Power MOSFET

–40 V, 3.6 m Ω , –110 A, Single P-Channel

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- Wettable Flank Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

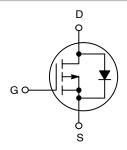
MAXIMUM RATINGS (T, I = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltag	V_{DSS}	-40	V		
Gate-to-Source Voltage	Gate-to-Source Voltage			±16	V
Continuous Drain		T _C = 25°C	I _D	-110	Α
Current R _{θJC} (Notes 1, 3)	Steady	T _C = 100°C		-110	
Power Dissipation	State	T _C = 25°C	P_{D}	176	W
R _{θJC} (Note 1)		T _C = 100°C		88	
Continuous Drain		T _A = 25°C	I _D	-24.5	Α
Current R _{θJA} (Notes 1, 2, 3)	Steady	T _A = 100°C		-17.3	
Power Dissipation	State	T _A = 25°C	P_{D}	3.5	W
R _{θJA} (Notes 1, 2)		T _A = 100°C		1.7	
Pulsed Drain Current	T _C = 25	°C, t _p = 10 μs	I _{DM}	-1260	Α
Operating Junction and Range	Operating Junction and Storage Temperature Range Source Current (Body Diode) (Note 1)			-55 to +175	°C
Source Current (Body D				-110	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = -86 A) Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			E _{AS}	370	mJ
			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

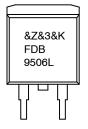
Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	0.85	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	43	


- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. Maximum current is limited by package configuration.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX	
-40 V	3.6 m Ω @ –10 V	00.4	
-40 V	5.0 m Ω @ -4.5 V	–80 A	



P-CHANNEL MOSFET

D²PAK-3 TO-263 CASE 418AJ

MARKING DIAGRAM

&Z &3 = Assembly Plant Code

Numeric Date CodeLot Code

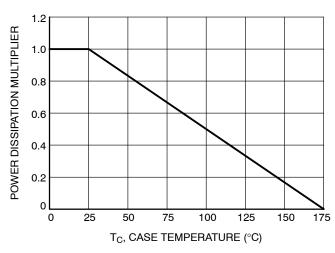
&K FDB9506L

= Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•					.2
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	-40	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J		-	-22	-	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, V_{DS} = -40 \text{ V}, T_J = 25^{\circ}\text{C}$	_	-	-1	μΑ
		$V_{GS} = 0 \text{ V}, V_{DS} = -40 \text{ V}, T_J = 175^{\circ}\text{C}$	-	-	-1	mA
Zero Gate Voltage Drain Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 16 \text{ V}$	-	-	±100	nA
ON CHARACTERISTICS (Note 4)						
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}, I_D = -250 \mu\text{A}$	-1	-1.8	-3	V
Threshold Temperature Coefficient	V _{GS(th)} /T _J		-	-6.4	-	mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -10 \text{ V}, I_D = -80 \text{ A}$	-	2.8	3.6	mΩ
		$V_{GS} = -4.5 \text{ V}, I_D = -40 \text{ A}$	-	3.9	5.0	1
CHARGES, CAPACITANCES & GATE	RESISTANCE			•		
Input Capacitance	C _{iss}	V _{GS} = 0 V, f = 100 KHz, V _{DS} = -20 V	-	9100	-	pF
Output Capacitance	C _{oss}		_	3300	-	pF
Reverse Transfer Capacitance	C _{rss}		_	140	-	pF
Gate Resistance	R _g	V _{GS} = 0.5 V, f = 100 KHz	-	19	-	Ω
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -10 \text{ V}, V_{DS} = -32 \text{ V}, I_D = -80 \text{ A}$	-	126	-	nC
		$V_{GS} = -4.5 \text{ V}, V_{DS} = -32 \text{ V}, I_D = -80 \text{ A}$	-	58	-	1
Threshold Gate Charge	Q _{g(th)}	V _{GS} = 0 to -1 V	-	8	-	1
Gate-to-Source Gate Charge	Q _{gs}	$V_{DD} = -32 \text{ V}, I_D = -80 \text{ A}$	_	27	-	1
Gate-to-Drain "Miller" Charge	Q_{gd}		_	16	-	1
Plateau Voltage	V_{GP}		_	-3.2	-	V
SWITCHING CHARACTERISTICS			-	•		
Turn-On Delay Time	t _{d(on)}	$V_{DD} = -20 \text{ V}, I_D = -80 \text{ A},$	_	12	-	ns
Turn-On Rise Time	t _r	$V_{GS} = -10 \text{ V}, R_{GEN} = 6 \Omega$	_	9	-	ns
Turn-Off Delay Time	t _{d(off)}		_	474	-	ns
Turn-Off Fall Time	t _f		_	140	-	ns
DRAIN-SOURCE DIODE CHARACTEI	RISTICS		•			
Source-to-Drain Diode Voltage	V_{SD}	$I_{SD} = -80 \text{ A}, V_{GS} = 0 \text{ V}$	-	-0.91	-1.25	V
		$I_{SD} = -40 \text{ A}, V_{GS} = 0 \text{ V}$	-	-0.84	-1.2	V
Reverse Recovery Time	T _{RR}	$V_{GS} = 0 \text{ V, } dI_{SD}/dt = 100 \text{ A/}\mu\text{s}$	-	87	-	ns
Charge Time	ta	$I_{S} = -80 \text{ A}$	-	42	-	1
Discharge Time	t _b		_	45	-	1
Reverse Recovery Charge	Q _{RR}		_	101	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.

5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

Current Limited by Package -ID, DRAIN CURRENT (A) $V_{GS} = -10 \text{ V}$ T_C, CASE TEMPERATURE (°C)

Figure 1. Normalized Power Dissipation vs.

Case Temperature

Figure 2. Maximum Continuous Drain Current vs. Case Temperature

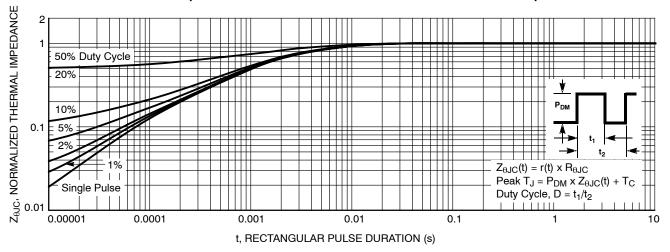


Figure 3. Normalized Maximum Transient Thermal Impedance

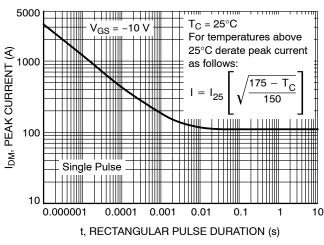


Figure 4. Peak Current Capability

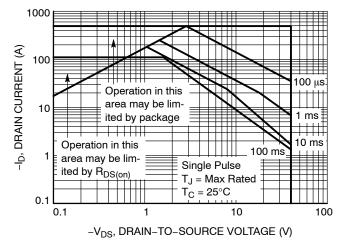


Figure 5. Forward Bias Safe Operating Area

TYPICAL CHARACTERISTICS

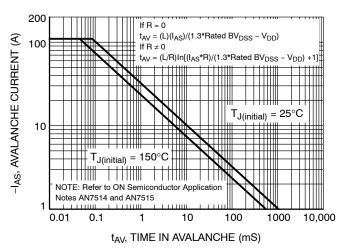


Figure 6. Unclamped Inductive Switching Capability

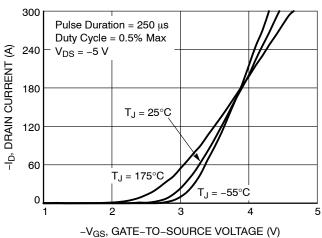


Figure 7. Transfer Characteristics

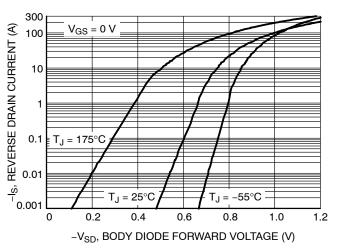


Figure 8. Forward Diode Characteristics

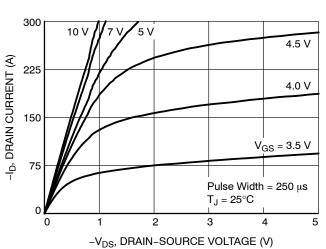


Figure 9. Saturation Characteristics

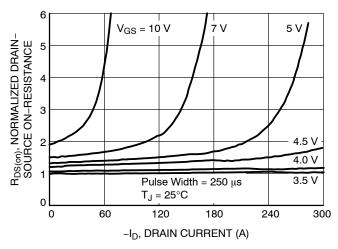


Figure 10. Normalized R_{DS(on)} vs. Drain Current

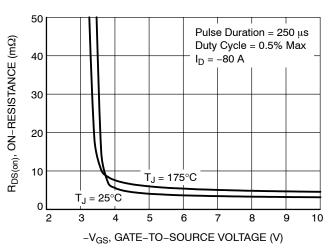


Figure 11. R_{DS(on)} vs. Gate Voltage

TYPICAL CHARACTERISTICS

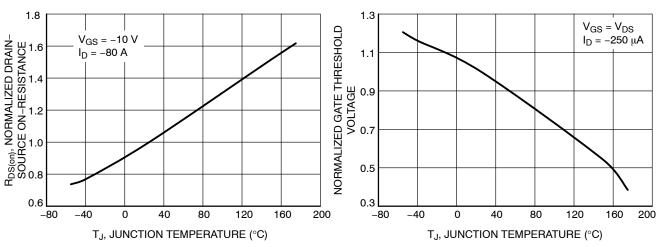


Figure 12. Normalized R_{DS(on)} vs. Junction Temperature

Figure 13. Normalized Gate Threshold Voltage vs. Temperature

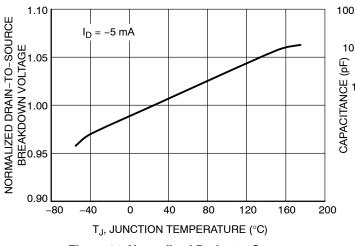


Figure 14. Normalized Drain-to-Source Breakdown Voltage vs. Junction Temperature

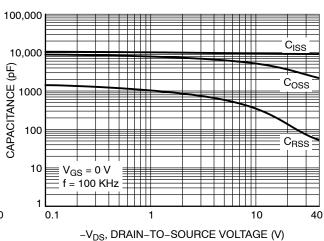


Figure 15. Capacitance vs. Drain-to-Source Voltage

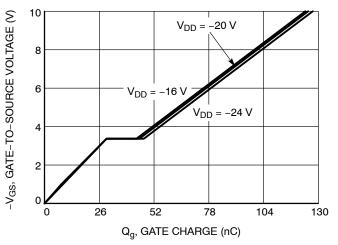
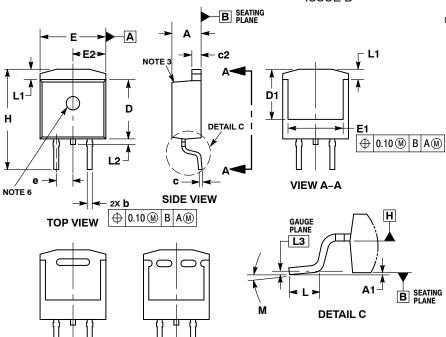
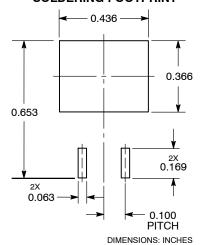



Figure 16. Gate Charge vs. Gate-to-Source Voltage

PACKAGE DIMENSIONS

D²PAK-3 (TO-263, 3-LEAD) CASE 418AJ **ISSUE B**

VIEW A-A
OPTIONAL CONSTRUCTIONS


NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
 3. CHAMFER OPTIONAL
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.005 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
 5. THERMAL PAD CONTOUR IS OPTIONAL WITHIN DIMENSIONS E, L1, D1 AND E1.
 6. OPTIONAL MOLD FEATURE

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.160	0.190	4.06	4.83	
A1	0.000	0.010	0.00	0.25	
b	0.020	0.039	0.51	0.99	
С	0.012	0.029	0.30	0.74	
c2	0.045	0.065	1.14	1.65	
D	0.330	0.380	8.38	9.65	
D1	0.260		6.60		
Е	0.380	0.420	9.65	10.67	
E1	0.245		6.22		
е	0.100	BSC	2.54 BSC		
Н	0.575	0.625	14.60	15.88	
L	0.070	0.110	1.78	2.79	
L1		0.066		1.68	
L2		0.070		1.78	
L3	0.010 BSC		0.25 BSC		
M	0°	8°	0°	8°	

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
FDB9506L-F085	FDB9506L	D ² PAK	Tape & Reel [†]	330 mm	24 mm	800 Units

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor, "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intend

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative