

on semiconductor® FCD5N60-F085

N-Channel SuperFET[®] MOSFET 600 V, 4.6 A, 1.1 Ω

Features

- 600V, 4.6A, typ. R_{ds(on)}=860mΩ@V_{GS}=10V
- Ultra Low Gate Charge (Typ. Q_q = 16 nC)
- UIS Capability
- RoHS Compliant
- Qualified to AEC Q101

Applications

- Automotive On Board Charger
- Automotive DC/DC Converter for HEV

Description

SuperFETTM is ON Semiconductor proprietary new generation of high voltage MOSFETs utilizing an advanced charge balance mechanism for outstanding low on-resistance and lower gate charge performance. This advanced technology has been tailored to minimize

Inis advanced technology has been tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. Consequently, SuperFET is suitable for various automotive DC/DC power conversion.

S

G

FCD5N60-F085 N-Channel SuperFET[®] MOSFET

D

D

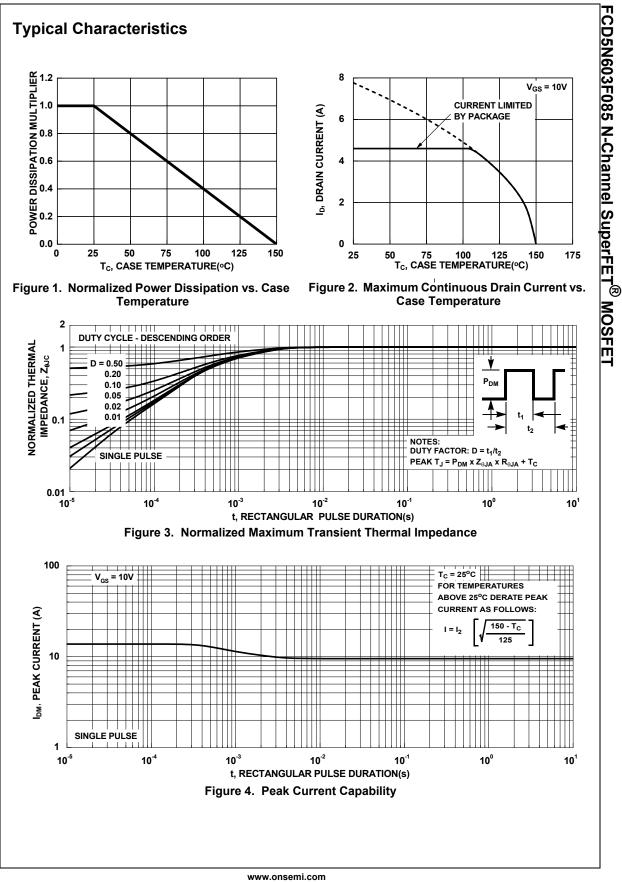
D-PAK

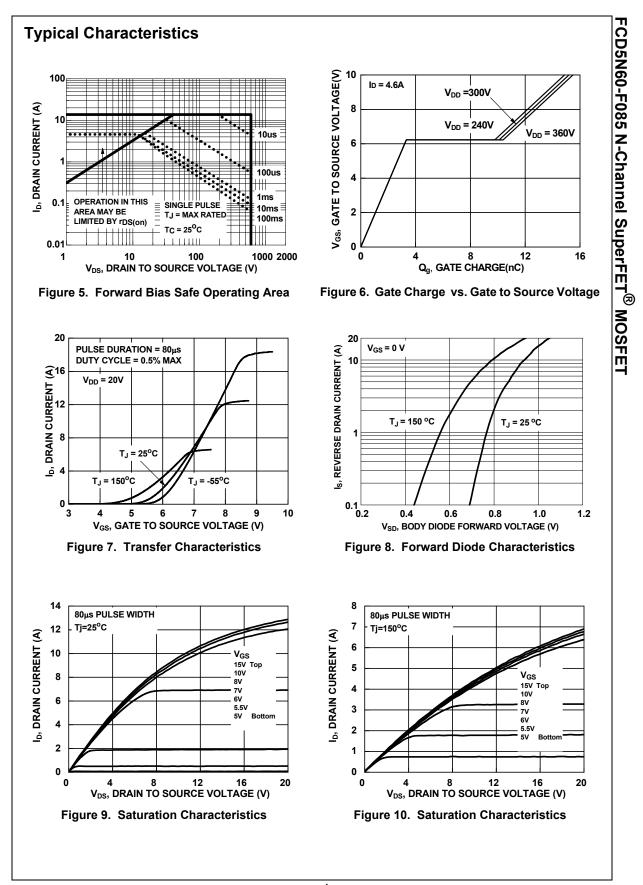
MOSFET Maximum Ratings T_J = 25°C unless otherwise noted.

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-to-Source Voltage		600	V
V _{GS}	Gate-to-Source Voltage		±30	V
	Drain Current - Continuous (V _{GS} =10) (Note 1)	T _C =25°C	4.6	
D	Pulsed Drain Current	T _C = 25°C	See Figure 4	Α
E _{AS}	Single Pulse Avalanche Energy	(Note 1)	29	mJ
6	Power Dissipation		54	W
P _D	Derate Above 25°C		1.56	W/ºC
T _J , T _{STG}	Operating and Storage Temperature		-55 to + 150	°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case		2.3	°C/W
$R_{\theta JA}$	Maximum Thermal Resistance, Junction to Ambient	(Note 2)	83	°C/W

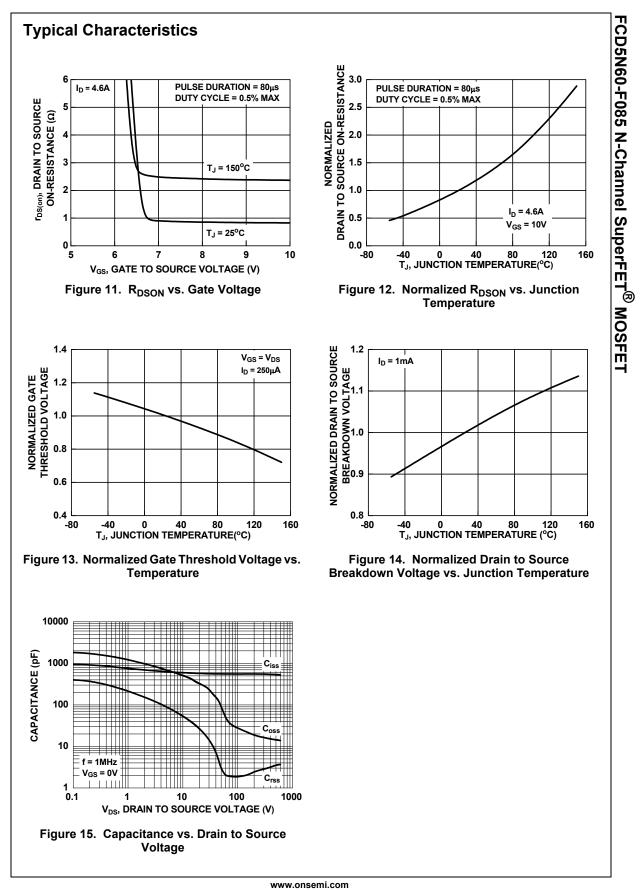
Notes:

1: Starting T_J = 25°C, L = 10mH, I_{AS} = 2.4A, V_{DD} = 100V during inductor charging and V_{DD} = 0V during time in avalanche.


ROHS


 R_{θJA} is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{θJC} is guaranteed by design, while R_{θJA} is determined by the board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.

Package Marking and Ordering Information


Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FCD5N60	FCD5N60-F085	D-PAK(TO-252)	13"	16mm	2500units

	Parameter	Test Conditions		Min.	Тур.	Max.	Units
Off Cha	aracteristics						
B _{VDSS}	Drain-to-Source Breakdown Voltage	/oltage I _D = 250μA, V _{GS} = 0V		600	-	-	V
		V_{DS} =600V, T_{J} = 25°C		-	-	1	μA
IDSS	Drain-to-Source Leakage Current		$T_{\rm J} = 150^{\rm o} {\rm C} \ ({\rm Note} \ 4)$	-	-	10	μA
I _{GSS}	Gate-to-Source Leakage Current	V _{GS} = ±30V		I	-	±100	nA
On Cha	racteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250μA		3.0	_	5.0	V
		$I_D = 4.6A, T_J = 25^{\circ}C$		-	0.86	1.1	Ω
R _{DS(on)}	Drain to Source On Resistance		$T_{\rm J} = 150^{\rm o} {\rm C} \ ({\rm Note} \ 4)$	-	2.5	3.2	Ω
C _{iss}	Input Capacitance			-	570	-	pF
C _{oss}	Output Capacitance	v _{DS} = 25v, v f = 1MHz	v _{GS} = 0v,	-	280	-	pF
C _{rss}	Reverse Transfer Capacitance			-	20	-	pF
R _g	Gate Resistance	f = 1MHz		-	1.9	-	Ω
Q _{g(ToT)}	Total Gate Charge	V _{GS} = 0 to 1		-	16	21	nC
Q _{g(th)}	Threshold Gate Charge	V _{GS} = 0 to 2	V I _D = 4.6A	-	1.0	-	nC
Q _{gs}	Gate-to-Source Gate Charge	_	_	-	3.2	-	nC
Q _{gd}	Gate-to-Drain "Miller" Charge			-	7.6	-	nC
Switchi	ng Characteristics						
	Turn-On Time			-	-	84	ns
t _{on}	Turn-On Delay			-	18	-	ns
t _{on} t _{d(on)}		V _{DD} = 300V, I _D = 4.6A,		-	19	-	ns
	Rise Time		V _{GS} = 10V, R _{GEN} = 25Ω		48	-	ns
t _{d(on)} t _r			R _{GEN} = 25Ω	-			
t _{d(on)} t _r	Rise Time Turn-Off Delay Fall Time		R _{GEN} = 25Ω	-	13	-	ns
$t_{d(on)}$ t_r $t_{d(off)}$ t_f	Rise Time Turn-Off Delay		R _{GEN} = 25Ω	-	13 -	- 178	ns ns
t _{d(on)} t _r t _{d(off)} t _f t _{off}	Rise Time Turn-Off Delay Fall Time		R _{GEN} = 25Ω	-		- 178	
t _{d(on)} t _r t _{d(off)} t _f t _{off} Drain-S	Rise Time Turn-Off Delay Fall Time Turn-Off Time			-		- 178 1.25	
t _{d(on)} t _r t _{d(off)} t _f t _{off}	Rise Time Turn-Off Delay Fall Time Turn-Off Time Source Diode Characteristics	V _{GS} = 10V,	V _{GS} = 0V , I _F = 4.6A,	-			ns

www.onsemi.com 4

ON Semiconductor and a presentation of the second s

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com