ON Semiconductor® ### FDD24AN06LA0-F085 # N-Channel Logic Level PowerTrench® MOSFET 60V, 36A, 24m Ω #### **Features** - $r_{DS(ON)} = 20m\Omega$ (Typ.), $V_{GS} = 5V$, $I_{D} = 36A$ - $Q_g(tot) = 16nC (Typ.), V_{GS} = 5V$ - Low Miller Charge - Low Q_{RR} Body Diode - UIS Capability (Single Pulse and Repetitive Pulse) - Qualified to AEC Q101 - · RoHS Compliant Formerly developmental type 83547 #### **Applications** - Motor / Body Load Control - ABS Systems - Powertrain Management - Injection Systems - DC-DC converters and Off-line UPS - Distributed Power Architectures and VRMs - Primary Switch for 12V and 24V systems #### DRAIN (FLANGE) TO-252AA FDD SERIES # $\textbf{MOSFET Maximum Ratings} \ \, \textbf{T}_{\text{C}} = 25^{\circ} \text{C unless otherwise noted}$ | Symbol | Parameter | Ratings | Units | |-----------------------------------|--|------------|-------| | V_{DSS} | Drain to Source Voltage | 60 | V | | V _{GS} | Gate to Source Voltage | ±20 | V | | | Drain Current | | | | | Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 10V$) | 40 | А | | | Continuous (T _C = 25°C, V _{GS} = 5V) | 36 | А | | ID | Continuous (T _C = 100°C, V _{GS} = 5V) | 25 | А | | | Continuous ($T_A = 25^{\circ}C$, $V_{GS} = 5V$, $R_{\theta JA} = 52^{\circ}C/W$) | 7.1 | А | | | Pulsed | Figure 4 | А | | E _{AS} | Single Pulse Avalanche Energy (Note 1) | 32 | mJ | | | Power dissipation | 75 | W | | P_{D} | Derate above 25°C | 0.5 | W/°C | | T _J , T _{STG} | Operating and Storage Temperature | -55 to 175 | °C | #### **Thermal Characteristics** | $R_{\theta JC}$ | Thermal Resistance Junction to Case TO-252 | 2.0 | °C/W | |-----------------|---|-----|------| | $R_{\theta JA}$ | Thermal Resistance Junction to Ambient TO-252 | 100 | °C/W | | $R_{\theta JA}$ | Thermal Resistance Junction to Ambient TO-252, 1in ² copper pad area | 52 | °C/W | ## **Package Marking and Ordering Information** | Device Marking | Device | Package | Reel Size | Tape Width | Quantity | |-----------------------|--------------|----------|-----------|------------|------------| | FDD24AN06LA0 | FDD24AN06LA0 | TO-252AA | 330mm | 16mm | 2500 units | # **Electrical Characteristics** $T_C = 25^{\circ}C$ unless otherwise noted | Symbol | Parameter | Test Conditions | | Min | Тур | Max | Units | | |---------------------|-----------------------------------|---------------------------|----------------------------------|-----|-----|------|-------|--| | Off Characteristics | | | | | | | | | | B _{VDSS} | Drain to Source Breakdown Voltage | $I_D = 250 \mu A, V_{GS}$ | = 0V | 60 | - | - | V | | | 1 | Zero Gate Voltage Drain Current | $V_{DS} = 50V$ | | - | - | 1 | | | | IDSS | | $V_{GS} = 0V$ | $T_{\rm C} = 150^{\rm o}{\rm C}$ | - | - | 250 | μΑ | | | I_{GSS} | Gate to Source Leakage Current | $V_{GS} = \pm 20V$ | | - | - | ±100 | nA | | #### **On Characteristics** | V _{GS(TH)} | Gate to Source Threshold Voltage | $V_{GS} = V_{DS}$, $I_D = 250\mu A$ | 1 | - | 2 | V | |---------------------|----------------------------------|---|---|-------|-------|---| | r _{DS(ON)} | Drain to Source On Resistance | $I_D = 40A, V_{GS} = 10V$ | - | 0.016 | 0.019 | Ω | | | | $I_D = 36A, V_{GS} = 5V$ | - | 0.020 | 0.024 | | | | | $I_D = 36A, V_{GS} = 5V,$
$T_J = 175$ °C | - | 0.047 | 0.056 | | #### **Dynamic Characteristics** | C _{ISS} | Input Capacitance | \/ OF\/ \/ | 0)/ | - | 1850 | - | pF | |-------------------------------------|----------------------------------|--|-----|-----|------|----|----| | Coss | Output Capacitance | $V_{DS} = 25V, V_{GS} = 0V,$
f = 1MHz | | - | 180 | - | pF | | C _{RSS} | Reverse Transfer Capacitance | | | - | 75 | - | pF | | $Q_{g(TOT)}$ | Total Gate Charge at 5V | $ \begin{array}{c c} V_{GS} = 0V \text{ to } 5V \\ \hline V_{GS} = 0V \text{ to } 1V \\ \hline \\ I_{D} = 36A \\ I_{g} = 1.0\text{mA} \\ \end{array} $ | | 16 | 21 | nC | | | $Q_{g(TH)}$ | Threshold Gate Charge | | - | 1.8 | 2.4 | nC | | | | Gate to Source Gate Charge | | - | 6.3 | - | nC | | | Q _{gs}
Q _{gs2} | Gate Charge Threshold to Plateau | | - | 4.5 | - | nC | | | Q_{gd} | Gate to Drain "Miller" Charge | | | - | 5.0 | - | nC | #### Switching Characteristics $(V_{GS} = 5V)$ | t _{ON} | Turn-On Time | $V_{DD} = 30V, I_{D} = 36A$
$V_{GS} = 5V, R_{GS} = 9.1\Omega$ | - | - | 195 | ns | |---------------------|---------------------|--|---|-----|-----|----| | t _{d(ON)} | Turn-On Delay Time | | - | 12 | - | ns | | t _r | Rise Time | | - | 118 | - | ns | | t _{d(OFF)} | Turn-Off Delay Time | | - | 26 | - | ns | | t _f | Fall Time | | - | 41 | - | ns | | t _{OFF} | Turn-Off Time | | - | - | 101 | ns | #### **Drain-Source Diode Characteristics** | V_{SD} | Source to Drain Diode Voltage | I _{SD} = 36A | - | - | 1.25 | V | |-----------------|-------------------------------|--|---|---|------|----| | | | I _{SD} = 18A | - | - | 1.0 | V | | t _{rr} | Reverse Recovery Time | $I_{SD} = 36A$, $dI_{SD}/dt = 100A/\mu s$ | - | - | 34 | ns | | Q_{RR} | Reverse Recovered Charge | $I_{SD} = 36A$, $dI_{SD}/dt = 100A/\mu s$ | - | - | 30 | nC | Notes: 1: Starting $T_J = 25^{\circ}C$, $L = 80\mu H$, $I_{AS} = 28A$. Figure 1. Normalized Power Dissipation vs Ambient Temperature Figure 2. Maximum Continuous Drain Current vs Case Temperature Figure 3. Normalized Maximum Transient Thermal Impedance Figure 4. Peak Current Capability Figure 5. Forward Bias Safe Operating Area Figure 6. Unclamped Inductive Switching Capability Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature # Typical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature Figure 13. Capacitance vs Drain to Source Voltage Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature Figure 14. Gate Charge Waveforms for Constant Gate Current #### **Test Circuits and Waveforms** Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms #### Thermal Resistance vs. Mounting Pad Area The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. $$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}} \tag{EQ. 1}$$ In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of $P_{\mbox{\scriptsize DM}}$ is complex and influenced by many factors: - Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. - The number of copper layers and the thickness of the board. - 3. The use of external heat sinks. - 4. The use of thermal vias. - 5. Air flow and board orientation. - For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. ON Semiconductor provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the ON Semiconductor device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads. $$R_{\theta JA} = 33.32 + \frac{23.84}{(0.268 + Area)}$$ (EQ. 2) Area in Inches Squared $$R_{\theta JA} = 33.32 + \frac{154}{(1.73 + Area)}$$ (EQ. 3) Area in Centimeters Squared Figure 21. Thermal Resistance vs Mounting Pad Area ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative