ESD Protection Diodes

Ultra Low Capacitance ESD Protection Diode for High Speed Data Line

The ESDL2031 ESD protection diodes are designed to protect high speed data lines from ESD. Ultra-low capacitance and low ESD clamping voltage make this device an ideal solution for protecting voltage sensitive high speed data lines.

Features

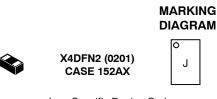
- Ultra Low Capacitance (0.40 pF Typ, I/O to GND)
- Protection for the Following IEC Standards: IEC 61000-4-2 (Level 4)
- Low ESD Clamping Voltage
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

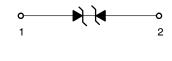
- USB 3.x
- MHL 2.0
- SATA/SAS
- PCI Express
- HDMI

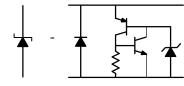
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Operating Junction Temperature Range	TJ	-55 to +125	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Lead Solder Temperature – Maximum (10 Seconds)	ΤL	260	°C
IEC 61000-4-2 Contact (ESD) IEC 61000-4-2 Air (ESD)	ESD ESD	±30 ±30	kV kV
Maximum Peak Pulse Current 8/20 μs @ T _A = 25°C	I _{pp}	9.75	A
Maximum Peak Pulse Power 8/20 μ s @ T _A = 25°C	P _{pk}	72	W


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

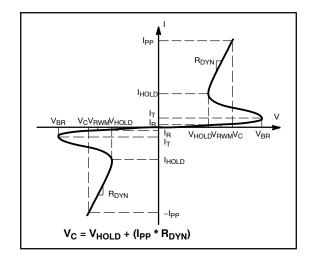
See Application Note AND8308/D for further description of survivability specs.


ON Semiconductor®


www.onsemi.com

J = Specific Device Code (Rotated 270 degrees)

PIN CONFIGURATION AND SCHEMATIC


ORDERING INFORMATION

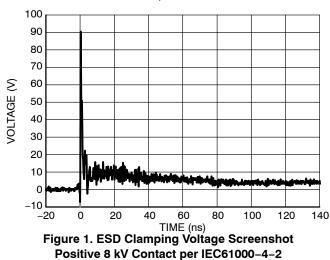
See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

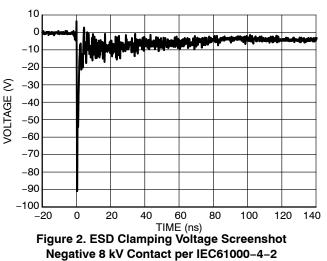
ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

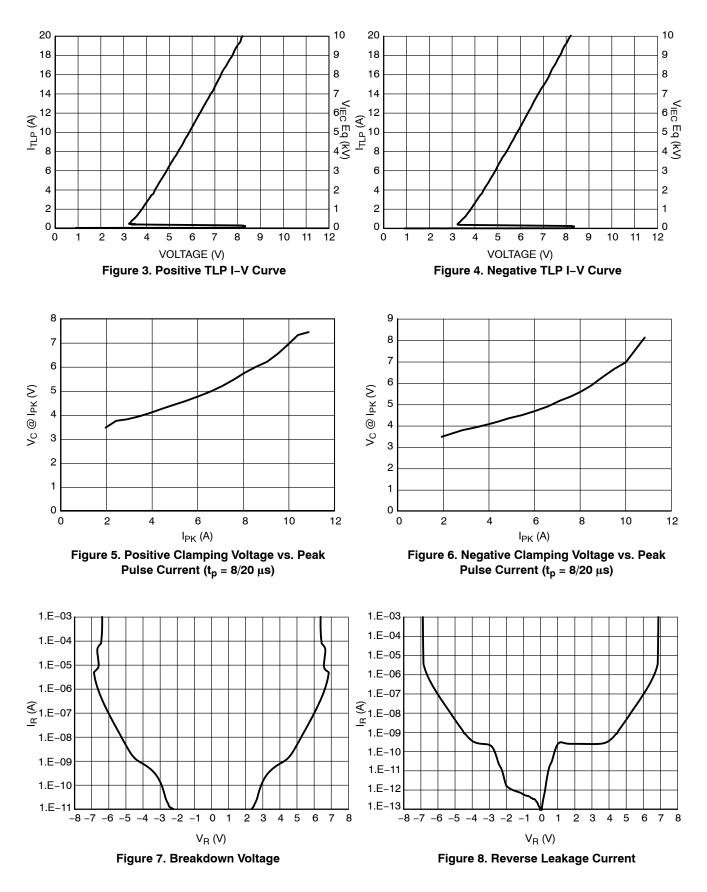
Symbol	Parameter
V _{RWM}	Working Peak Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
V _{HOLD}	Holding Reverse Voltage
I _{HOLD}	Holding Reverse Current
R _{DYN}	Dynamic Resistance
I _{PP}	Maximum Peak Pulse Current
V _C	Clamping Voltage @ I _{PP} V _C = V _{HOLD} + (I _{PP} * R _{DYN})

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Reverse Working Voltage	V _{RWM}	I/O Pin to GND			4.0	V
Breakdown Voltage	V _{BR}	I _T = 1 mA, I/O Pin to GND	5.1		8.5	V
Reverse Leakage Current	I _R	V _{RWM} = 4.0 V, I/O Pin to GND			0.05	μA
Reverse Holding Voltage	V _{HOLD}	I/O Pin to GND		2.5		V
Holding Reverse Current	I _{HOLD}	I/O Pin to GND		55		mA
Clamping Voltage TLP (Note 2)	V _C	$I_{PP} = 8 A $ $\begin{cases} IEC61000-4-2 \text{ Level 2 Equivalent} \\ (\pm 4 \text{ kV Contact}, \pm 8 \text{ kV Air}) \end{cases}$		5.25		V
		$I_{PP} = 16 A \\ \left. \begin{array}{c} IEC61000 - 4 - 4 \text{ Level 2 Equivalent} \\ (\pm 8 \text{ kV Contact}, \pm 16 \text{ kV Air}) \end{array} \right.$		7.1		
Reverse Peak Pulse Current	I _{PP}	per IEC61000-4-5 (8x20 μs) Figure 11	9.75			А
Clamping Voltage 8/20 μs Waveform per Figure 11	V _C	I _{PP} = 9.75 A			7.4	V
Dynamic Resistance	R _{DYN}	Pin1 to Pin2 Pin2 to Pin1		0.22 0.22		Ω
Junction Capacitance	CJ	V _R = 0 V, f = 1 MHz		0.40	0.55	pF


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. For test procedure see Figure 12 and application note AND8307/D.


2. ANSI/ESD STM5.5.1 - Electrostatic Discharge Sensitivity Testing using Transmission Line Pulse (TLP) Model.

TLP conditions: $Z_0 = 50 \Omega$, $t_p = 100 ns$, $t_r = 1 ns$, averaging window: $t_1 = 70 ns$ to $t_2 = 90 ns$.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

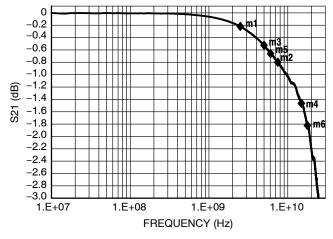
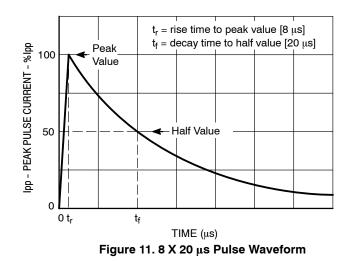



Figure 9. Insertion Loss

Interface	Data Rate (Gb/s)	Fundamental Frequency (GHz)	3 rd Harmonic Frequency (GHz)	ESDL2031 Insertion Loss (dB)
USB 3.0	5	2.5 (m1)	7.5 (m2)	m1 = -0.23 m2 = -0.81
USB 3.1	10	5.0 (m3)	15 (m4)	m3 = -0.53 m4 = -1.47
HDMI 2.1	12	6.0 (m5)	18 (m6)	m5 = -0.65 m6 = -1.82

Figure 10. ESDL2031 Insertion Loss

IEC 61000-4-2 Spec.

Level	Test Volt- age (kV)	First Peak Current (A)	Current at 30 ns (A)	Current at 60 ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

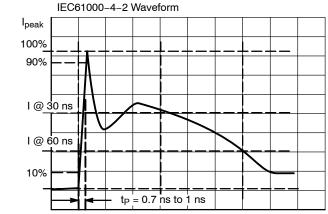


Figure 12. IEC61000-4-2 Spec

Transmission Line Pulse (TLP) Measurement

Transmission Line Pulse (TLP) provides current versus voltage (I–V) curves in which each data point is obtained from a 100 ns long rectangular pulse from a charged transmission line. A simplified schematic of a typical TLP system is shown in Figure 13. TLP I–V curves of ESD protection devices accurately demonstrate the product's ESD capability because the 10s of amps current levels and under 100 ns time scale match those of an ESD event. This is illustrated in Figure 14 where an 8 kV IEC 61000–4–2 current waveform is compared with TLP current pulses at 8 A and 16 A. A TLP I–V curve shows the voltage at which the device turns on as well as how well the device clamps voltage over a range of current levels.

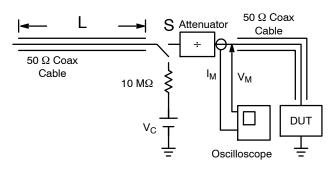


Figure 13. Simplified Schematic of a Typical TLP System

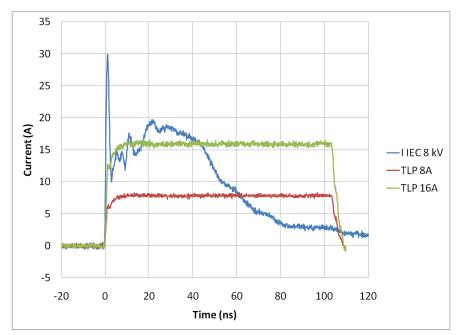
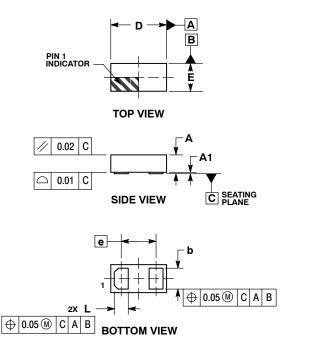
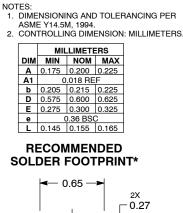
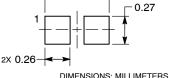


Figure 14. Comparison Between 8 kV IEC 61000-4-2 and 8 A and 16 A TLP Waveforms


ORDERING INFORMATION


Device	Package	Shipping [†]
ESDL2031MX4T5G	X4DFN2 (0201) (Pb-Free)	10,000 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DFN2, 0.60x0.30, 0.36P CASE 152AX ISSUE F

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

HDMI is a registered trademark of HDMI Licensing, LLC.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and its officers, employees, subsidiaries, and distributors harmed for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal i

Phone: 421 33 790 2910

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative