AX-WM/D

Product Preview

Ultra-Low Power, API Controlled, Wireless M-Bus and OMS Compliant Transceiver IC

Description

AX–WM is an ultra–low power single chip solution for wireless M–Bus Utility Meters or Multi Utility Controllers.

The AX–WM chip is delivered with an API which provides all of the functions required for the European Standards EN 13757–3, EN13757–4 and the Open Metering System (OMS) specifications.

Features

- Supply Range 1.8 V 3.6 V
- -40°C to 85°C
- Highest Wireless M-Bus Sender Class H_T Mode S & T
- Highest Wireless M-Bus Receiver Class H_R Mode S & T
- Wireless M–Bus Mode S & T Transmitter:
 - RX-mode: 11 mA
 - TX-mode: 49.0 mA @ 14 dBm
- Sensitivity:
 - → -106 dBm @ PER < 20%, 20 Byte Telegram (Modes S, T2 other to meter)
 - → -105 dBm @ PER < 20%, 20 Byte Telegram (Modes T1, T2 meter to other)
- Supports Wireless M-Bus Modes S, T
- Wireless M–Bus Compliant Protocol Stack
- Fully OMS Generation 3 Compliant
- Size of Example Code to Send and Receive, using the Wireless M-Bus API:
 - ◆ 29.520 kBytes Flash size = 46%
 - 2.802 kBytes SRAM = 34%
- Sleep Mode with Wake-up Timer Running 1.4 μA
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Multi-Energy Utility Meters
 - ♦ Water
 - Gas
 - Electricity
 - Heating Systems
- Multi Utility Controller (MUC)

Related Standards – European Standard EN 13757-3, EN 13757-4

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor®

www.onsemi.com

Figure 1. QFN40 5 x 7 mm

MARKING DIAGRAM

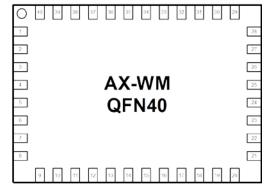


Figure 2. QFN40 5 x 7 mm Marking

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 16 of this data sheet.

FEATURES AND SPECIFICATIONS

The AX–WM is based on the AX8052F143 and therefore shares most features and specifications.

For detailed specifications consult the AX8052F143 Datasheet.

OVERVIEW

AX–WM is an ultra–low power single chip solution for communication with wireless M–Bus products.

The AX–WM chip is delivered with an API fully ready for operation, containing all the necessary functions to transmit and receive data from other Wireless M–Bus products.

The AX–WM API version 1.0 supports the Wireless M–Bus modes S and T, together with all necessary functions required for OMS compliance.

About the Wireless Meter Bus (Wireless M–Bus) Standard

The M-Bus (Meter-Bus) or Wireless M-Bus (wireless Meter-Bus) is a European standard for remote reading of consumption meters as well as for various sensors and actuators.

The Wireless M–Bus standard is described in the following European Norms:

• DIN EN 13757-3:2013-08 [1]

DIN EN 13757–3:2013–08, Communication systems for and remote reading of meters – Part 3: Dedicated application layer; German version EN 13757–3:2013, 2013.

DIN EN 13757-3 defines the application layer of the M-Bus.

This document contains the major part of the definitions, like the coding of the Value/Data Information Field, CI Fields, ...

• DIN EN 13757-4:2014-02 [2]

DIN EN 13757–4:2014–02, Communication systems for meters and remote reading of meters – Part 4: Wireless meter readout (Radio meter reading for operation in SRD bands); German version EN 13757–4:2013, 2014.

DIN EN 13757-4 defines the wireless M-Bus specifications, which are implemented in the AX-WM API.

• OMS (Open Metering System) [3]

"The OMS-Group is a community of interest of associations ..."," ... the OMS-Group has developed an open, vendor independent standard for communications interfaces and basic requirements." [3]

The OMS defines additional restrictions and extensions of the Wireless M–Bus. OMS is currently being discussed as an extension of EN 13757.

The OMS specifications are freely available and contain examples of Wireless M–Bus messages and formatting.

868 MHz Wireless M-Bus Modes

Table 1. 868 MHz WIRELESS M-BUS MODES, EXTRACTED FROM EN13757-4 [2]

Mode	S1	S1-m	S2	T1	T2 m2o	T2 o2m	R2	C1	C2 m2o	C2 o2m
Frequency [MHz]		868.3	}	8	68.95	868.3	868.3	8	368.95	869.525
Frequency Tol- erance [ppm]		m2o=6 o2m=2			60	25	20	25		
Chip Rate [kcps]		32.76	8		100	32.768	4.8		100 50	
Chip Rate Tolerance		1.50%	, D	1	.00%	1.50%	1.50%		100ppm	
max. Duty Cycle [%]	0.02	0.02	1		0.1	1	1		0.1	10
Modulation		2-FSI	<		2-FS	K	2-FSK	2	2-FSK	2-GFSK
Deviation [kHz]		Minimum Typical: Maximum	50		40 50 80		4.8 6 7.2	45 25		18.75 25 31.25
Encoding		Manche	ster	3	3 to 6	Manchester	Manchester		NRZ	
Preamble Length with SYNC [chips]	576	48	48 (or 576) ¹⁾		48		96		64	
Preamble Length = n [bits]	279	15	15 (or 279) ¹⁾		19	15	39		16	
Preamble		n*(01)		n*(01)	n*(01)		n*(01)
SYNC Length [bits]		18			10	18	18	32		
SYNC	000	11101 101	00101 10	000	01111 01	00011101 10100101 10	00011101 10100101 10			001101 00111101
Frame Format		А			А	-	А		A/B	

NOTE: o2m \rightarrow other to meter

m2o \rightarrow meter to other

1. The mode S2 can be used with either a short preamble (15 bits) or a long preamble (279 bits). OMS requires the long preamble.

2. The mode C can use 2 different framings, A and B, which use a different sync words.

Supported by the AX–WM API are the modes S and T. Modes R and C are not yet supported by the current version of the API.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device.

This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied.

Table 2. ABSOLUTE MAXIMUM RATINGS

Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Description	Condition	Min	Max	Units
VDD_IO	Supply voltage		-0.5	5.5	V
IDD	Supply current			200	mA
P _{tot}	Total power consumption			800	mW
Pi	Absolute maximum input power at receiver input	ANTP and ANTN pins in RX mode		10	dBm
I ₁₁	DC current into any pin except ANTP, ANTN, ANTP1		-10	10	mA
I _{I2}	DC current into pins ANTP, ANTN, ANTP1		-100	100	mA
lo	Output Current			40	mA
V _{ia}	Input voltage ANTP, ANTN, ANTP1 pins		-0.5	5.5	V
	Input voltage digital pins		-0.5	5.5	V
V _{es}	Electrostatic handling	НВМ	-2000	2000	V
T _{amb}	Operating temperature		-40	85	°C
T _{stg}	Storage temperature		-65	150	°C
Tj	Junction Temperature			150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

DC Characteristics

Table 3. SUPPLIES

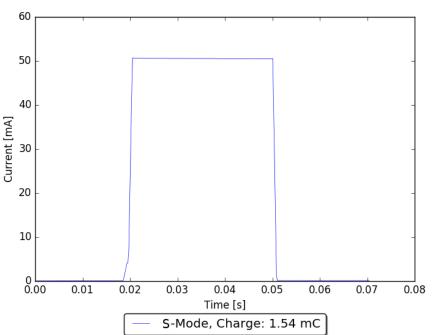
Symbol	Description	Condition	Min	Тур	Max	Units
T _{AMB}	Operational ambient temperature		-40	27	85	°C
VDD _{IO}	I/O and voltage regulator supply voltage		1.8	3	3.6	V
VDD _{IO_R1}	I/O voltage ramp for reset activation (1)	Ramp starts at VDD_IO \leq 0.1 V	0.1			V/ms
VDD _{IO_R2}	I/O voltage ramp for reset activation ⁽¹⁾	Ramp starts at 0.1 V < VDD_IO < 0.7 V	3.3			V/ms
I _{DS}	Deep sleep mode current			100		nA
I _{SLP}	Sleep mode current			1.4		μΑ
I _{STDBY}	Standby mode current			0.6		mA
I _{RX_CONT}	Current consumption continuous RX			11		mA
Q _{20BMS}	Charge to send a 20 bytes message	Mode S, T2 o2m		1.54		mC
Q _{20BMT}	Charge to send a 20 bytes message	Mode T1,T2 m2o		0.19		mC
I _{TXMOD14AVG}	Modulated Transmitter Current ⁽²⁾	Pout = 14 dBm; average		49.0		mA

1. If VDD_IO ramps cannot be guaranteed, an external reset circuit is recommended, see the AX8052 Application Note: Power On Reset.

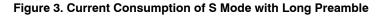
2. Current consumption values are given for a matching network that is optimized for 14 dBm output.

Power Consumption S Mode

S1–mode or S2–mode with long preamble:


A simple packet, containing a small header and a voltage, is 21 bytes long.

Manchester encoding codes every bit as 01 or 10 sequence. Therefore every bit of the packet consists of 2 chips.


Table 4.

	Bit	Chips
Preamble	558	558
Sync Word	18	18
Packet	168	336
Total		930

In total the transmission is 930 chips long. With a rate of 32.768 kcps, the transmission requires roughly 30.5 ms.

3.3 V, 25 °

NOTE: Measurement and calculations contain consumption of the chip together with additional components as shown in section "Typical Application Diagram". Battery Life Examples

Scenario 1:

- CR2032 coin cell battery
- Device in Sleep
- Neglecting battery self-discharge
- 100 transmissions a day

CR2032 Capacity	225 mAh * 3600 s/h	810 C
Sleep Charge per Day	1.4 μA * 86400 s	0.12 C/day
100 Transmissions	100 * 1.54 mC	0.154 C/day
Total Charge Consumption		0.274 C/day
Battery Life		8.1 Years

Scenario 2:

• 2 AAA Alkaline batteries in series

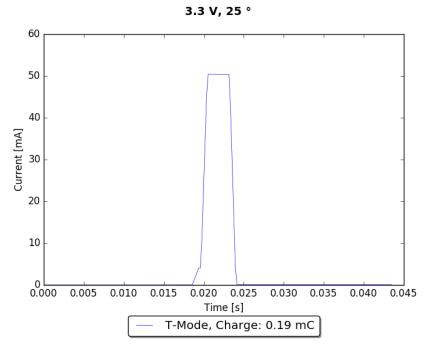
- Neglecting battery self-discharge
- 1000 transmissions a day

• Device in Sleep

2 AAA Alkaline Capacity	1200 mAh * 3600 s/h	4320 C
Sleep Charge per Day	1.4 μA * 86400 s	0.12 C/day
1000 Transmissions	1000 * 1.54 mC	1.54 C/day
Total Charge Consumption		1.66 C/day
Battery Life		7.1 Years

Power Consumption T Mode

T1-mode or T2-m2o-mode:


A simple packet, containing a small header and a voltage, is 21 bytes long.

3 out of 6 (or 4-to-6) encoding codes every half byte (4 bits) of the packet with 6 bits.

Table 5.

	Bit	Chips
Preamble	38	38
Sync Word	10	10
Packet	168	252
Total		300

In total the transmission is 300 chips long. With a rate of 100 kcps, the transmission requires roughly 3 ms.

NOTE: Measurement and calculations contain consumption of the chip together with additional components as shown in section Typical Application Diagram.

AX-WM/D

Battery Life Examples

Scenario 1:

• CR2032 coin cell battery

- Device in Sleep
- Neglecting battery self-discharge
- 1000 transmissions a day

CR2032 Capacity	225 mAh * 3600 s/h	810 C
Sleep Charge per Day	1.4 μA * 86400 s	0.12 C/day
1000 Transmissions	1000 * 0.19 mC	0.19 C/day
Total Charge Consumption		0.31 C/day
Battery Life		7.16 Years

Scenario 2:

• 2 AAA Alkaline batteries in series

- Neglecting battery self-discharge
- 10,000 transmissions a day, which is 1 transmission every 8.64 seconds

• Device in Sleep

2 AAA Alkaline Capacity	1200 mAh * 3600 s/h	4320 C
Sleep Charge per Day	1.4 μA * 86400 s	0.12 C/day
10000 Transmissions	10000 * 0.19 mC	1.9 C/day
Total Charge Consumption		2.02 C/day
Battery Life		5.86 Years

Logic

Table 6. LOGIC

Symbol	Description	Condition	Min	Тур	Max	Units
Digital Inputs	3			•		
V _{T+}	Schmitt trigger low to high threshold point	VDD_IO = 3.3 V		1.55		V
V _{T-}	Schmitt trigger high to low threshold point			1.25		V
V _{IL}	Input voltage, low				0.8	V
V _{IH}	Input voltage, high		2.0			V
V _{IPA}	Input voltage range, Port A		-0.5		VDD_IO	V
V _{IPBC}	Input voltage range, Ports B, C		-0.5		5.5	V
IL	Input leakage current		-10		10	μA
R _{PU}	Programmable Pull-Up Resistance			65		kΩ
Digital Outpu	its	-	•	4	•	
1	Output Current high		0			m۸

I _{ОН}	Output Current, high Ports PA, PB and PC	V _{OH} = 2.4 V	8		mA
I _{OL}	Output Current, low Ports PA, PB and PC	V _{OL} = 0.4 V	8		mA
I _{OZ}	Tri-state output leakage current		-10	10	μA

AC Characteristics

Transmitter

Table 7. TRANSMITTER

Symbol	Description	Condition	Min	Тур	Max	Units
f _{TCXO}	TCXO frequency	A passive network between the TCXO output and the pins CLKP and CLKN is required.		48		MHz
		For detailed TCXO network recommen- dations depending on the TCXO output swing refer to the AX5043 Application Note: Use with a TCXO Reference Clock.				
Conditions for	r transmitter specifications, unles	ss otherwise specified, with the antenna netw	ork from the	e Typical App	lication Dia	gram
SBR _S	Signal bit rate	S mode		16.384		kbps
SBR _T	Signal bit rate	T mode		66.667		kbps
PTX _{min}	Lowest Transmitter output power			0		dBm
PTX _{max}	Highest Transmitter out- put power			14		
PTX _{step}	Programming step size output power			1		dB
dTX _{temp}	Transmitter power varia- tion vs. temperature	−40 °C to +85 °C		± 0.5		dB
dTX_{Vdd}	Transmitter power varia- tion vs. VDD_IO	1.8 to 3.6 V		± 0.5		dB
	Wireless M-Bus Transmitter	Class		HT		Class

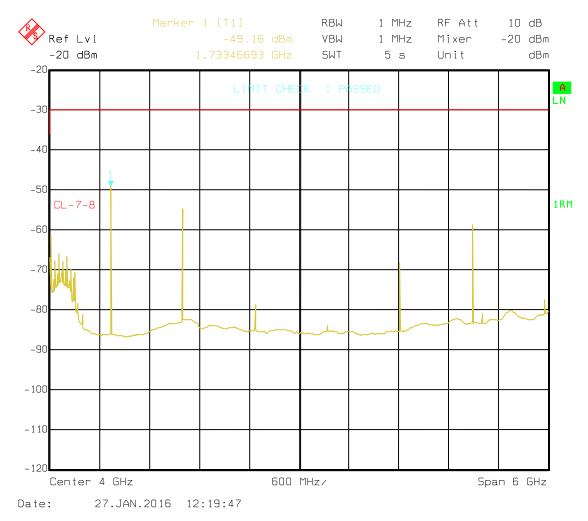


Figure 5. Spurious Emissions with the EN 300 220 Clause 7.8 Indicated as Red Limit Line

Receiver

Table 8. RECEIVER, S AND T2 OTHER TO METER MODE

Symbol	Description	Condition	Min	Тур	Max	Units
PRX _{Smax}	Maximum input power at receiver input	PER < 20%, 20 bytes message		10		dBm
IS _{fmin}	Input Sensitivity at min Carrier Frequency	Frequency = 868.25 MHz		-105.5		dBm
IS _{ftyp}	Input Sensitivity at Carrier Frequency	Frequency = 868.3 MHz		-106		dBm
IS _{fmax}	Input Sensitivity at max Carrier Frequency	Frequency = 868.35 MHz		-105.5		dBm
IS _{mindev}	Input Sensitivity at min FSK Deviation	Deviation = 40 kHz		-105		dBm
IS _{typdev}	Input Sensitivity at typical FSK Deviation	Deviation = 50 kHz		-106		dBm
IS _{maxdev}	Input Sensitivity at min FSK Deviation	Deviation = 80 kHz		-106.5		dBm
DR _{dev}	Data Rate Tolerance			2.5		%
IS _{DRmin}	Input Sensitivity at min Data Rate	Data Rate = 32.768 kcps - 2%		-105		dBm
IS _{DRtyp}	Input Sensitivity at typical Data Rate	Data Rate = 32.768 kcps		-106		dBm
IS _{DRmax}	Input Sensitivity at max Data Rate	Data Rate = 32.768 kcps + 2%		-106.5		dBm

Adjacent Channel Selectivity & Blocking

BLK _{AB}	Adjacent band	868.9 MHz, PER < 20%, 20 bytes message		45	dB
BLK_2	Blocking at -2 MHz offset	866.3 MHz, PER < 20%, 20 bytes message		59	dB
BLK ₊₂	Blocking at +2 MHz offset	870.3 MHz, PER < 20%, 20 bytes message		59	dB
BLK ₋₁₀	Blocking at -10 MHz offset	858.3 MHz, PER < 20%, 20 bytes message		73	dB
BLK ₊₁₀	Blocking at +10 MHz offset	878.3 MHz, PER < 20%, 20 bytes message		73	dB
	Receiver Class according to ETSI EN 300220-1 V2.4.2:2012 clause 4.1.1 (clause 8.3 and clause 8.4)		2		Class
	Wireless M–Bus Receiver Class			H _R	Class

Table 9. RECEIVER, T1 AND T2 METER TO OTHER MODE

Symbol	Description	Condition	Min	Тур	Max	Units
PRX _{Smax}	Maximum input power at receiver input	PER < 20%, 20 bytes message		9		dBm
IS _{fmin}	Input Sensitivity at min Carrier Frequency	Frequency = 868.9 MHz		-104.5		dBm
IS _{ftyp}	Input Sensitivity at Carrier Frequency	Frequency = 868.95 MHz		-105		dBm
IS _{fmax}	Input Sensitivity at max Carrier Frequency	Frequency = 869 MHz		-104.5		dBm
IS _{mindev}	Input Sensitivity at min FSK Deviation	Deviation = 40 kHz		-103.5		dBm
IS _{typdev}	Input Sensitivity at typical FSK Deviation	Deviation = 50 kHz		-105		dBm
IS _{maxdev}	Input Sensitivity at min FSK Deviation	Deviation = 80 kHz		-105.5		dBm
DR _{dev}	Data Rate Tolerance			2.5		%
IS _{DRmin}	Input Sensitivity at min Data Rate	Data Rate = 100 kcps - 2%		-104		dBm
IS _{DRtyp}	Input Sensitivity at typical Data Rate	Data Rate = 100 kcps		-105		dBm
IS _{DRmax}	Input Sensitivity at max Data Rate	Data Rate = 100 kcps + 2%		-104		dBm
Adjacent Cl	hannel Selectivity & Blocking					
BLK _{AB}	Adjacent band	869.45 MHz, PER < 20%, 20 bytes message		48		dB

Symbol	Description	Condition	Min	Тур	Max	Units
BLK_2	Blocking at -2 MHz offset	870.95 MHz, PER < 20%, 20 bytes message		60		dB
BLK ₊₂	Blocking at +2 MHz offset	866.95 MHz, PER < 20%, 20 bytes message		60		dB
BLK ₋₁₀	Blocking at -10 MHz offset	858.95 MHz, PER < 20%, 20 bytes message		72		dB
BLK ₊₁₀	Blocking at +10 MHz offset	878.95 MHz, PER < 20%, 20 bytes message		73		dB
	Receiver Class according to ETSI EN 300220-1 V2.4.2:2012 clause 4.1.1 (clause 8.3 and clause 8.4)		2			Class
	Wireless M-Bus Receiver Class			H _R		Class

Table 9. RECEIVER, T1 AND T2 METER TO OTHER MODE

ADC / Comparator / Temperature Sensor

Table 10. ADC / COMPARATOR / TEMPERATURE SENSOR TABLE

Symbol	Description	Condition	Min	Тур	Max	Units
ADCSR	ADC sampling rate GPADC mode		30		500	kHz
ADCSR_T	ADC sampling rate temperature sensor mode		10	15.6	30	kHz
ADCRES	ADC resolution			10		Bits
VADCREF	ADC reference voltage & comparator internal reference voltage		0.95	1	1.05	V
Z _{ADC00}	Input capacitance				2.5	pF
DNL	Differential nonlinearity			± 1		LSB
INL	Integral non linearity			± 1		LSB
OFF	Offset			3		LSB
GAIN_ERR	Gain error			0.8		%
ADC in Differe	ential Mode	·				•
V_{ABS_DIFF}	Absolute voltages & common mode voltage in differential mode at each input		0		VDD_IO	V
V _{FS_DIFF01}	Full swing input for differential signals	Gain x1	-500		500	mV
V _{FS_DIFF10}		Gain x10	-50		50	mV
ADC in Single	Ended Mode	·				•
V _{MID_SE}	Mid code input voltage in single ended mode			0.5		V
VIN_SE00	Input voltage in single ended mode		0		VDD_IO	V
V _{FS_SE01}	Full swing input for single ended signals	Gain x1	0		1	V
Comparators	•	·				•
V _{COMP_ABS}	Comparator absolute input voltage		0		VDD_IO	V
V _{COMP_COM}	Comparator input common mode		0		VDD_IO - 0.8	V
V _{COMPOFF}	Comparator input offset voltage				20	mV
Temperature S	Sensor				•	
T _{RNG}	Temperature range		-40		85	°C
T _{RES}	Temperature resolution			0.1607		°C/LSB
T _{ERR_CAL}	Temperature error	Factory calibration applied	-2		+2	°C

APPLICATION PROGRAMMING INTERFACE

The AX–WM API takes care of the wireless M–Bus framing.

The Manufacturer Information like the manufacturer ID, serial number, device type and so on is set in the axwm_user_config.h file.

Table 11. GENERAL API COMMAND

The error_code byte meanings and detailed information to the functions are explained in the AXWM Programming Manual.

API Commands	Description	Inputs	Description	Returns
axwm_set_mode	Set the Wireless M–Bus mode	uint8_t mode	desired mode, e.g. S (0x53), T (0x54)	uint8_t error_code
axwm_get_mode	Get the Wireless M–Bus mode	None		uint8_t mode
axwm_init_wmbus	Initializes the Wireless M–Bus library	None	Required before the library can be used	
axwm_get_siliconrev	Get the Silicon Revision	None		uint8_t silicon_revision
axwm_get_ax5043_siliconrev	Get the AX5043 Silicon Revision	None		uint8_t AX5043_sili- con_revision
axwm_get_major_version	Get the major API version	None		uint8_t major_API_version
axwm_get_minor_version	Get the minor API version	None		uint8_t minor_API_version
axwm_get_revision	Get the API revision number	None		uint8_t API_rev_version

Table 12. SENDING COMMANDS

API Commands	Description	Inputs	Description	Returns
axwm_insert_header	Inserts the header with the required fields, according to the Cl	uint8_t ci	Control Information, see AX–WM Programming manual for CI values	uint8_t error_code
	entered	uint8_t status	Status byte, combination of differ- ent status bits, see AX–WM Programming manual for values	
		uint8_t encryp- tion_mode	5 means AES CBC is used to send the message. Mode according to Table 15.	
axwm_set_command	Sets the Command, if it is a response, the acc bit	uint8_t command	Command, see AX–WM Pro- gramming manual for commands	uint8_t error_code
	can be set manually	_Bool is_response	This value is set to 1 if the message is a response, enabling the user to set the access number accordingly	
axwm_set_acc_received	Sets the access counter bit in case the message is a response	uint8_t acc	If the message is a response, the access counter has to be set to the received number	uint8_t error_code

Table 12. SENDING COMMANDS

API Commands	Description	Inputs	Description	Returns
axwm_append_data	Appends the data to the packet. It is possible to	uint8_t dif	See section 6.4 in EN 13757–3:2013–08	uint8_t error_code
	append multiple data fields by calling this function more than once.	uint8_txdata dife[]	See section 6.8 in EN 13757–3:2013–08	
		uint8_t vif	See section 7 in EN 13757-3:2013-08	
		uint8_txdata vife[]	See section 6 & 7 in EN 13757–3:2013–08	
		uint8_t lvar	LVAR is the length for variable length data fields. See section 6.4 in EN 13757-3:2013-08	
		uint8_txdata data[]	Byte array of the data, MSB	
axwm_clear_data	Clears the data to start a new packet, the header remains.	None		uint8_t error_code
axwm_send_packet	Send the prepared packet.	None		uint8_t error_code
axwm_repeat_packet	Repeats a packet, without increasing the access number	None		uint8_t error_code
axwm_send_raw	Send raw data, without Wireless M–Bus formatting.	uint8_txdata pack- et_raw[]	Byte array of the data, MSB	uint8_t error_code
	iormaung.	uint8_t len_raw	Length of the data array	

Table 13. RECEIVING COMMANDS

API Commands	Description	Input	Description	Returns
axwm_decode_data	Decodes the received package; Required before any of the following getter methods can be used	struct axra- dio_status xdata *st		uint8_t error_code
Link Layer				
axwm_get_manufacturer	Get the Manufacturer ID	None		uint16_t
axwm_get_type	Get the Type	None		uint8_t
axwm_get_version	Get the Version Number	None		uint8_t
axwm_get_serialnumber	Get the Serial Number	None		uint8_t[3]
axwm_get_status	Get the Status	None		uint8_t
axwm_get_acc	Get the Access Number	None		uint8_t
axwm_get_conf	Get the Configuration Word	None		uint8_t
Application Layer				
axwm_get_al_manufacturer	Get the Manufacturer ID	None		uint16_t
axwm_get_al_type	Get the Type	None		uint8_t
axwm_get_al_version	Get the Version Number	None		uint8_t
axwm_get_al_serialnumber	Get the Serial Number	None		uint8_t[3]
axwm_get_al_status	Get the Status	None		uint8_t
axwm_get_al_acc	Get the Access Number	None		uint8_t
axwm_get_al_conf	Get the Configuration Word	None		uint8_t

Table 13. RECEIVING COMMANDS

API Commands	Description	Input	Description	Returns
Data				
axwm_get_dif	Get the Data Information	uint8_t index	Index of the	
axwm_get_vif	Get the Value Information	uint8_t index	desired - packet	
axwm_get_lvar	Get the lvar	uint8_t index		
axwm_get_data	Get the Data	uint8_t index		
axwm_get_len	Get the Length of the Data	uint8_t index		
axwm_get_data_count	Get the Number of Data Packets	uint8_t index		
Control				

axwm_get_ci	Get the Control Information	None	uint8_t
axwm_get_c	Get the Command	None	uint8_t

NOTE: The number of receivable data packets is limited to 10 per transmission. This restriction is to limit memory usage and should not affect the receiver in normal operation.

Table 14. API FUNCTIONS FOR TESTING OR CERTIFICATION

	Testing
axwm_set_cw The AX-WM chip will transmit Continuous Wave (CW) without MCU activity, MCU can be put into stdby or sleep mode.	
axwm_set_tx1010 The AX–WM chip will continuously transmit 1010 data without MCU activity, MCU can be put into st or sleep mode.	
axwm_send_pattern(byte)	The AX-WM chip will transmit the input byte as bit pattern
axwm_set_cb	The AX-WM chip will transmit a random bit pattern

Encryption

Wireless M–Bus supports the following encryption methods:

Table 15. ENCRYPTION METHODS

Method	Encryption Mode ⁽¹⁾	Supported	OMS
No encryption	0	Yes	Only wired M-Bus
DES-encryption with CBC, Initialization Vector is 0	2	No	No
DES-encryption with CBC, Initialization Vector not 0	3	No	No
AES-encryption with CBC, Initialization Vector not 0	5	Yes	Mandatory

1. Encryption mode after Table 13 in [1]

AES encryption is recommended, and mandatory for OMS conformity. The IV is handled by the AX–WM library as defined in the EN 13757-3:2013-08 [1] table 14.

Used for encryption is the Advanced Encryption Standard with 128 bit key length (AES 128), as described in NIST FIPS 197 [4]. The AX–WM chip provides hardware support for the encryption, reducing the calculation time and required energy. The AX–WM library uses the hardware support in order to reduce power consumption to a minimum.

The Cipher Block Chaining (CBC) process is described in NIST SP800–38A [5]. The CBC is also handled by the AX–WM library.

The encryption method and number of encrypted bytes or blocks is written in the configuration byte. The configuration byte is handled by the AX–WM library previous to the package getting transmitted and requires no user effort.

Partial encryption is not yet supported. Either all data blocks will be encrypted or none. The header is never encrypted, and never will be as it is part of the Initialization Vector.

The whole encryption is done by the AX–WM library if the encryption bit is set. This reduces the user effort to a minimum and reduces development time for encrypted communication considerably. Especially for OMS, where encryption is mandatory for Wireless M–Bus communication.

TYPICAL APPLICATION DIAGRAM

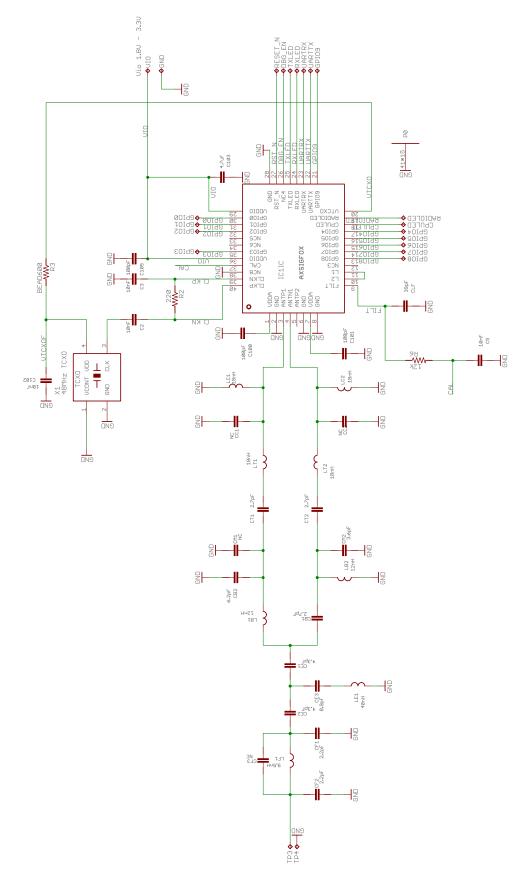


Figure 6. Typical Application Diagram

ORDERING INFORMATION

The following device information can be accessed using these API functions:

APP Version

[0] axwm_get_major_version

[1] axwm_get_minor_version

Table 16. ORDERING INFORMATION

Chip Version

[0] axwm_get_siliconrev

[1] axwm_get_ax5043_siliconrev

		APP Version		Chip Version	
Product	Part Number	[0]	[1]	[0]	[1]
AX-WM	AX-WM-1-01-XXXX	0x01	0x00	0x8F	0x51

Bibliography

[1] DIN EN 13757–3:2013–08, Communication systems for and remote reading of meters – Part 3: Dedicated application layer; German version EN 13757–3:2013, 2013.

[2] DIN EN 13757–4:2014–02, Communication systems for meters and remote reading of meters – Part 4: Wireless meter readout (Radio meter reading for operation in SRD bands); German version EN 13757–4:2013, 2014.

[3] "Open Metering System," [Online]. Available: http://oms-group.org/. [Accessed 12 2 2016].

[4] NIST FIPS 197, "Advanced Encryption Standard (AES)," 11 2001. [Online]. Available: http://csrc.nist.gov/publications/PubsFIPS.html. [Accessed 12 02 2016].

[5] NIST SP800–38A, "Recommendation for Block Cipher Modes of Operation – Methods and Techniques," 2001. [Online]. Available: http://csrc.nist.gov/publications/PubsSPs.html#SP%20800 [Accessed 12 2 2016].

Life Support Applications

This product is not designed for use in life support appliances, devices, or in systems where malfunction of this product can reasonably be expected to result in personal injury. ON Semiconductor customers using or selling this product for use in such applications do so at their own risk and agree to fully indemnify ON Semiconductor for any damages resulting from such improper use or sale.

ON Semiconductor and the use are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC makes and is not for resale in

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative