	
	Intermediate CCM value for column 1 and row 2. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.			
$\begin{gathered} \text { 0xC8FE } \\ \text { VAR(0x12, } \\ \text { 0x00FE) } \end{gathered}$	15:0	0x0100	cam_awb_ccm_m_8 (R/W)	
	Intermediate CCM value for column 2 and row 2. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.			
$\begin{gathered} 0 \times C 900 \\ \text { VAR(0x12, } \\ 0 \times 0100) \end{gathered}$	15:0	0x00A4	cam_awb_ccm_r_0 (R/W)	
	Blue-rich CCM value for column 0 and row 0 . This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.			
$\begin{gathered} 0 \times C 902 \\ \text { VAR(0x12, } \\ 0 \times 0102) \end{gathered}$	15:0	0x004B	cam_awb_ccm_r_1 (R/W)	
	Blue-rich CCM value for column 1 and row 0 . This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.			
$\begin{gathered} 0 \times C 904 \\ \text { VAR(0x12, } \\ 0 \times 0104) \end{gathered}$	15:0	0×0011	cam_awb_ccm_r_2 (R/W)	
	Blue-rich CCM value for column 2 and row 0. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.			
$\begin{gathered} 0 \times C 906 \\ \text { VAR(0x12, } \\ 0 \times 0106) \end{gathered}$	15:0	0xFFE8	cam_awb_ccm_r_3 (R/W)	
	Blue-rich CCM value for column 0 and row 1. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.			
$\begin{gathered} 0 \times C 908 \\ \text { VAR(0x12, } \\ 0 \times 0108) \end{gathered}$	15:0	0x00E4	cam_awb_ccm_r_4 (R/W)	
	Blue-rich CCM value for column 1 and row 1. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.			
$\begin{gathered} 0 \times C 90 A \\ \text { VAR(0x12, } \\ 0 \times 010 A) \end{gathered}$	15:0	0x0034	cam_awb_ccm_r_5 (R/W)	
	Blue-rich CCM value for column 2 and row 1. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.			
$\begin{gathered} 0 \times C 90 C \\ \text { VAR(0x12, } \\ 0 \times 010 C) \end{gathered}$	15:0	0x000A	cam_awb_ccm_r_6 (R/W)	
	Blue-rich CCM value for column 0 and row 2. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.			
$\begin{gathered} 0 x C 90 E \\ \text { VAR(0x12, } \\ 0 \times 010 E) \end{gathered}$	15:0	0x001F	cam_awb_ccm_r_7 (R/W)	
	Blue-rich CCM value for column 1 and row 2. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.			

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Nam
$\begin{gathered} 0 \times C 910 \\ \text { VAR(0x12, } \\ 0 \times 0110) \end{gathered}$	15:0	0x00D8	cam_awb_ccm_r_8 (R/W)
	Blue-rich CCM value for column 2 and row 2. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 912 \\ \text { VAR(0x12, } \\ 0 \times 0112) \end{gathered}$	15:0	0x005B	cam_awb_ccm_l_rg_gain (R/W)
	Red/Green ratio for Left Matrix. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 914 \\ \text { VAR(0x12, } \\ 0 \times 0114) \end{gathered}$	15:0	0x0140	cam_awb_ccm_I_bg_gain (R/W)
	Blue/Green ratio for Left Matrix. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 x C 916 \\ \text { VAR(0x12, } \\ 0 \times 0116) \end{gathered}$	15:0	0x009E	cam_awb_ccm_m_rg_gain (R/W)
	Red/Green ratio for Intermediate Matrix. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 918 \\ \text { VAR(0x12, } \\ 0 \times 0118) \end{gathered}$	15:0	0×0116	cam_awb_ccm_m_bg_gain (R/W)
	Blue/Green ratio for Intermediate Matrix. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xC91A } \\ \text { VAR(0x12, } \\ 0 \times 011 A) \end{gathered}$	15:0	0x008B	cam_awb_ccm_r_rg_gain (R/W)
	Red/Green ratio for Right Matrix. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 x C 91 C \\ \text { VAR(0x12, } \\ 0 \times 011 \mathrm{C}) \end{gathered}$	15:0	0x00AF	cam_awb_ccm_r_bg_gain (R/W)
	Blue/Green ratio for Right Matrix. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { OxC91E } \\ \text { VAR(0x12, } \\ 0 \times 011 E) \end{gathered}$	15:0	0x09C4	cam_awb_ccm_l_ctemp (R/W)
	Color temperature for the Left Matrix (in kelvin). This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 x C 920 \\ \text { VAR(0x12, } \\ 0 \times 0120) \end{gathered}$	15:0	0x0D67	cam_awb_ccm_m_ctemp (R/W)
	Color temperature for Intermediate Matrix (in kelvin). This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 x C 922 \\ \text { VAR(0x12, } \\ 0 \times 0122) \end{gathered}$	15:0	0x1964	cam_awb_ccm_r_ctemp (R/W)
	Color temperature for the Right Matrix (in kelvin). This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 924 \\ \text { VAR(0x12, } \\ 0 \times 0124) \end{gathered}$	15:0	0x0A8C	cam_awb_color_temperature_min (R/W)
	Minimum color temperature (degrees kelvin) allowed for AWB. This value should be greater than or equal to cam_awb_ccm_l_ctemp. This constrains the range of AWB solutions. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 926 \\ \text { VAR(0x12, } \\ 0 \times 0126) \end{gathered}$	15:0	0x1964	cam_awb_color_temperature_max (R/W)
	Maximum color temperature (degrees kelvin) allowed for AWB. This value should be less than or equal to cam_awb_ccm_r_ctemp. This constrains the range of AWB solutions. This value is unsigned. Changes take effect during Vertical Blanking.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C 93 E \\ \text { VAR(0x12, } \\ 0 \times 013 E) \end{gathered}$	15:0	0×1111	cam_awb_weight_table_3 (R/W)
	AWB weight table word 3. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 940 \\ \text { VAR(0x12, } \\ 0 \times 0140) \end{gathered}$	15:0	0x1222	cam_awb_weight_table_4 (R/W)
	AWB weight table word 4. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 942 \\ \text { VAR(0x12, } \\ 0 \times 0142) \end{gathered}$	15:0	0x2223	cam_awb_weight_table_5 (R/W)
	AWB weight table word 5. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 944 \\ \text { VAR(0x12, } \\ 0 \times 0144) \end{gathered}$	15:0	0x4555	cam_awb_weight_table_6 (R/W)
	AWB weight table word 6. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 946 \\ \text { VAR(0x12, } \\ 0 \times 0146) \end{gathered}$	15:0	0x2221	cam_awb_weight_table_7 (R/W)
	AWB weight table word 7. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 948 \\ \text { VAR(0x12, } \\ 0 \times 0148) \end{gathered}$	15:0	0x2466	cam_awb_weight_table_8 (R/W)
	AWB weight table word 8. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 94 A \\ \text { VAR(0x12, } \\ 0 \times 014 A) \end{gathered}$	15:0	0x6654	cam_awb_weight_table_9 (R/W)
	AWB weight table word 9. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 94 C \\ \text { VAR(0x12, } \\ 0 \times 014 C) \end{gathered}$	15:0	0x3234	cam_awb_weight_table_10 (R/W)
	AWB weight table word 10. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 94 E \\ \text { VAR(0x12, } \\ 0 \times 014 E) \end{gathered}$	15:0	0x3452	cam_awb_weight_table_11 (R/W)
	AWB weight table word 11. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 950 \\ \text { VAR(0x12, } \\ 0 \times 0150) \end{gathered}$	15:0	0x2577	cam_awb_weight_table_12 (R/W)
	AWB weight table word 12. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 952 \\ \text { VAR(0x12, } \\ 0 \times 0152) \end{gathered}$	15:0	0x6764	cam_awb_weight_table_13 (R/W)
	AWB weight table word 13. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 954 \\ \text { VAR(0x12, } \\ 0 \times 0154) \end{gathered}$	15:0	0x2212	cam_awb_weight_table_14 (R/W)
	AWB weight table word 14. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 x C 956 \\ \text { VAR(0x12, } \\ 0 \times 0156) \end{gathered}$	15:0	0x2552	cam_awb_weight_table_15 (R/W)
	AWB weight table word 15. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C 958 \\ \text { VAR(0x12, } \\ 0 \times 0158) \end{gathered}$	15:0	0x1354	cam_awb_weight_table_16 (R/W)
	AWB weight table word 16. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 95 A \\ \text { VAR(0x12, } \\ 0 \times 015 A) \end{gathered}$	15:0	0x4565	cam_awb_weight_table_17 (R/W)
	AWB weight table word 17. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 95 C \\ \text { VAR(0x12, } \\ 0 \times 015 C) \end{gathered}$	15:0	0x4422	cam_awb_weight_table_18 (R/W)
	AWB weight table word 18. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 x C 95 E \\ \text { VAR(0x12, } \\ 0 \times 015 E) \end{gathered}$	15:0	0x2331	cam_awb_weight_table_19 (R/W)
	AWB weight table word 19. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 960 \\ \text { VAR(0x12, } \\ 0 \times 0160) \end{gathered}$	15:0	0x1122	cam_awb_weight_table_20 (R/W)
	AWB weight table word 20. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 962 \\ \text { VAR(0x12, } \\ 0 \times 0162) \end{gathered}$	15:0	0x1234	cam_awb_weight_table_21 (R/W)
	AWB weight table word 21. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 964 \\ \text { VAR(0x12, } \\ 0 \times 0164) \end{gathered}$	15:0	0x3335	cam_awb_weight_table_22 (R/W)
	AWB weight table word 22. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 966 \\ \text { VAR(0x12, } \\ 0 \times 0166) \end{gathered}$	15:0	0x6652	cam_awb_weight_table_23 (R/W)
	AWB weight table word 23. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 x C 968 \\ \text { VAR(0x12, } \\ 0 \times 0168) \end{gathered}$	15:0	0×1111	cam_awb_weight_table_24 (R/W)
	AWB weight table word 24. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 96 A \\ \text { VAR(0x12, } \\ 0 \times 016 A) \end{gathered}$	15:0	0×1112	cam_awb_weight_table_25 (R/W)
	AWB weight table word 25 . This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 96 C \\ \text { VAR(0x12, } \\ 0 \times 016 C) \end{gathered}$	15:0	0x1224	cam_awb_weight_table_26 (R/W)
	AWB weight table word 26. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 x C 96 E \\ \text { VAR(0x12, } \\ 0 \times 016 E) \end{gathered}$	15:0	0x5652	cam_awb_weight_table_27 (R/W)
	AWB weight table word 27. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 970 \\ \text { VAR(0x12, } \\ 0 \times 0170) \end{gathered}$	15:0	0×1111	cam_awb_weight_table_28 (R/W)
	AWB weight table word 28. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C 972 \\ \text { VAR(0x12, } \\ 0 \times 0172) \end{gathered}$	15:0	0×1111	cam_awb_weight_table_29 (R/W)
	AWB weight table word 29. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 x C 974 \\ \text { VAR(0x12, } \\ 0 \times 0174) \end{gathered}$	15:0	0×1112	cam_awb_weight_table_30 (R/W)
	AWB weight table word 30 . This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 x C 976 \\ \text { VAR(0x12, } \\ 0 \times 0176) \end{gathered}$	15:0	0×2332	cam_awb_weight_table_31 (R/W)
	AWB weight table word 31. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 x C 979 \\ \text { VAR(0x12, } \\ 0 \times 0179) \end{gathered}$	7:0	0×10	cam_awb_luma_thresh_low (R/W)
	Lower luma threshold for pixels used in AWB. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 x C 97 A \\ \text { VAR(0x12, } \\ 0 \times 017 A) \end{gathered}$	7:0	0xF0	cam_awb_luma_thresh_high (R/W)
	Upper luma threshold for pixels used in AWB. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} \hline 0 \times C 97 B \\ \text { VAR(0x12, } \\ 0 \times 017 B) \end{gathered}$	7:0	0×01	cam_awb_weight_thresh_low (R/W)
	Lower pixel weight threshold. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} \text { 0xC97D } \\ \text { VAR(0x12, } \\ 0 \times 017 \mathrm{D}) \end{gathered}$	7:0	0x00	cam_awb_mode (R/W)
	7:5	X	Reserved
	4	0x00	Reserved
	3	0×00	cam_awb_mode_ir_filter_enable Dual-band infrared AWB mode control: 0: Disabled. 1: Enabled. Note: This mode is available to allow use of lenses with a dual-band infrared cut filter. This value is unsigned. Changes take effect during Vertical Blanking.
	2:0	0×00	cam_awb_mode_control Controls the White-Balance operation mode: 0 : Auto-white-balance. 1: Triggered auto-white-balance. 2: Manual white-balance (via cam_awb_color_temperature). 3: Host-controlled. This value is unsigned. Changes take effect after a Change-Config command.
	Execution modes for AWB. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 980 \\ \text { VAR(0x12, } \\ 0 \times 0180) \end{gathered}$	15:0	0x0DAC	cam_awb_tints_ctemp_threshold (R/W)
	Color temperature threshold in which to use the tint offsets. Color tints can be applied to the current CCM. There are two sets of tints: - cam_awb_k_r_l, cam_awb_k_g_l,cam_awb_k_b_I: red-rich illumination. - cam_awb_k_r_r, cam_awb_k_g_r, cam_awb_k_b_r: blue-rich illumination. Note: The tints applied are interpolated using cam_awb_color_temperature. This interpolation is performed when cam_awb_color_temperature is between cam_awb_ccm_ı_ctemp and cam_awb_tints_ctemp_threshold. This value is unsigned. Changes take effect during Vertical Blanking.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \hline 0 \times C 982 \\ \text { VAR(0x12, } \\ 0 \times 0182) \end{gathered}$	7:0	0x80	cam_awb_k_r_I (R/W)
	Controls the tint for the red channel (at the color temperature set by cam_awb_ccm_l_ctemp). This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 983 \\ \text { VAR(0x12, } \\ 0 \times 0183) \end{gathered}$	7:0	0x80	cam_awb_k_g_l (R/W)
	Controls the tint for the green channel (at the color temperature set by cam_awb_ccm_l_ctemp). This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 984 \\ \text { VAR(0x12, } \\ 0 \times 0184) \end{gathered}$	7:0	0x80	cam_awb_k_b_l (R/W)
	Controls the tint for the blue channel (at the color temperature set by cam_awb_ccm_I_ctemp). This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 985 \\ \text { VAR(0x12, } \\ 0 \times 0185) \end{gathered}$	7:0	0x80	cam_awb_k_r_r (R/W)
	Controls the tint for the red channel (at the color temperature threshold set by cam_awb_tints_ctemp_threshold). This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 986 \\ \text { VAR(0x12, } \\ 0 \times 0186) \end{gathered}$	7:0	0x80	cam_awb_k_g_r (R/W)
	Controls the tint for the green channel (at the color temperature threshold set by cam_awb_tints_ctemp_threshold). This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 987 \\ \text { VAR(0x12, } \\ 0 \times 0187) \end{gathered}$	7:0	0x80	cam_awb_k_b_r (R/W)
	Controls the tint for the blue channel (at the color temperature threshold set by cam_awb_tints_ctemp_threshold). This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 988 \\ \text { VAR(0x12, } \\ 0 \times 0188) \end{gathered}$	15:0	0x0007	cam_altm_mode (R/W)
	15:3	X	Reserved
	2	0×01	cam_altm_dynamic_damping_enable Enable dynamic damping for ĀLTM adaptation ($0=$ disabled, $1=$ enabled). This value is unsigned.
	1	0×01	cam_altm_sharpness_enable Enable interpolation of the ALTM 'Reflectance Sharpening Strength' based on the cam_ll_brightness_metric: 0 : Disabled. 1: Enabled. Reflectance sharpening enhances the texture and edge details during the dynamic range compression. This value is unsigned. Changes take effect during Vertical Blanking.
	0	0×01	cam_altm_mode_enable Enable Adaptive ALTM mode: 0 : Disabled. 1: Enabled. When enabled, the dynamic brightness control cam_altm_key_k1 is coupled to ae_rule_avg_log_y_from_stats. This value is unsigned. Changes take effect during Vertical Blanking.
	Controls ALTM mode (Controls Adaptive ALTM Brightness and Adaptive Reflectance Sharpening Strength). This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 98 A \\ \text { VAR(0x12, } \\ 0 \times 018 A) \end{gathered}$	15:0	0x0080	cam_altm_key_k0 (R/W)
	Noise floor used to calculate the key that controls the brightness of the tone mapped image. This value is unsigned. Changes take effect during Vertical Blanking.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \text { 0xC9A4 } \\ \text { VAR(0x12, } \\ 0 \times 01 A 4) \end{gathered}$	15:0	0x0005	cam_altm_sharpness_strength_dark (R/W)
	This is the ALTM reflectance sharpening strength used when the brightness metric is below cam_altm_ sharpness_dark_bm. When the brightness metric is between the cam_altm_sharpness_bright_bm threshold and the cam_altm_sharpness_dark_bm threshold the ALTM reflectance sharpening strength will be interpolated between the cam_altm_sharpness_strength_bright and cam_altm_sharpness_strength_dark values. Reflectance sharpening enhances the texture and edge details during the dynamic range compression. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xC9A6 } \\ \text { VAR(0x12, } \\ 0 \times 01 A 6) \end{gathered}$	15:0	0x0008	cam_altm_sharpness_strength_bright (R/W)
	This is the ALTM reflectance sharpening strength used when the brightness metric is greater than cam_altm sharpness_bright_bm. When the brightness metric is between the cam_altm_sharpness_bright_bm threshold and the cam_altm_sharpness_dark_bm threshold the ALTM reflectance sharpening strength will be interpolated between the cam_altm_sharpness_strength_bright and cam_altm_sharpness_strength_dark values. Reflectance sharpening enhances the texture and edge details during the $\bar{d} y n a m i c ~ r a n g e ~ c o m p r e s s i o n . ~$ This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \hline 0 x C 9 A 8 \\ \text { VAR(0x12, } \\ 0 \times 01 A 8) \end{gathered}$	15:0	0x001E	cam_stat_mode (R/W)
	15:5	X	Reserved
	4	0×01	cam_stat_mode_awb_clip_output_relative $\mathrm{AW} \overline{\mathrm{B}} / \mathrm{CLI} \overline{\mathrm{P}}$ window co-ordinates $\overline{\mathrm{ar}}$ - specified relative to: 0 : Sensor window. 1: Output window. This selects the AWB and CLIP 'parent' window. This value is unsigned. Changes take effect after a Refresh command.
	3	0×01	cam_stat_mode_awb_clip_auto Controls ĀWB/C̄̄IP window: 0 : Manual: host sets window co-ordinates 1: Auto: firmware calculates window co-ordinates for full FOV. This value is unsigned. Changes take effect after a Refresh command.
	2	0×01	cam_stat_mode_ae_altm_fd_output_relative AE/ĀLTM/FD window co-ōrdinates are specified relative to: 0 : Sensor window. 1: Output window. This selects the AE, ALTM, and FD 'parent' window. This value is unsigned. Changes take effect after a Refresh command.
	1	0×01	cam_stat_mode_ae_altm_fd_auto Controls $\overline{\mathrm{A}} \mathrm{E} / \mathrm{ALTM} / \overline{\mathrm{FD}}$ window: 0 : Manual: host sets window co-ordinates. 1: Auto: firmware calculates window co-ordinates for full FOV. This value is unsigned. Changes take effect after a Refresh command.
	0	0×00	cam_stat_mode_one_shot Controls statistics acquisition mode: 0 : Continuous: statistics are acquired every frame. 1: One-shot: statistics are only acquired after being triggered. This value is unsigned. Changes take effect during Vertical Blanking.
	Statistics mode control flags. This value is unsigned. Changes take effect during Vertical Blanking.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \text { 0xC9AA } \\ \text { VAR(0x12, } \\ \text { 0x01AA) } \end{gathered}$	15:0	0x0000	cam_stat_control (R/W)
	15:1	X	Reserved
	0	0×00	cam_stat_control_trigger When set, triggers statistics acquisition in one-shot mode: 0 : No trigger 1: Trigger. Auto-clears after acquisition, host should poll this bit. This value is unsigned. Changes take effect during Vertical Blanking.
	Acquisition control flags. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xC9AC } \\ \text { VAR(0x12, } \\ 0 \times 01 A C) \end{gathered}$	7:0	0x00	cam_stat_exclude_control (R/W)
	7:3	X	Reserved
	2	0×00	cam_stat_exclude_altm Exclusion window control for ALTM statistics: 0 : Disabled. 1: Enabled. This value is unsigned. Changes take effect after a Refresh command.
	1	0×00	cam_stat_exclude_awb Exclūsion window control for AWB statistics: 0 : Disabled. 1: Enabled. This value is unsigned. Changes take effect after a Refresh command.
	0	0×00	cam_stat_exclude_ae Exclusion window control for AE statistics: 0 : Disabled. 1: Enabled. This value is unsigned. Changes take effect after a Refresh command.
	Exclusion window control flags. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} \hline 0 \times C 9 B 0 \\ \text { VAR(0x12, } \\ 0 \times 01 B 0) \end{gathered}$	15:0	0x0000	cam_stat_exclude_window_x_offset (R/W)
	The horizontal offset of the first pixel to be excluded, relative to the sensor output window. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} \text { 0xC9B2 } \\ \text { VAR(0x12, } \\ 0 \times 01 B 2) \end{gathered}$	15:0	0x0000	cam_stat_exclude_window_y_offset (R/W)
	The vertical offset of the first pixel to be excluded, relative to the sensor output window. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} \text { 0xC9B4 } \\ \text { VAR(0x12, } \\ 0 \times 01 \mathrm{~B} 4) \end{gathered}$	15:0	0x0000	cam_stat_exclude_window_width (R/W)
	The width of the exclusion window, in pixels. This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 9 B 6 \\ \text { VAR(0x12, } \\ 0 \times 01 B 6) \end{gathered}$	15:0	0x0000	cam_stat_exclude_window_height (R/W)
	The height of the exclusion window, in rows. This value is unsigned. Changes take effect after a Refresh command.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \hline 0 x C 9 B 8 \\ \text { VAR(0x12, } \\ 0 \times 01 \mathrm{~B} 8) \end{gathered}$	15:0	0x0000	cam_stat_ae_altm_fd_window_x_offset (R/W)
	The horizontal offset, in pixels, of the first pixel of the AE/ALTM/Flicker Detection statistics window, specified relative to the selected parent window. The parent window is determined by cam_stat_mode_ae_altm_fd_output_relative. This value is ignored if cam_stat_mode_ae_altm_fd_auto is 1 . This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} \text { 0xC9BA } \\ \text { VAR(0x12, } \\ \text { 0x01BA) } \end{gathered}$	15:0	0x0000	cam_stat_ae_altm_fd_window_y_offset (R/W)
	The vertical offset, in lines, of the first pixel of the AE/ALTM/Flicker Detection statistics window, specified relative to the selected parent window. The parent window is determined by cam_stat_mode_ae_altm_fd_output_relative. This value is ignored if cam_stat_mode_ae_altm_fd_auto is 1 . This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 9 B C \\ \text { VAR(0x12, } \\ 0 \times 01 B C) \end{gathered}$	15:0	0x0500	cam_stat_ae_altm_fd_window_width (R/W)
	The width of the AE/ALTM/Flicker Detection statistics window, in pixels. This value is ignored if cam_stat_mode_ae_altm_fd_auto is 1 . This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} \text { OxC9BE } \\ \text { VAR(0x12, } \\ \text { 0x01BE) } \end{gathered}$	15:0	0x03C0	cam_stat_ae_altm_fd_window_height (R/W)
	The height of the AE/ALTM/Flicker Detection statistics window, in lines. This value is ignored if cam_stat_mode_ae_altm_fd_auto is 1 . This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 9 C 0 \\ \text { VAR(0x12, } \\ 0 \times 01 C 0) \end{gathered}$	15:0	0x0000	cam_stat_awb_clip_window_x_offset (R/W)
	The horizontal offset, in pixels, of the first pixel of the AWB/Clipping statistics window, specified relative to the selected parent window. The parent window is determined by cam_stat_mode_ae_altm_fd_output_relative. This value is ignored if cam_stat_mode_awb_clip_auto is 1 . This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 9 C 2 \\ \text { VAR(0x12,0x } \\ 01 \mathrm{C} 2) \end{gathered}$	15:0	0x0000	cam_stat_awb_clip_window_y_offset (R/W)
	The vertical offset, in lines, of the first pixel of the AWB/Clipping statistics window, specified relative to the selected parent window. The parent window is determined by cam_stat_mode_ae_altm_fd_output_relative. This value is ignored if cam_stat_mode_awb_clip_auto is 1 . This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 9 C 4 \\ \text { VAR(0x12, } \\ 0 \times 01 C 4) \end{gathered}$	15:0	0x0500	cam_stat_awb_clip_window_width (R/W)
	The width of the AWB/Clipping statistics window, in pixels. This value is ignored if cam_stat_mode_awb_clip_auto is 1 . This value is unsigned. Changes take effect after a Refresh command.		
$\begin{gathered} 0 \times C 9 C 6 \\ \text { VAR(0x12, } \\ 0 \times 01 C 6) \end{gathered}$	15:0	0x03C0	cam_stat_awb_clip_window_height (R/W)
	The height of the AWB/Clipping statistics window, in lines. This value is ignored if cam_stat_mode_awb_clip_auto is 1 . This value is unsigned. Changes take effect after a Refresh command.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \hline 0 \times C 9 C 8 \\ \text { VAR(0x12, } \\ 0 \times 01 \mathrm{C} 8) \end{gathered}$	15:0	0x0003	cam_II_mode (R/W)
	15:2	X	Reserved
	1	0×01	cam_l_exec_contrast_gamma_bright_curve Enable firmware calculation of the gamma/contrast curves for bright conditions: 0 : Disabled. 1: Enabled. This value is unsigned. Changes take effect after a Change-Config command.
	0	0×01	cam_ll_exec_contrast_gamma_dark_curve Controls whether the device calculates the dark conditions (noise-reduction) gamma/ contrast curve: 0 : Noise-reduction gamma/contrast curve is not calculated. 1: Noise-reduction gamma/contrast curve is auto-calculated from cam_ll_gamma, cam_ll_stop_contrast_gradient and cam_ll_stop_contrast_luma_percentage. This value is unsigned. Changes take effect after a Change-Config command.
	Low light execution mode control (flags). This value is unsigned. Changes take effect after a Change-Config command.		
0xC9CA VAR(0x12, 0x01CA)	15:0	0x0000	cam_II_brightness_metric (RO)
	Brightness Metric in log2 space (higher=brighter). This value is signed 2's complement fixed-point with 8 fractional bits. Updates during Vertical Blanking.		
0xC9CC VAR(0x12, 0x01CC)	15:0	0xF900	cam_II_bm_offset (R/W)
	Scene brightness calculation offset for the brightness metric log. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC9CE VAR(0x12, 0x01CE)	15:0	0x0000	cam_II_sensor_red_gain_metric (RO)
	Gain metric for the sensor's red pixels. This is the product of all analog and digital gains applied to the red pixels within the external sensor. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} \text { 0xC9D0 } \\ \text { VAR(0x12, } \\ \text { 0x01D0) } \end{gathered}$	15:0	0x0000	cam_II_sensor_green_gain_metric (RO)
	Gain metric for the sensor's green pixels. This is the product of all analog and digital gains applied to the green pixels within the external sensor. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} \text { 0xC9D2 } \\ \text { VAR(0x12, } \\ \text { 0x01D2) } \end{gathered}$	15:0	0x0000	cam_ll_sensor_blue_gain_metric (RO)
	Gain metric for the sensor's blue pixels. This is the product of all analog and digital gains applied to the blue pixels with in the external sensor. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} \hline \text { 0xC9D4 } \\ \text { VAR(0x12, } \\ \text { 0x01D4) } \end{gathered}$	15:0	0x0000	cam_Il_red_gain_metric (RO)
	This is the red channel total gain metric. It is the product of all analog and digital gains applied to the red pixels. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} \hline \text { 0xC9D6 } \\ \text { VAR(0x12, } \\ \text { 0x01D6) } \end{gathered}$	15:0	0x0000	cam_II_green_gain_metric (RO)
	This is the green channel total gain metric. It is the product of all analog and digital gains applied to the green pixels. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		
$\begin{gathered} \text { 0xC9D8 } \\ \text { VAR(0x12, } \\ \text { 0x01D8) } \end{gathered}$	15:0	0x0000	cam_ll_blue_gain_metric (RO)
	This is the blue channel total gain metric. It is the product of all analog and digital gains applied to the blue pixels. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \text { 0xC9F5 } \\ \text { VAR(0x12, } \\ \text { 0x01F5) } \end{gathered}$	7:0	0×28	cam_II_contrast_intercept_point_dark (R/W)
	The gamma/contrast curve is effectively an 'S' curve, with one point (the inflection point) where input luma == output luma. This variable controls the location of this point for dark conditions, corresponding to cam_ll_contrast_dark_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 x C 9 F 6 \\ \text { VAR(0x12, } \\ 0 \times 01 F 6) \end{gathered}$	15:0	0x0010	cam_II_bright_fade_to_black_luma (R/W)
	This is the upper threshold luma value for the fade to black feature. This controls when the fade-to-black starts. That is, when II_average_luma_fade_to_black is above this value, no fade occurs. When II_average_luma_fade_to_black is between the cam_॥_bright_fäde_to_black_luma upper threshold and the cam_ll_dārk_fade_to_black_luma-lower threshold the gamma curve is interpolated between the normal gamma curve $\overline{\text { and }} \overline{\text { a }}$ a curve that forces all pixels to black. When II_average_luma_fade_to_black is below the cam_ll_dark_fade_to_black_luma lower threshold the black gamma curve is selected and all pixels are forced to black. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 x C 9 F 8 \\ \text { VAR(0x12, } \\ \text { 0x01F8) } \end{gathered}$	15:0	0x0001	cam_II_dark_fade_to_black_I
	This is the lower threshold luma value for the fade to black feature. This controls when the fade-to-black stops. That is, when II_average_luma_fade_to_black is below this value, the image is fully black. When II_average_luma_fade_to_black is between the cam_ll_bright_fade_to_black_luma upper threshold and the cam_ll_dark_fade_to_black_luma lower threshold the gamma curve is interpolated between the normal gamma curve and $\overline{\mathrm{a}}$ curve $\overline{\mathrm{t}}$ hat forces all pixels to black. When Il_average_luma_fade_to_black is above cam_ll_bright_fade_to_black_luma then the normal gamma curve is selected and no fading occurs. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 x C 9 F A \\ \text { VAR(0x12, } \\ 0 \times 01 F A) \end{gathered}$	15:0	0x00C8	cam_ll_sdc_dp_dark_bm (R/W)
	Dark threshold for single dark pixel defect correction. When the brightness metric is below this value, the cam_ll_sdc_dp_strength_dark value is used for the single dark pixel strength parameter. When the brightness metric is between the cam_ll_sdc_dp_dark_bm threshold and the cam_ll_sdc_dp_bright_bm threshold, the single dark pixel strength parameter value is interpolated from between cam_ll_sdc_dp_strength_dark and cam_Il_sdc_dp_strength_bright. Single \bar{d} ark pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_II_sdc_gate_bm. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C 9 F C \\ \text { VAR(0x12, } \\ 0 \times 01 F C) \end{gathered}$	15:0	0x0B54	cam_II_sdc_dp_bright_bm (R/W)
	Bright threshold for single dark pixel defect correction. When the brightness metric is above this value, the cam_II_sdc_dp_strength_bright value is used for the single dark pixel strength parameter. When the brightness metric is between the cam_II_sdc_dp_dark_bm threshold and the cam_II_sdc_dp_bright_bm threshold, the single dark pixel strength parameter value is interpolated from between cam_ll_sdc_dp_strength_dark and cam_ll_sdc_dp_strength_bright. Single \bar{d} ark \bar{p} ix $\overline{e l}$ defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { OxC9FE } \\ \text { VAR(0x12, } \\ 0 \times 01 F E) \end{gathered}$	7:0	0×08	cam_II_sdc_dp_strength_dark (R/W)
	Single dark pixel defect correction strength parameter for dark images. This controls how aggressively the defect correction hardware corrects potential single dark pixel defects. When the brightness metric is below cam_ll_sdc_dp_dark_bm this value is used for the single dark pixel strength parameter. When the brightness metric is between the cam_ll_sdc_dp_dark_bm threshold and the cam_ll_sdc_dp_bright_bm threshold, the single dark pixel strength parameter value is interpolated from between cam_ll_sdc_dp_strength_dark and cam_ll_sdc_dp_strength_bright. The $\bar{r} \bar{c} \overline{c o m} \bar{m}$ end range is from 80 to 100 , the lower the value the more aggressive the single dark pixel detection is. Single dark pixel defect correction is only enabled when the brightness metric is less than cam_l_sdc_th_bm threshold with hysteresis of cam_II_sdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C A 00 \\ \text { VAR(0x12, } \\ 0 \times 0200) \end{gathered}$	15:0	0x00C8	cam_II_sdc_hp_dark_bm (R/W)
	Dark threshold for single hot pixel defect correction. When the brightness metric is below this value, the cam_ll_sdc_hp_strength_dark value is used for the single hot pixel strength parameter. When the brightness metric is between the cam_ll_sdc_hp_dark_bm threshold and the cam_ll_sdc_hp_bright_bm threshold, the single hot pixel strength parameter value is interpolated from between cam_ll_sdc_hp_strength_dark and cam_ll_sdc_hp_strength_bright. Single hot pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_II_sdc_gate_bm. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xCA02 } \\ \text { VAR(0x12, } \\ 0 \times 0202) \end{gathered}$	15:0	0x0B54	cam_II_sdc_hp_bright_b
	Bright threshold for single hot pixel defect correction. When the brightness metric is above this value, the cam_ll_sdc_hp_strength_bright value is used for the single hot pixel strength parameter. When the brightness metric is between the cam_II_sdc_hp_dark_bm threshold and the cam_ll_sdc_hp_bright_bm threshold, the single hot pixel strength parameter value is interpolated from between cam_ll_sdc_hp_strength_dark and cam_ll_sdc_hp_strength_bright. Single hot pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xCA04 } \\ \text { VAR(0x12, } \\ 0 \times 0204) \end{gathered}$	7:0	0×08	cam_II_sdc_hp_strength_dark (R/W)
	Single hot or warm pixel defect correction strength parameter for dark images. This controls how aggressively the defect correction hardware corrects potential single hot pixel defects. When the brightness metric is below cam_ll_sdc_hp_dark_bm this value is used for the single hot pixel strength parameter. When the brightness metric is between the cam_ll_sdc_hp_dark_bm threshold and the cam_ll_sdc_hp_bright_bm threshold, the single hot pixel strength parameter value is interpolated from between cam_ll_sdc_hp_strength_dark and cam_ll_sdc_hp_strength_bright. The recommend range is from 5 to 15 , the lower the value the more aggressive the single hot pixel defect detection is. Single hot pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_II_sdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xCA05 } \\ \text { VAR(0x12, } \\ 0 \times 0205) \end{gathered}$	7:0	0x0F	cam_II_sdc_hp_strength_bright (R/W)
	Single hot or warm pixel defect correction strength parameter for bright images. This controls how aggressively the defect correction hardware corrects potential single hot pixel defects. When the brightness metric is above cam_ll_sdc_hp_bright_bm this value is used for the single hot pixel strength parameter. When the brightness metric is between the cam_ll_sdc_hp_dark_bm threshold and the cam_ll_sdc_hp_bright_bm threshold, the single hot pixel strength parameter value is interpolated from between cam_ll_sdc_hp_strength_dark and cam_ll_sdc_hp_strength_bright. The recommend range is from 5 to 15 , the lower the value the more aggressive the single hot pixel defect detection is. Single hot pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_II_sdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xCA06 } \\ \text { VAR(0x12, } \\ 0 \times 0206) \end{gathered}$	15:0	0x00C8	cam_II_sdc_crossfactor_dark_bm (R/W)
	Dark threshold for fine detail single defect correction. When the brightness metric is below this value, the cam_II_sdc_crossfactor_strength_dark value is used for the fine detail single defect correction threshold. When the brightness metric is between the cam_ll_sdc_crossfactor_dark_bm threshold and the cam_Il_sdc_crossfactor_bright_bm threshold, the fine detail single defect correction threshold value is interpolated from between cam_l_sdc_crossfactor_strength_dark and cam_Il_sdc_crossfactor_strength_bright. Single defect correction is only enabled when the brightness metric ís less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is signed ${ }^{2}$'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \text { 0xCA08 } \\ \text { VAR(0x12, } \\ 0 \times 0208) \end{gathered}$	15:0	0x0B54	cam_II_sdc_crossfactor_bright_bm (R/W)
	Bright threshold for fine detail single defect correction. When the brightness metric is above this value, the cam_ll_sdc_crossfactor_strength_bright value is used for the fine detail single defect correction threshold. When the brightness metric is between the cam_ll_sdc_crossfactor_dark_bm threshold and the cam_ll_sdc_crossfactor_bright_bm threshold, the fine detail single defect correction threshold value is interpolated from between cam_ll_sdc_crossfactor_strength_dark and cam_ll_sdc_crossfactor_strength_bright. Single defect correction is only enabled when the - brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_II_sdc_gate_bm. This value is signed ${ }^{2}$'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xCAOA } \\ \text { VAR(0x12, } \\ \text { 0x020A) } \end{gathered}$	7:0	0x04	cam_ll_sdc_c
	Fine detail single defect correction threshold for dark images. This controls how aggressively the defect correction hardware corrects potential single dark and hot pixel defects in fine details of the image. When the brightness metric is below cam_ll_sdc_crossfactor_dark_bm this value is used for the fine detail single defect correction threshold. When the brightness metric is between the cam_ll_sdc_crossfactor_dark_bm threshold and the cam_ll_sdc_crossfactor_bright_bm threshold, the fine detail single defect correction threshold value is interpolated from between cam_ll_sdc_crossfactor_strength_dark and cam_ll_sdc_crossfactor_strength_bright. The recommend range is from 2 to 8 , the lower the value the less aggressive the single pixel defect detection is in fine details. Single defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \hline \text { 0xCAOB } \\ \text { VAR(0x12, } \\ \text { 0x020B) } \end{gathered}$	7:0	0x0C	cam_II_sdc_crossfactor_strength_bright (R/W)
	Fine detail single defect correction threshold for bright images. This controls how aggressively the defect correction hardware corrects potential single dark and hot pixel defects in fine details of the image. When the brightness metric is above cam_ll_sdc_crossfactor_bright_bm, then this value is used for the fine detail single defect correction threshold. When the brightness metric is between the cam_Il_sdc_crossfactor_dark_bm threshold and the cam_ll_sdc_crossfactor_bright_bm threshold, the fine detail single defect correction threshold value is interpolated from between cam_ll_sdc_crossfactor_strength_dark and cam_ll_sdc_crossfactor_strength_bright. The recommend range is from 2 to 8 , the lower the value the less aggressive the single pixel defect detection is in fine details. Single defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { OxCAOC } \\ \text { VAR(0x12, } \\ 0 \times 020 C) \end{gathered}$	15:0	0x00C8	cam_II_sdc_maxfactor_dark_bm (R/W)
	Dark threshold for single defect correction limiting. When the brightness metric is below this value, the cam_ll_sdc_maxfactor_strength_dark value is used for the single pixel defect maxfactor limiting. When the brightness metric is between the cam_ll_sdc_maxfactor_dark_bm threshold and the cam_ll_sdc_maxfactor_bright_bm threshold, the single pixel defect maxfactor limiting value is interpolated from between cam_ll_s $\bar{d} c _m a x f a c t o r _s t r e n g t h _d a r k ~ a n d ~$ cam_ll_sdc_maxfactor_strength_bright. Single pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { OxCAOE } \\ \text { VAR(0x12, } \\ 0 \times 020 E) \end{gathered}$	15:0	0x0B54	cam_II_sdc_maxfactor_bright_bm (R/W)
	Bright threshold for single defect correction limiting. When the brightness metric is above this value, the cam_ll_sdc_maxfactor_strength_bright value is used for the single pixel defect maxfactor limiting. When the brightness metric is bēween the cam_Il_sd̄c_maxfactor_dark_bm threshold and the cam_II_sdc_maxfactor_bright_bm threshold, the single pixel defect maxfactor limiting value is interpolated from between cam_ll_sdc_maxfactor_strength_dark and cam_ll_sdc_maxfactor_strength_bright. Single \bar{p} ixel defect correction is ōnly enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is signed ${ }^{2}$'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C A 10 \\ \text { VAR(0x12, } \\ 0 \times 0210) \end{gathered}$	7:0	0×01	cam_II_sdc_maxfactor_strength_dark (R/W)
	Single pixel defect correction limiting strength parameter for dark images. The single pixel defect maxfactor limits the fine detail defect correction hold-off. This prevents missing the detection of defects with high luma value excursions within fine detail areas of the image. When the brightness metric is below cam_ll_sdc_maxfactor_dark_bm this value is used for the single pixel defect crossfactor limiting. When the brightness metric is between the cam_ll_sdc_ maxfactor_dark_bm threshold and the cam_ll_sdc_maxfactor_bright_bm, the single pixel defect crossfactor limiting value is interpolated from between cam_I_sdc_maxfactor_strength_dark and cam_ll_sdc_maxfactor_strength_bright. The lower the value the more aggressive the single pixel defect detection is in detection of defects with high luma value excursions. Single pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_II_sdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 x C A 11 \\ \text { VAR(0x12, } \\ 0 \times 0211) \end{gathered}$	7:0	0×01	cam_II_sdc_maxfactor_strength_
	Single pixel defect correction limiting strength parameter for bright images. The single pixel defect maxfactor limits the fine detail defect correction hold-off. This prevents missing the detection of defects with high luma value excursions within fine detail areas of the image. When the brightness metric is above cam_ll_sdc_maxfactor_bright_bm this value is used for the single pixel defect crossfactor limiting. When the brightness metric is between the cam_ll_sdc_ maxfactor_dark_bm threshold and the cam_ll_sdc_maxfactor_bright_bm, the single pixel defect crossfactor limiting value is interpolāted from between cam_l_ sdc_ maxfactor_strength_dark and cam_ll_sdc_maxfactor_strength_bright. The lower the value the more aggressive $\overline{\text { the }}$ single pixel $\overline{d e f e c t ~ d e t e c t i o n ~ i s ~ i n ~ d e t e c t i o n ~ o f ~ d e f e c t s ~ w i t h ~ h i g h ~ l u m a ~ v a l u e ~}$ excursions. Single pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C A 12 \\ \text { VAR(0x12, } \\ 0 \times 0212) \end{gathered}$	15:0	0x1000	cam_II_sdc_th_bm (R/W)
	Brightness metric threshold for enabling single defect correction. Single defect correction is enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C A 16 \\ \text { VAR(0x12, } \\ 0 \times 0216) \end{gathered}$	15:0	0x00C8	cam_II_cdc_dp_dark_bm (R/W)
	Dark threshold for dark pixel cluster defect correction. When the brightness metric is below this value, the cam_ll_cdc_dp_strength_dark value is used for the dark cluster strength parameter. When the brightness metric is between the cam_ll_cdc_dp_dark_bm threshold and the cam_ll_cdc_dp_bright_bm threshold, the dark cluster strength parameter value is in interpolated from between cam_ll_cdc_dp_strength_dark and cam_ll_cdc_dp_strength_bright. Dark cluster defect correction is only enabled when the brightness metric is less than cam_ll_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C A 18 \\ \text { VAR(0x12, } \\ 0 \times 0218) \end{gathered}$	15:0	0x0B54	cam_II_cdc_dp_bright_bm (R/W)
	Bright threshold for dark pixel cluster defect correction. When the brightness metric is above this value, the cam_ll_cdc_dp_strength_bright value is used for the dark cluster strength parameter. When the brightness metric is between the cam_ll_cdc_dp_dark_bm threshold and the cam_ll_cdc_dp_bright_bm threshold, the dark cluster strength parameter value is in interpolated from between cam_ll_cdc_dp_strength_dark and cam_ll_cdc_dp_strength_bright. Dark cluster defect correction is only enabled when the brightness metric is less than cam_ll_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is signed ${ }^{2}$'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xCA1A } \\ \text { VAR(0x12, } \\ 0 \times 021 A) \end{gathered}$	7:0	0×08	cam_II_cdc_dp_strength_dark (R/W)
	Dark cluster defect correction strength parameter for dark images. This controls how aggressively the defect correction hardware corrects potential dark cluster defects. When the brightness metric is below cam_ll_cdc_dp_dark_bm this value is used for the dark cluster strength parameter. When the brightness metric is between the cam_ll_cdc_dp_dark_bm threshold and the cam_ll_cdc_dp_bright_bm threshold, the dark cluster strength parameter value is interpolated from between cam_ll_cdc_dp_strength_dark and cam_ll_cdc_dp_strength_bright. The lower the value the more aggressive the dark cluster detection is. Dark cluster defect correction is only enabled when the brightness metric is less than cam_ll_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \text { 0xCA1B } \\ \text { VAR(0x12, } \\ \text { 0x021B) } \end{gathered}$	7:0	0x0F	cam_ll_cdc_dp_strength_bright (R/W)
	Dark cluster defect correction strength parameter for bright images. This controls how aggressively the defect correction hardware corrects potential dark cluster defects. When the brightness metric is above cam_ll_cdc_dp_bright_bm this value is used for the dark cluster strength parameter. When the brightness metric is between the cam_ll_cdc_dp_dark_bm threshold and the cam_Il_cdc_dp_bright_bm threshold, the dark cluster strength paramēerer value is interpolated from between cam_-ll_cdc_dp_strē̄gth_dark and cam_ll_cdc_dp_strength_bright. The lower the value the more aggressive the dark cluster detection is. Dark cluster defect correction is only enabled when the brightness metric is less than cam_॥_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \hline \text { 0xCA1C } \\ \text { VAR(0x12, } \\ 0 \times 021 C) \end{gathered}$	15:0	0x00C8	cam_II_cdc_hp_dark_bm (R/W)
	Dark threshold for cluster hot pixel defect correction. When the brightness metric is below this value, the cam_ll_cdc_hp_strength_dark value is used for the cluster hot pixel strength parameter. When the brightness metric is between the cam_ll_cdc_hp_dark_bm threshold and the cam_ll_cdc_hp_bright_bm threshold, the cluster hot pixel strength parameter $\overline{\text { value }}$ is interpolated from between cam_ll_cdc_hp_strength_dark and cam_ll_cdc_hp_strength_bright. Cluster defect correction is only enabled when the brightness metric is less than cam_ll_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is signed ${ }^{2}$'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \hline \text { 0xCA1E } \\ \text { VAR(0x12, } \\ 0 \times 021 E) \end{gathered}$	15:0	0x0B54	cam_Il_cdc_hp_bright_bm (R/W)
	Bright threshold for cluster hot pixel defect correction. When the brightness metric is above this value, the cam_ll_cdc_hp_strength_bright value is used for the cluster hot pixel strength parameter. When the brightness metric is between the cam_ll_cdc_hp_dark_bm threshold and the cam_ll_cdc_hp_bright_bm threshold, the cluster hot pixel strength parameter value is interpolated from between cam_ll_cdc_hp_strength_dark and cam_ll_cdc_hp_strength_bright. Cluster defect correction is only enabled when the brightness metric is less than cam_l_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is signed ${ }^{2}$'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { OxCA20 } \\ \text { VAR(0x12, } \\ 0 \times 0220) \end{gathered}$	7:0	0×08	cam_II_cdc_hp_strength_dark (R/W)
	Cluster hot or warm pixel defect correction strength parameter for dark images. This controls how aggressively the defect correction hardware corrects potential cluster hot pixel defects. When the brightness metric is below cam_ll_cdc_hp_dark_bm this value is used for the cluster hot pixel strength parameter. When the brightness metric is between the cam_ll_cdc_hp_dark_bm threshold and the cam_ll_cdc_hp_bright_bm threshold, the cluster hot pixel strength parameter value is interpolated from between cam_ll_cdc_hp_strength_dark and cam_ll_cdc_hp_strength_bright. The Tower the value the more aggressive the single hot pixel defect detection is. Cluster defect correction is only enabled when the brightness metric is less than cam_ll_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xCA21 } \\ \text { VAR(0x12, } \\ 0 \times 0221) \end{gathered}$	7:0	0x0F	cam_ll_cdc_hp_strength_bright (R/W)
	Cluster hot or warm pixel defect correction strength parameter for bright images. This controls how aggressively the defect correction hardware corrects potential cluster hot pixel defects. When the brightness metric is above cam_ll_cdc_hp_bright_bm this value is used for the cluster hot pixel strength parameter. When the brightness metric is between the cam_ll_cd̄c_hp_dark_bm threshold and the cam_ll_cdc_hp_bright_bm threshold, the cluster hot pixel strength parameter value is interpolated from between cam_ll_cdc_hp_strength_dark and cam_ll_cdc_hp_strength_bright. The $\overline{\text { low }}$ wer the value the more aggressive the cluster hot pixel defect detection is. Cluster defect correction is only enabled when the brightness metric is less than cam_l_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \hline \text { 0xCA2E } \\ \text { VAR(0x12, } \\ \text { 0x022E) } \end{gathered}$	15:0	0x0003	cam_II_adacd_gr_weights_strength_high (R/W)
	Upper limit of AdaCD filtering strength. For scenes with a SNR value above cam_ll_adacd_gr_weights_high_snr, this is the filter strength that will be used. For scenes with a SNR value between cam_ll_-adacd_gr_weights_low_sñr and cam_ll_adacd_gr_weights_high_snr the filter strength will be a linear interpolation between cam_ll_adacd_gr_weights_strength_low and cam_ll_adacd_gr_weights_strength_high based on the value of cam_ll_snr_metric. Higher values will increase the filtering and trade sharpness for more noise reduction. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C A 30 \\ \text { VAR(0x12, } \\ 0 \times 0230) \end{gathered}$	15:0	0x03E8	cam_ll_adacd_gr_weights_low_snr (R/W)
	Lower SNR threshold for AdaCD filtering strength. For scenes with a SNR value below this threshold the cam_ll_adacd_gr_weights_strength_low filtering strength will be used. For scenes with a SNR value between cam_ll_adacd_gr_weights_low_snr and cam_ll_adacd_gr_weights_high_snr the filter strength will be a linear interpōatation between cam_ll_adacd_gr_weights_strength_low and cam_ll_adacd_gr_weights_strength_high based on the value of cam_ll_snr_metric. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \hline \text { OxCA32 } \\ \text { VAR(0x12, } \\ 0 \times 0232) \end{gathered}$	15:0	0x0D00	cam_II_adacd_gr_weights_high_snr (R/W)
	Upper SNR threshold for AdaCD filtering strength. For scenes with a SNR value above this threshold the cam_Il_adacd_gr_weights_strength_high filtering strength will be used. For scenes with a SNR value between cam_ll_adacd_gr_weights_low_snr_and cam_ll_adacd_gr_weights_high_snr the filter strength will be a linear interpolation between cam_ll_adacd_gr_weights_strength_low and cam_ll_adacd_gr_weights_strength_high based on the value of cam_ll_snr_metric. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C A 34 \\ \text { VAR(0x12, } \\ 0 \times 0234) \end{gathered}$	15:0	0x0020	cam_II_nr_lut_0_gain (R/W)
	Sensor analog gain for look up table entry 0 . This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This is paired with cam_ll_nr_lut_0_sigma and cam_ll_nr_lut_0_k0. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \hline 0 \times C A 36 \\ \text { VAR(0x12, } \\ 0 \times 0236) \end{gathered}$	15:0	0x0034	cam_Il_nr_lut_0_sigma (R/W)
	AdaCD noise floor parameter for a sensor gain of cam_ll_nr_lut_0_gain. This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C A 38 \\ \text { VAR(0x12, } \\ 0 \times 0238) \end{gathered}$	15:0	0x0093	cam_II_nr_lut_0_k0 (R/W)
	AdaCD noise model parameter for a sensor gain of cam_ll_nr_lut_0_gain. This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \hline \text { 0xCA3C } \\ \text { VAR(0x12, } \\ \text { 0x023C) } \end{gathered}$	15:0	0x0058	cam_ll_nr_lut_1_gain (R/W)
	Sensor analog gain for look up table entry 1 . This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This is paired with cam_ll_nr_lut_1_sigma and cam_ll_nr_lut_1_k0. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xCA3E } \\ \text { VAR(0x12, } \\ 0 \times 023 E) \end{gathered}$	15:0	0x0037	cam_II_nr_lut_1_sigma (R/W)
	AdaCD noise floor parameter for a sensor gain of cam_ll_nr_lut_1_gain. This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 x C A 40 \\ \text { VAR(0x12, } \\ 0 \times 0240) \end{gathered}$	15:0	0x0093	cam_II_nr_lut_1_k0 (R/W)
	AdaCD noise model parameter for a sensor gain of cam_ll_nr_lut_1_gain. This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C A 70 \\ \text { VAR(0x12, } \\ 0 \times 0270) \end{gathered}$	15:0	0x0066	cam_II_ck_2_snr (R/W)
	High SNR colorkill solution. This is the SNR metric (cam_ll_snr_metric) value used to generate the current colorkill solution (II_ck_*). The current colorkill solution is interpolated from the table of colorkill solutions (cam_ll_ck_N*) in the CAM page. This value is signed 2's complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$\begin{gathered} \hline 0 \times C A 80 \\ \text { VAR(0x12, } \\ 0 \times 0280) \end{gathered}$	15:0	0×0000	cam_pga_pga_control (R/W)
	15:2	X	Reserved
	1	0x00	cam_pga_pga_adjust_center 0 : Disable center adjustment. 1: Enable center adjustment. The firmware will adjust X / Y offset register settings (during a Change-Config) based on the cam_fov_calib_x_offset and cam_fov_calib_y_offset variable values. This value is unsigne \bar{d}. Changes take effect after a Change-Config command.
	0	0×00	cam_pga_pga_enable 0: Disable PGA. 1: Enable PGA (assume coefficients pre-loaded). This value is unsigned. Changes take effect during Vertical Blanking.
	PGA control. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} \hline 0 \times C A 84 \\ \text { VAR(0x12, } \\ 0 \times 0284) \end{gathered}$	7:0	0×01	cam_sysctl_pll_control (R/W)
	7:1	X	Reserved
	0	0×01	cam_sysctl_pll_enable 0 : Disable and bypass the PLL 1: PLL will be enabled on next Change-Config. This value is unsigned. Changes take effect after a Change-Config command.
	PLL control. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} \hline 0 \times C A 88 \\ \text { VAR(0x12, } \\ 0 \times 0288) \end{gathered}$	15:0	0×0110	cam_sysctl_pll_divider_m_n_1_clk (R/W)
	15:14	X	Reserved
	13:8	0×0001	cam_pll_divider_m_n_1_clk_pll_n The $\bar{P} L \bar{L}$'s prescäle $\overline{\mathrm{N}}$ (referencē) divider. This value is unsigned. Changes take effect after a Change-Config command.
	7:0	0×10	cam_pll_divider_m_n_1_clk_pll_m The PLL's VCO M (feedback) divider. This value is unsigned. Changes take effect after a Change-Config command.
	PLL multiplier/pre-divider settings. This value is unsigned. Changes take effect after a Change-Config command.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \hline \text { 0xCA8C } \\ \text { VAR(0x12, } \\ 0 \times 028 C) \end{gathered}$	15:0	0x0033	cam_sysctl_pll_divider_p_1_clk (R/W)
	15:8	X	Reserved
	7:4	0×03	cam_pll_divider_p_1_clk_pll_p2 The PLL's VCO P2 output divider, minus 1. The pixel clock is divided down from the VCO clock by the P2 divider. This value is unsigned. Changes take effect after a Change-Config command.
	3:0	0×03	cam_pll_divider_p_1_clk_pll_p1 The $\overline{\mathrm{P} L E}$'s VCO $\overline{\mathrm{P}}$ 1 output divider, minus 1. The color pipe clock is divided down from the VCO clock by the P1 divider. This value is unsigned. Changes take effect after a Change-Config command.
	PLL post-dividers. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 x C A 90 \\ \text { VAR(0x12, } \\ 0 \times 0290) \end{gathered}$	15:0	0x0500	cam_output_width (R/W)
	The horizontal width (pixels) of the output window. This value is unsigned. Changes take effect after a Change-Config command.		
$\begin{gathered} 0 \times C A 92 \\ \text { VAR(0x12, } \\ 0 \times 0292) \end{gathered}$	15:0	0x03C0	cam_output_height (R/W)
	The vertical height (lines) of the output window. This value is unsigned. Changes take effect after a Change-Config command.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \hline 0 \times C A 94 \\ \text { VAR(0x12, } \\ 0 \times 0294) \end{gathered}$	15:0	0×0010	cam_output_format_yuv (R/W)
	15:11	X	Reserved
	10:9	0x0000	cam_output_format_yuv_scale_uv Decimate UV with: 0 : no anti-aliasing 1: align with first Y 2: center between Y 3: reserved. This value is unsigned. Changes take effect after a Change-Config command.
	8	0×0000	cam_output_format_yuv_mono_enable Enable monōchrome output. This value is unsigned. Changes take effect after a Change-Config command.
	7	0×00	cam_output_format_yuv_swap_red_blue Swap $\mathrm{Cr} / \mathrm{Cb}^{-}$channels. This value is unsigned. Changes take effect after a Change-Config command.
	6:5	0×00	cam_output_format_yuv_clip 0 : No clipping; 1: Clip Y in 16-235, U and V in 16-240; 2: Clip to 1-254; 3: reserved. This value is unsigned. Changes take effect after a Change-Config command.
	4	0×01	cam_output_format_yuv_auv_offset Controls the \bar{U} and $\overline{\mathrm{V}}$ offset: 0 : No offset. 1: Add 128 to U and V. This value is unsigned. Changes take effect after a Change-Config command.
	3	0×00	cam_output_format_yuv_select_601 YUV coefficients control: 0: YUV (BT-709). 1: YCbCr (BT-601). This value is unsigned. Changes take effect after a Change-Config command.
	2	0×00	cam_output_format_yuv_normalise Controls luma normalization: 0: No normalization. 1: Normalize Y to 16-235, U and V to 16-240. Note: cam_output_y_offset should be set to 16. This value is unsigned. Changes take effect after a Change-Config command.
	1:0	0×00	cam_output_format_yuv_sampling Select sampling mode for YUV: 0: Even UV. 1: Odd UV. 2: Even U, odd V. This value is unsigned. Changes take effect after a Change-Config command.
	Controls the YUV output format. Not used in interlaced-scan modes. This value is unsigned. Changes take effect after a Change-Config command.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \hline \text { 0xCA9C } \\ \text { VAR(0x12, } \\ \text { 0x029C) } \end{gathered}$	15:0	0x0285	cam_port_parallel_control (R/W)
	15:12	X	Reserved
	11:10	0x0000	cam_port_parallel_yuv_out_mode YUV output mode: 0: YUV16. 1: YUV8+8. 2: YUV10+10. 3: Reserved. This value is unsigned. Changes take effect after a Change-Config command.
	9	0×0001	cam_port_parallel_swap_bytes Swap output pixel high byte with low byte. This value is unsigned. Changes take effect after a Change-Config command.
	8	X	Reserved
	7	0×01	cam_port_parallel_msb_align Align MSB of output to Dout15. This value is unsigned. Changes take effect after a Change-Config command.
	6	0×00	cam_port_parallel_pixclk_invert Invert output pixel clock. This value is unsigned. Changes take effect after a Change-Config command.
	5	X	Reserved
	4	0×00	cam_port_parallel_pixclk_gate_on Controls the pixel clock gating: 0 : The pixel clock output (PIXCLK) is continuous. 1: The pixel clock output (PIXCLK) is only generated when FRAME_VALID and LINE_VALID are asserted. This value is unsigned. Changes take effect after a Change-Config command.
	3	X	Reserved
	2:1	0×02	cam_port_parallel_source Select the parallel output source: 0 : Reserved. 1: Interlaced. 2: Progressive. 3: Reserved. This value is unsigned. Changes take effect after a Change-Config command.
	0	0×01	cam_port_parallel_enable Enables the parallel port for data output: 0 : Port disabled for data output. 1: Port enabled for data output. This value is unsigned. Changes take effect after a Change-Config command.
	Parallel port control flags. In interlaced-scan modes, this variable is automatically initialized from ntsc_port_ parallel_control or pal_port_parallel_control as appropriate. This value is unsigned. Changes take effect after a Change-Config command.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \text { 0xCAAO } \\ \text { VAR(0x12, } \\ 0 \times 02 A 0) \end{gathered}$	15:0	0x0000	cam_port_composite_control (RO)
	15:3	X	Reserved
	2	RO	cam_port_composite_enable_pedestal Indicates the state of the composite pedestal control:
	1	RO	cam_port_composite_enable_bw Indicates $\overline{\text { the }}$ state of $\overline{\text { the }}$ composite monochrome control: 0 : Color. 1: Monochrome. Only applicable to NTSC and PAL modes - use the equivalent control of the NTSC or PAL page as appropriate. This value is unsigned. Updates after a Change-Config command.
	0	RO	cam_port_composite_enable Indicates the state of the composite port: 0: Disabled. 1: Enabled. Only applicable to NTSC and PAL modes - use the equivalent control of the NTSC or PAL page as appropriate. This value is unsigned. Updates after a Change-Config command.
	Composite port status flags Note: Applicable only to NTSC and PAL modes - use the equivalent control on the NTSC or PAL page as appropriate. This value is unsigned. Updates after a Change-Config command.		
$\begin{gathered} 0 \times C A A 8 \\ \text { VAR(0x12, } \\ 0 \times 02 A 8) \end{gathered}$	15:0	0x0001	cam_tempmon_tcontrol (R/W)
	15:3	X	Reserved
	2	0×00	cam_tempmon_tcontrol_enable_low_threshold Enable low-temperature threshold check: 0 : Threshold check disabled. 1:Threshold check enabled. This value is unsigned. Changes take effect after a Change-Config command.
	1	0×00	cam_tempmon_tcontrol_enable_high_threshold Enable high-temperature threshold check: 0 : Threshold check disabled. 1:Threshold check enabled. This value is unsigned. Changes take effect after a Change-Config command.
	0	0×01	cam_tempmon_tcontrol_enable Enable Temperature Monitor: 0: Disabled. 1: Enabled. This value is unsigned. Changes take effect after a Change-Config command.
	Temperature Monitor control. This value is unsigned. Changes take effect after a Change-Config command.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{aligned} & \hline \text { 0xCAAA } \\ & \text { VAR(0x12, } \\ & \text { 0x02AA) } \end{aligned}$	15:0	0x0000	cam_tempmon_tstatus (RO)
	15:11	X	Reserved
	10	RO	cam_tempmon_tstatus_normal_temp Indicator, normal temperature reached. This value is unsigned. Updates during Vertical Blanking.
	9	RO	cam_tempmon_tstatus_low_temp Low-temperature status: 0: Temperature is above the low threshold (cam_tempmon_low_threshold). 1:Temperature is below the low threshold. Note: There is an internal hysteresis gate; the low-temperature status will be set when the temperature is less than the low threshold minus the gate. The status will be cleared when the temperature is above the low threshold. This value is unsigned. Updates during Vertical Blanking.
	8	RO	cam_tempmon_tstatus_high_temp High-temperatūre status: 0: Temperature is below the high threshold (cam_tempmon_high_threshold). 1:Temperature is above the high threshold. Note: There is an internal hysteresis gate; the high-temperature status will be set when the temperature exceeds the high threshold plus the gate. The status will be cleared when the temperature is less than the high threshold. This value is unsigned. Updates during Vertical Blanking.
	7:3	X	Reserved
	2	RO	cam_tempmon_tstatus_enable_low_threshold Low-temperature threshold stāus: 0 : Disabled. 1: Enabled. This value is unsigned. Updates during Vertical Blanking.
	1	RO	cam_tempmon_tstatus_enable_high_threshold High-temperature threshold status: 0 : Disabled. 1: Enabled. This value is unsigned. Updates during Vertical Blanking.
	0	RO	cam_tempmon_tstatus_enable Enable status: 0 : Disabled. 1: Enabled. This value is unsigned. Updates during Vertical Blanking.
	Temperature Monitor status: This value is unsigned. Updates during Vertical Blanking.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \text { 0xCAAC } \\ \text { VAR(0x12, } \\ 0 \times 02 A C) \end{gathered}$	7:0	0×10	cam_tempmon_damping_factor (R/W)
	7:6	X	Reserved
	5:0	0×10	cam_tempmon_damp_factor Controls the damping applied to the current temperature: 0 : Maximum damping. 32: No damping. This value is unsigned. Changes take effect during Vertical Blanking.
	Temperature damping control. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xCAAD } \\ \text { VAR(0x12, } \\ \text { 0x02AD) } \end{gathered}$	7:0	0x46	cam_tempmon_high_threshold (R/W)
	The high temperature threshold, in degrees Celsius. This value is signed 2's complement. Changes take effect during Vertical Blanking.		
$\begin{aligned} & \text { 0xCAAE } \\ & \text { VAR(0x12, } \\ & 0 \times 02 A E) \end{aligned}$	7:0	0x0A	cam_tempmon_low_threshold (R/W)
	The low temperature threshold, in degrees Celsius. This value is signed 2's complement. Changes take effect during Vertical Blanking.		
$\begin{gathered} \text { 0xCAAF } \\ \text { VAR(0x12, } \\ 0 \times 02 A F) \end{gathered}$	7:0	0x00	cam_tempmon_temperature (RO)
	The current temperature (damped), in degrees Celsius. This value is signed 2's complement. Updates during Vertical Blanking.		
$\begin{gathered} \hline 0 \times C A B 0 \\ \text { VAR(0x12, } \\ 0 \times 02 B 0) \end{gathered}$	7:0	0x00	cam_tempmon_temperature_min (RO)
	The minimum temperature recorded (degrees Celsius) since last enable. This value is signed 2's complement. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times C A B 1 \\ \text { VAR(0x12, } \\ 0 \times 02 B 1) \end{gathered}$	7:0	0x00	cam_tempmon_temperature_max (RO)
	The maximum temperature recorded (degrees Celsius) since last enable. This value is signed 2's complement. Updates during Vertical Blanking.		
$\begin{gathered} 0 \times C A B 4 \\ \text { VAR(0x12, } \\ 0 \times 02 B 4) \end{gathered}$	15:0	0×0001	cam_flicker_detect_fd_mode (R/W)
	15:2	X	Reserved
	1	0x00	cam_flicker_detect_fd_auto_switch Auto-switch flicker avoidance period control: 0 : Automatic switching disabled. 1: Enable automatic switching of the flicker period when a flicker source is detected in the scene (using an internal refresh command). When this option is enabled, cam_aet_flicker_freq_hz cannot be changed. This value is unsigned. Changes take effect after a Refresh command.
	0	0×01	cam_flicker_detect_fd_enable Enable flicker detection: 0 : Disabled. 1: Enabled. This value is unsigned. Changes take effect after a Refresh command.
	Flicker detection mode control. This value is unsigned. Changes take effect after a Refresh command.		

Table 48. CAMCONTROL VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} \hline 0 \times C A B 8 \\ \text { VAR(0x12, } \\ 0 \times 02 B 8) \end{gathered}$	15:0	0×0001	cam_adaptation_ta_mode (R/W)
	15:1	X	Reserved
	0	0×01	cam_adaptation_tempadapt_enable If enabled, AE auto adjusts the maximum sensor gain during high temperatures. This value is unsigned. Changes take effect during Vertical Blanking.
	Camera Adaptation mode control flags. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C A B C \\ \text { VAR(0x12, } \\ 0 \times 02 B C) \end{gathered}$	15:0	0x0002	cam_sensor_control2_hispi (R/W)
	15:2	X	Reserved
	1:0	0×02	cam_sensor_control2_hispi_transfer_mode Selects HiSPi transfer mode: 0 : Streaming S . 1: Streaming SP. 2: Packetized SP. 3: Active SP8. This value is unsigned. Changes take effect after a Change-Config command.
	HiSpi controls. This value is unsigned. Changes take effect after a Change-Config command.		

Sensor Manager Variable Descriptions
Table 49. SENSOR MANAGER VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C C 00 \\ \text { VAR(0x13, } \\ 0 \times 0000) \end{gathered}$	15:0	0x0000	sensor_mgr_status (RO)
	15:7	X	Reserved
	6	RO	Reserved
	5	RO	sensor_mgr_sensor_standby Indicates if the sensor is in standby. This value is unsigned. Updates during Vertical Blanking.
	4	X	Reserved
	3	RO	sensor_mgr_sensor_streaming Indicates if the sensor is streaming This value is unsigned. Updates during Vertical Blanking.
	2	RO	sensor_mgr_sensor_initialized Indicates if the sensor has been initialized successfully. This value is unsigned. Updates during Vertical Blanking.
	1:0	RO	Reserved
	sor Ma value ates a	atus flags ned. ange-Con	mmand.

Table 49. SENSOR MANAGER VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times C C 02 \\ \text { VAR(0x13, } \\ 0 \times 0002) \end{gathered}$	15:0	0×0003	sensor_mgr_mode (R/W)
	15:7	X	Reserved
	6	0x00	Reserved
	5	0×00	Reserved
	4	0×00	sensor_mgr_sensor_default_sequencer_load_inhibit Inhibits the automatic load of the sensor's default Dynamic Sequencer during sensor initialization: 0 : Automatic load enabled. 1: Automatic load disabled - user is responsible for loading Dynamic Sequencer either via CCI or from NVM. This value is unsigned. Changes take effect immediately (unsynchronized).
	3:2	X	Reserved
	1	0×01	Reserved
	0	0×01	Reserved
	Sensor Manager mode control flags. This value is unsigned. Changes take effect during Vertical Blanking.		
$\begin{gathered} 0 \times C C B 2 \\ \text { VAR(0x13, } \\ 0 \times 00 B 2) \end{gathered}$	15:0	0x0000	sensor_mgr_min_manual_gain (RO)
	Minimum gain when using manual exposure (unity=128). This value is unsigned fixed-point with 7 fractional bits. Updates after a Change-Config command.		
$\begin{gathered} \hline 0 \times C C B 4 \\ \text { VAR(0x13, } \\ 0 \times 00 B 4) \end{gathered}$	15:0	0x0000	sensor_mgr_max_manual_gain (RO)
	Maximum gain when using manual exposure (unity=128). This value is unsigned fixed-point with 7 fractional bits. Updates after a Change-Config command.		
$\begin{gathered} 0 \times C C B 6 \\ \text { VAR(0x13, } \\ 0 \times 00 B 6) \end{gathered}$	15:0	0x0000	sensor_mgr_min_manual_it_ms (RO)
	Minimum integration time when using manual exposure (unity=128). This value is unsigned fixed-point with 7 fractional bits. Updates after a Change-Config command.		
$\begin{gathered} 0 \times C C B 8 \\ \text { VAR(0x13, } \\ 0 \times 00 B 8) \end{gathered}$	15:0	0x0000	sensor_mgr_max_manual_it_ms (RO)
	Maximum integration time when using manual exposure (unity=128). This value is unsigned fixed-point with 7 fractional bits. Updates after a Change-Config command.		

System Manager Variable Descriptions

Table 50. SYSTEM MANAGER VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 x D C 00 \\ \text { VAR(0x17, } \\ 0 \times 0000) \end{gathered}$	15:0	0x0000	sysmgr_status (RO)
	15:13	X	Reserved
	12	RO	sysmgr_status_system_config_failed When set, indicates that the System Configuration phase failed and was aborted. The sysmgr_otpm_config_status and sysmgr_flash_config_status variables should be used to determine the reason-code. The_sysmgr_otpm_status_table_id and sysmgr_flash_status_table_id respectively will indicate which table was being processed when the abort occurred. This value is unsigned. Updates immediately (unsynchronized).
	11	RO	sysmgr_status_config_change_active When set, indicates that a Change-Config operation is in-progress. This value is unsigned. Updates after a Change-Config command.
	10	RO	Reserved
	9	RO	sysmgr_status_host_has_ccim_lock When set, indicates that the host has obtained the CCIM lock. This value is unsigned. Updates immediately (unsynchronized).
	8:7	X	Reserved
	6	RO	sysmgr_status_hard_standby_enabled When set, indicates the STANDBY pin can be used to select hard-standby. This value is unsigned. Updates immediately (unsynchronized).
	5	RO	sysmgr_status_config_change_complete When set, indicates that a Change-Config operation has completed successfully. This value is unsigned. Updates immediately (unsynchronized).
	4	RO	sysmgr_status_system_config_complete When set, indicates that the System Configuration phase has completed. This value is unsigned. Updates immediately (unsynchronized).
	3	X	Reserved
	2	RO	sysmgr_status_flash_config_active When sét, indicates that Flash/EEPROM records are being located and processed during the System Configuration phase. This value is unsigned. Updates immediately (unsynchronized).
	1	RO	Reserved
	0	RO	sysmgr_status_state_change_active When set, indicates that a system state change is in progress. This value is unsigned. Updates immediately (unsynchronized).
	System Manager status flags. This value is unsigned. Updates immediately (unsynchronized).		

Table 50. SYSTEM MANAGER VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Patch Loader Variable Descriptions

Table 51. PATCH LOADER VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Table 51. PATCH LOADER VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits		Default

Command Handler Variable Descriptions

Table 52. COMMAND HANDLER VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times F C 00 \\ \text { VAR(0x1F, } \\ 0 \times 0000) \end{gathered}$	15:0	0x0000	cmd_handler_params_pool_0 (R/W)
	Host command parameter word 0 . The variables cmd_handler_params_pool_0 through cmd_handler_params_pool_7 implement a contiguous buffer for HOST command parameters and command results. The values in these variables are ignored until a valid command is written into the COMMAND_REGISTER. Refer to the AP0100 Host Command Specification for the use of these variables. This value is unsigned. Changes take effect immediately (unsynchronized).		
$\begin{gathered} 0 \times F C 02 \\ \text { VAR(0x1F, } \\ \text { 0x0002) } \end{gathered}$	15:0	0x0000	cmd_handler_params_pool_1 (R/W)
	Host command parameter word 1. The variables cmd_handler_params_pool_0 through cmd_handler_params_pool_7 implement a contiguous buffer for HOST command parameters and command results. The values in these variables are ignored until a valid command is written into the COMMAND_REGISTER. Refer to the AP0100 Host Command Specification for the use of these variables. This value is unsigned. Changes take effect immediately (unsynchronized).		
$\begin{gathered} 0 \times F C 04 \\ \text { VAR(0x1F, } \\ 0 \times 0004) \end{gathered}$	15:0	0x0000	cmd_handler_params_pool_2 (R/W)
	Host command parameter word 2. The variables cmd_handler_params_pool_0 through cmd_handler_params_pool_7 implement a contiguous buffer for HOST command parameters and command results. The values in these variables are ignored until a valid command is written into the COMMAND_REGISTER. Refer to the AP0100 Host Command Specification for the use of these variables. This value is unsigned. Changes take effect immediately (unsynchronized).		
$\begin{gathered} 0 x F C 06 \\ \text { VAR(0x1F, } \\ 0 \times 0006) \end{gathered}$	15:0	0x0000	cmd_handler_params_pool_3 (R/W)
	Host command parameter word 3. The variables cmd_handler_params_pool_0 through cmd_handler_params_pool_7 implement a contiguous buffer for HOST command parameters and command results. The values in these variables are ignored until a valid command is written into the COMMAND_REGISTER. Refer to the AP0100 Host Command Specification for the use of these variables. This value is unsigned. Changes take effect immediately (unsynchronized).		

Table 52. COMMAND HANDLER VARIABLE DESCRIPTIONS
R/W (Read or Write) bit; RO (Read Only) bit

Register Dec(Hex)	Bits	Default	Name
$\begin{gathered} 0 \times F C 08 \\ \text { VAR(0x1F, } \\ 0 \times 0008) \end{gathered}$	15:0	0x0000	cmd_handler_params_pool_4 (R/W)
	Host command parameter word 4. The variables cmd_handler_params_pool_0 through cmd_handler_params_pool_7 implement a contiguous buffer for HOST command parameters and command results. The values in these variables are ignored until a valid command is written into the COMMAND_REGISTER. Refer to the AP0100 Host Command Specification for the use of these variables. This value is unsigned. Changes take effect immediately (unsynchronized).		
$\begin{gathered} \hline 0 x F C 0 A \\ \text { VAR(0x1F, } \\ \text { 0x000A) } \end{gathered}$	15:0	0x0000	cmd_handler_params_pool_5 (R/W)
	Host command parameter word 5. The variables cmd_handler_params_pool_0 through cmd_handler_params_pool_7 implement a contiguous buffer for HOST command parameters and command results. The values in these variables are ignored until a valid command is written into the COMMAND_REGISTER. Refer to the AP0100 Host Command Specification for the use of these variables. This value is unsigned. Changes take effect immediately (unsynchronized).		
$\begin{gathered} 0 x F C 0 C \\ \text { VAR(0x1F, } \\ 0 \times 000 \mathrm{C}) \end{gathered}$	15:0	0x0000	cmd_handler_params_pool_6 (R/W)
	Host command parameter word 6. The variables cmd_handler_params_pool_0 through cmd_handler_params_pool_7 implement a contiguous buffer for HOST command pārameters and command results. The vālues in these variables are ignored until a valid command is written into the COMMAND_REGISTER. Refer to the AP0100 Host Command Specification for the use of these variables. This value is unsigned. Changes take effect immediately (unsynchronized).		
$\begin{gathered} \text { OxFCOE } \\ \text { VAR(0x1F, } \\ \text { 0x000E) } \end{gathered}$	15:0	0x0000	cmd_handler_params_pool_7 (R/W)
	Host command parameter word 7. The variables cmd_handler_params_pool_0 through cmd_handler_params_pool_7 implement a contiguous buffer for HOST command parameters and command results. The values in these variables are ignored until a valid command is written into the COMMAND_REGISTER. Refer to the AP0100 Host Command Specification for the use of these variables. This value is unsigned. Changes take effect immediately (unsynchronized).		

ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

