

ON Semiconductor®

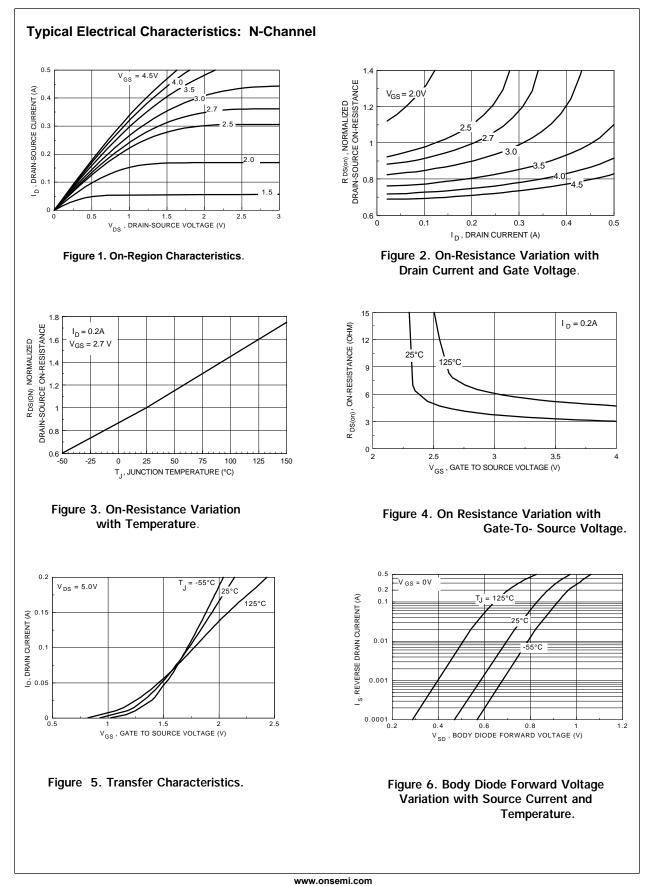
FDC6320C Dual N & P Channel , Digital FET

General Description

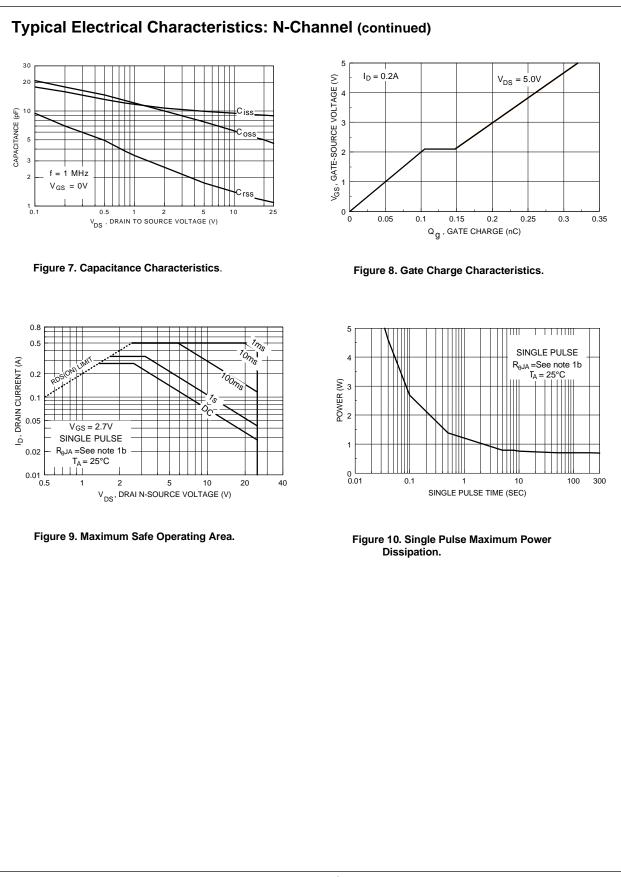
These dual N & P Channel logic level enhancement mode field effect transistors are produced using ON Semiconductor's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. The device is an improved design especially for low voltage applications as a replacement for bipolar digital transistors in load switching applications. Since bias resistors are not required, this dual digital FET can replace several digital transistors with difference bias resistors.

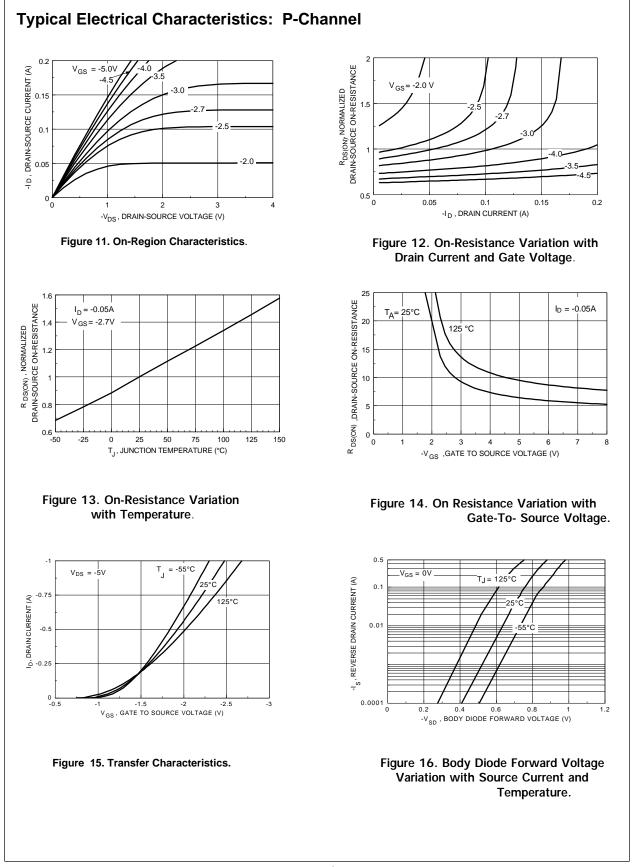
Features

- N-Ch 25 V, 0.22 A, $R_{DS(ON)} = 5 \Omega @ V_{GS} = 2.7 V.$
- P-Ch 25 V, -0.12 A, $R_{DS(ON)} = 13 \Omega @ V_{GS} = -2.7 V.$
- Very low level gate drive requirements allowing direct operation in 3 V circuits. V_{GS(th)} < 1.5 V.

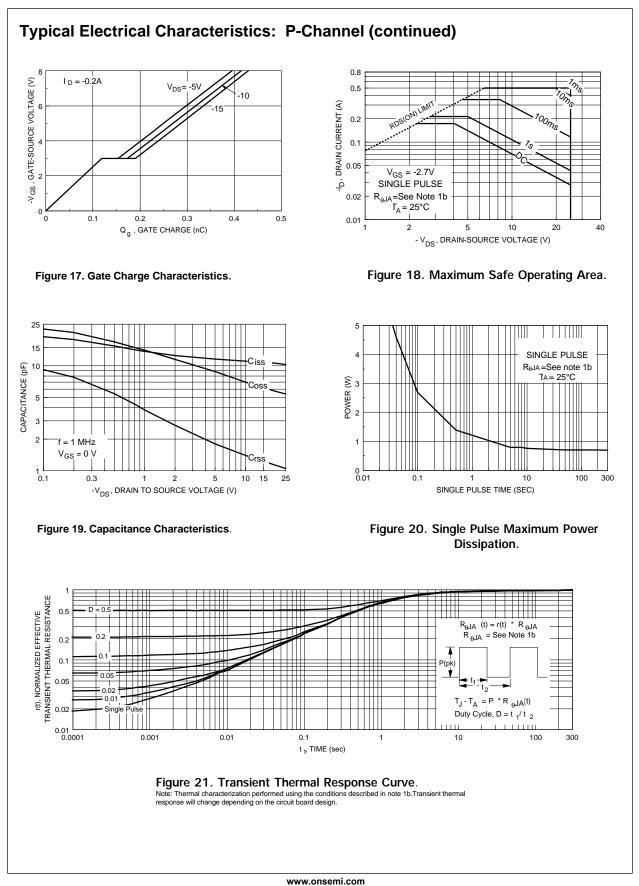

- Gate-Source Zener for ESD ruggedness.
 >6kV Human Body Model
- Replace NPN & PNP digital transistors.

SOT-	23 SuperSOT [™] -6	SuperSOT [™] -8	SO-8	SOT-223	SOIC-16
	D1 D1 SuperSOT ™-6 pm 1 G1	-	4		
ADSOIL Symbol	ute Maximum Ratings $T_A =$	25°C unless other wise	N-Channel	P-Channel	Units
V _{DSS} , V _{CC}	Drain-Source Voltage, Power Supp	oly Voltage	25	-25	V
V _{gss} , V _{in}	Gate-Source Voltage,		8	-8	V
I _D , I _O	Drain/Output Current - Contin	nuous	0.22	-0.12	А
	- Pulseo	d l	0.5	-0.5	
P _D	Maximum Power Dissipation	(Note 1a)	().9	W
		(Note 1b)	0.7		
T_,T _{STG}	Operating and Storage Tempature	Ranger	-55 to 150		°C
ESD	Electrostatic Discharge Rating MI Human Body Model (100pf / 1500		6		kV
	, , , ,				
THERMA	L CHARACTERISTICS				
THERMA R _{ຍJA}		Ambient (Note 1a)	1	40	°C/W


© 1997 Semiconductor Components Industries, LLC. October-2017, Rev. 3 Publication Order Number: FDC6320C/D


	Parameter	Conditions	Туре	Min	Тур	Max	Units
	ACTERISTICS		. , , , , , , , , , , , , , , , , , , ,		71		
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 250 \mu A$	N-Ch	25			V
DSS	Drain Course Dreakdown Voliage	$V_{GS} = 0 V, I_D = -250 \mu A$	P-Ch	-25			v
	Breakdown Voltage Temp. Coefficient	$I_p = 250 \ \mu\text{A}$, Referenced to 25 °C	N-Ch	-20	25		mV /°C
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown voltage remp. Coemcient	$I_{\rm D}$ = -250 µA, Referenced to 25 °C	P-Ch		-20		111070
1	Zero Gate Voltage Drain Current	$V_{DS} = 20 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$	N-Ch		-20	1	μA
DSS	Zelo Gale Voltage Diain Current	$V_{DS} = 20 V, V_{GS} = 0 V,$ $T_{1} = 55^{\circ}$				10	μΑ
	Zero Gate Voltage Drain Current	$V_{DS} = -20 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$	P-Ch			-1	μA
DSS	Zelo Gale Voltage Diain Current	$v_{DS} = -20 v, v_{GS} = 0 v,$ $T_{J} = 55^{\circ}$				-10	μΑ
	Gate - Body Leakage Current	-	N-Ch			100	nA
GSS	Gale - Body Leakage Current	$V_{GS} = 8 V, V_{DS} = 0 V$ $V_{GS} = -8 V, V_{DS} = 0 V$	P-Ch			-100	nA
	CTERISTICS (Note 2)	$v_{GS} = -0 v, v_{DS} = 0 v$	F-CII			-100	ΠA
	Gate Threshold Voltage Temp. Coefficient	L 250 A Deferenced to 25 °C	N-Ch		-2.1		mV/°C
$\Delta V_{GS(th)} / \Delta T_J$	Gale miesnoù volage remp. Coemcient	$I_D = 250 \ \mu$ A, Referenced to $25 \degree$ C $I_D = -250 \ \mu$ A, Referenced to $25 \degree$ C	P-Ch				mv / C
	Gate Threshold Voltage		N-Ch	0.65	1.9 0.85	1.5	V
V _{GS(th)}	Gale miesilolu volage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	P-Ch	-0.65	-1		v
D	Statia Drain Source On Registence	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	N-Ch	-0.05	3.8	-1.5 5	0
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 2.7 \text{ V}, I_D = 0.2 \text{ A}$				9	Ω
		$T_{\rm J} = 125^{\circ}$			6.3 3.1	9 4	
		$V_{GS} = 4.5 \text{ V}, I_D = 0.4 \text{ A}$ $V_{GS} = -2.7 \text{ V}, I_D = -0.05 \text{ A}$	P-Ch		10.6	4 13	
		$V_{GS} = -2.7 V, I_D = -0.05 A$ $T_J = 125^{\circ}$			10.0	21	
		$V_{GS} = -4.5 \text{ V}, I_D = -0.2 \text{ A}$	0		7.9	10	
1	On-State Drain Current	$V_{GS} = 4.3 \text{ V}, \text{I}_{D} = -0.2 \text{ A}$ $V_{GS} = 2.7 \text{ V}, \text{V}_{DS} = 5 \text{ V}$	N-Ch	0.2	7.9	10	A
D(ON)	On-State Drain Current		P-Ch	-0.05			
0	Forward Transconductance	$V_{GS} = -2.7 V, V_{DS} = -5 V$ $V_{DS} = 5 V, I_{D} = 0.4 A$	N-Ch	-0.05	0.2		S
9 _{FS}	Torward Hansconductance	$V_{DS} = -5 V, I_D = -0.2 A$	P-Ch		0.2		
DYNAMIC C	HARACTERISTICS	$V_{\rm DS} = -0.7$, $V_{\rm D} = -0.2$ A	1-011		0.100		
C _{iss}	Input Capacitance	N-Channel $V_{DS} = 10 V, V_{GS} = 0 V,$ f = 1.0 MHz	N-Ch		9.5		pF
liss	Input Capacitance		P-Ch		11		
C _{oss}	Output Capacitance	f = 1.0 MHz	N-Ch		6		pF
OSS		P-Channel	P-Ch		7		P.
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = -10 V, V_{GS} = 0 V,$ f = 1.0 MHz	N-Ch		1.3		pF
-rss			P-Ch		1.4		

Symbol	Parameter	Conditions	Туре	Min	Тур	Max	Units
SWITCHI	NG CHARACTERISTICS (Note 2)	1	51				
D(on)	Turn - On Delay Time	N-Channel	N-Ch		5	11	nS
D(0ii)		$V_{DD} = 6 \text{ V}, \text{ I}_{D} = 0.5 \text{ A},$	P-Ch		6	12	
T	Turn - On Rise Time	$V_{\rm GS} = 4.5 \text{ V}, \text{ R}_{\rm GEN} = 50 \Omega$	N-Ch		4.5	10	nS
			P-Ch		6	12	
D(off)	Turn - Off Delay Time	P-Channel	N-Ch		4	10	nS
		$V_{DD} = -6 V, I_{D} = -0.5 A,$	P-Ch		7.4	15	
t,	Turn - Off Fall Time	V_{GEN} = -4.5 V, R_{GEN} = 50 Ω	N-Ch		3.2	8	nS
			P-Ch		4	10	
ک [°]	Total Gate Charge	N-Channel	N-Ch		0.29	0.4	nC
		$V_{DS} = 5 V,$ $I_{D} = 0.2 A, V_{GS} = 4.5 V$	P-Ch		0.23	0.32	
۵ _{gs}	Gate-Source Charge		N-Ch		0.105		nC
		P-Channel	P-Ch		0.12		
ସ _{ୁଗ}	Gate-Drain Charge	$V_{\rm DS} = -5 V,$ $I_{\rm D} = -0.2A, V_{\rm GS} = -4.5 V$	N-Ch		0.045		nC
			P-Ch		0.03		
DRAIN-SC					1		1
S	Maximum Continuous Drain-Source Dic	ode Forward Current	N-Ch			0.5	A
			P-Ch			-0.5	
Notes: 1. R _{e^{ja} is the design whi}	Drain-Source Diode Forward Voltage sum of the junction-to-case and case-to-ambient thermal re- lie R_{gck} is determined by the user's board design. _A using the board layouts shown below on FR-4 PCB in a st Q, Q, D		N-Ch P-Ch e solder mounting su	rface of the	0.97 -1 drain pins. R	1.3 -1.3 _{euc} is guaran	teed by
Notes: 1. R _{e^{JA} is the design whi}	sum of the junction-to-case and case-to-ambient thermal re ile R _{gck} is determined by the user's board design.	$V_{\rm GS}$ = 0 V, $~I_{\rm S}$ = -0.5 A $~({\rm Note}~2)$ sistance where the case thermal reference is defined as the	P-Ch	Iface of the	-1	-1.3	
 R_{ei} is the design whi Typical R_{ei} Control of the second second	sum of the junction-to-case and case-to-ambient thermal re lile R_{gcA} is determined by the user's board design. A using the board layouts shown below on FR-4 PCB in a st a. 140 ^o C/W on a 0.125 in ² pad of	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = -0.5 \text{ A} \text{ (Note 2)}$ sistance where the case thermal reference is defined as the till air environment: b. 180° C/W on a 0.005 in ² of pad	P-Ch	rface of the	-1	-1.3	



4 ww.onsenn.co

www.onsemi.com 6

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative