Power MOSFET for 1-Cell Lithium-ion Battery Protection 12 V, 2.65 mΩ, 33 A, Dual N-Channel

Overview

This Power MOSFET features a low on-state resistance. This device is suitable for applications such as power switches of portable machines. Best suited for 1-cell lithium-ion battery applications.

Features

- 2.5 V drive
- Common-Drain type
- ESD Diode-Protected Gate
- Pb-Free, Halogen Free and RoHS Compliance

Applications

• 1-Cell Lithium-ion Battery Charging and Discharging Switch

Specifications

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

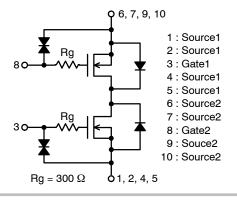
Parameter	Symbol	Value	Unit
Source to Source Voltage	V _{SSS}	12	V
Gate to Source Voltage	V _{GSS}	±8	V
Source Current (DC)	۱ _S	33	А
Source Current (Pulse) PW \leq 10 μ s, duty cycle \leq 1%	I _{SP}	135	A
Total Dissipation (Note 1)	PT	3.1	W
Junction Temperature	Tj	150	°C
Storage Temperature	Tstg	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

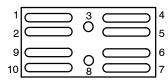
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Value	Unit		
Junction to Ambient (Note 1)	$R_{\theta JA}$	40.3	°C/W		

1. Surface mounted on ceramic substrate (5000 $\text{mm}^2 \times 0.8$ mm).



ON Semiconductor®


www.onsemi.com

V _{SSS}	R _{SS(ON)} Max	I _{S Max}
12 V	$2.65~\mathrm{m}\Omega$ @ $4.5~\mathrm{V}$	33 A
	$2.75~\mathrm{m}\Omega$ @ $3.8~\mathrm{V}$	
	3.75 mΩ @ 3.1 V	
	6.0 mΩ @ 2.5 V	

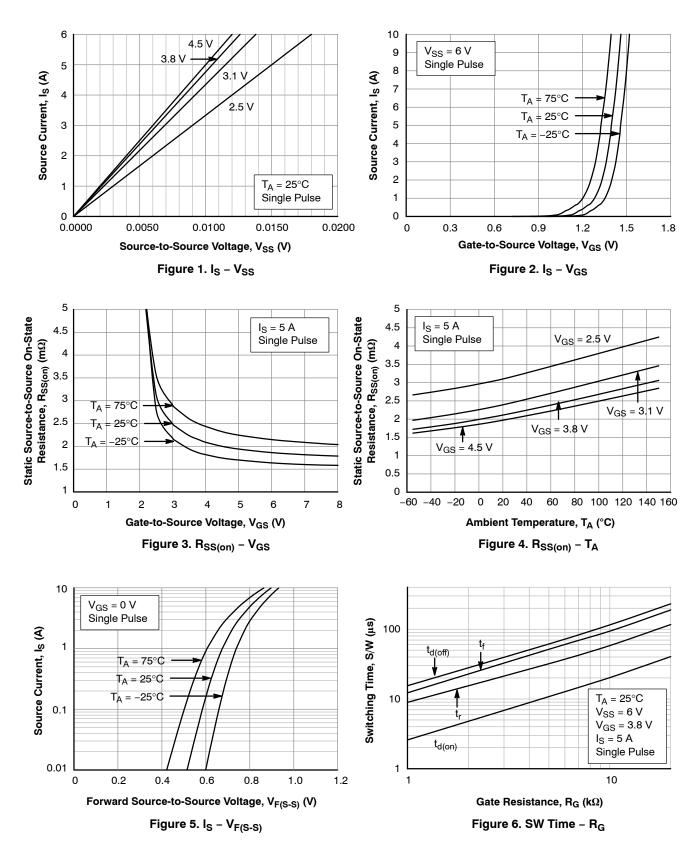

ELECTRICAL CONNECTION N-Channel

MARKING DIAGRAM

= Assembly Lot

ORDERING INFORMATION

77


See detailed ordering and shipping information on page 6 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_A = 25° C)

			Value				
Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Source to Source Breakdown Voltage	V(_{BR}) _{SSS}	I _S = 1 mA, V _{GS} = 0 V	Test Circuit 1	12	-	-	V
Zero-Gate Voltage Source Current	I _{SSS}	$V_{SS} = 10 \text{ V}, V_{GS} = 0 \text{ V}$	Test Circuit 1	-	-	1	μA
Gate to Source Leakage Current	I _{GSS}	V_{GS} = ±8 V, V_{SS} = 0 V	Test Circuit 2	-	-	±1	μA
Gate Threshold Voltage	V _{GS} (th)	$V_{SS} = 6 V$, $I_S = 1 mA$	Test Circuit 3	0.4	-	1.3	V
Static Source to Source On-State Resistance	R _{SS} (on)	I _S = 5 A, V _{GS} = 4.5 V	Test Circuit 4	1.30	2.00	2.65	mΩ
		I _S = 5 A, V _{GS} = 3.8 V	Test Circuit 4	1.40	2.10	2.75	mΩ
		I _S = 5 A, V _{GS} = 3.1 V	Test Circuit 4	1.50	2.30	3.75	mΩ
		I _S = 5 A, V _{GS} = 2.5 V	Test Circuit 4	1.85	3.00	6.00	mΩ
Turn-ON Delay Time	t _d (on)	V_{SS} = 6 V, V_{GS} = 3.8 V, I_S = 5 A, R_g = 10 k Ω Test Circuit 5		-	20	-	μs
Rise Time	t _r			-	58	-	μs
Turn-OFF Delay Time	t _d (off)			-	115	-	μs
Fall Time	t _f			-	94	-	μs
Total Gate Charge	Qg	$V_{SS} = 6 V, V_{GS} = 3.8 V, I_{S} = 5 A$		-	42	-	nC
Forward Source to Source Voltage	V _{F(S-S)}	$I_S = 3 \text{ A}, V_{GS} = 0 \text{ V}$ Test Circuit 7		-	0.75	1.2	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (Continued)

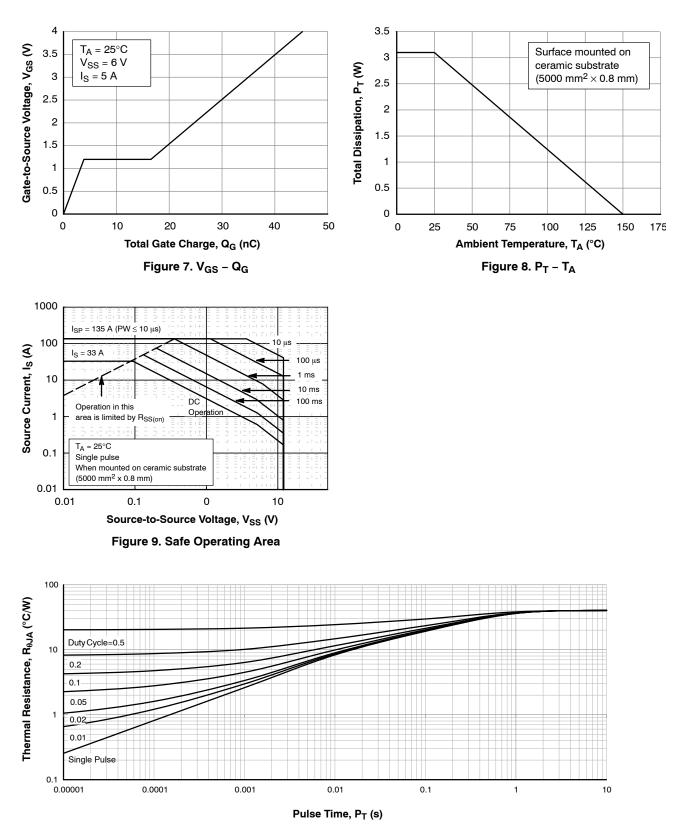
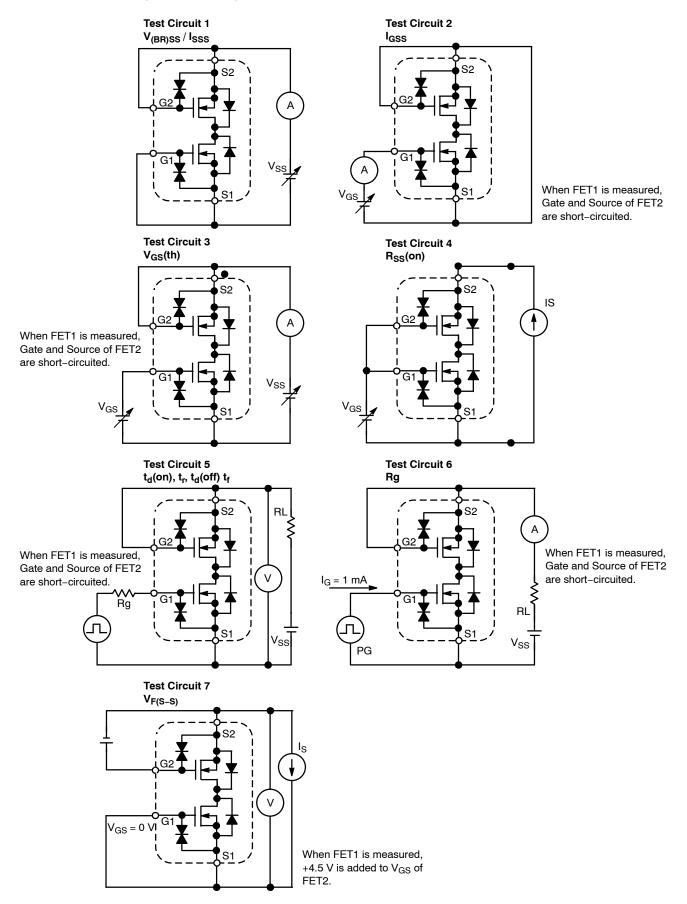
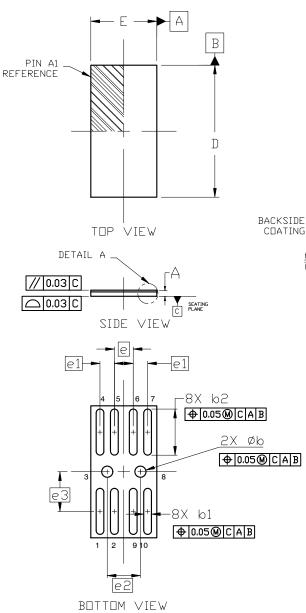



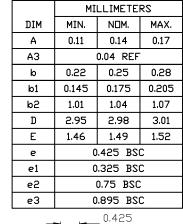
Figure 10. Thermal Response

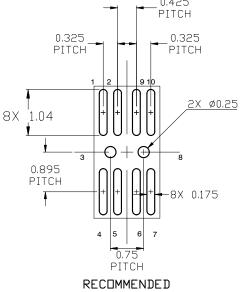
Test Circuits are Example of Measuring FET1 Side


ORDERING INFORMATION

Device	Marking	Package	Shipping (Qty / Packing) [†]
EFC2K102NUZTDG	PA	WLCSP10, 2.98x1.49x0.140 (Pb-Free / Halogen Free)	5,000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


PACKAGE DIMENSIONS


WLCSP10, 2.98x1.49x0.14 CASE 567XC ISSUE O

NDTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS

MOUNTING FOOTPRINT*

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DETAIL A

гАЗ

¥

NOTE: Since the EFC2K102NUZ is a MOSFET product, please avoid using this device in the vicinity of highly charged objects. Please contact sales for use except the designated application.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor handles, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninte

Phone: 421 33 790 2910

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative