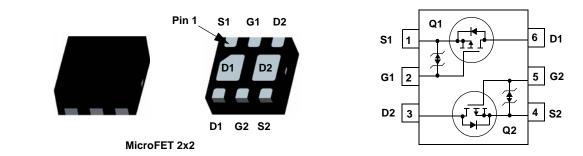


ON Semiconductor® FDMA6023PZT Dual P-Channel PowerTrench® MOSFET -20 V, -3.6 A, 60 mΩ

Features

- Max $r_{DS(on)}$ = 60 m Ω at V_{GS} = -4.5 V, I_D = -3.6 A
- Max r_{DS(on)} = 80 mΩ at V_{GS} = -2.5 V, I_D = -3.0 A
- Max r_{DS(on)} = 110 mΩ at V_{GS} = -1.8 V, I_D = -2.0 A
- Max $r_{DS(on)}$ = 170 m Ω at V_{GS} = -1.5 V, I_D = -1.0 A
- Low Profile-0.55 mm maximum in the new package MicroFET 2x2 mm Thin
- HBM ESD protection level > 2.4 kV typical (Note 3)
- RoHS Compliant
- Free from halogenated compounds and antimony oxides


General Description

This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultraportable applications. It features two independent P-Channel MOSFETs with low on-state resistance for minimum conduction losses. When connected in the typical common source configuration, bi-directional current flow is possible.

The MicroFET 2X2 Thin package offers exceptional thermal performance for it's physical size and is well suited to linear mode applications.

Applications

- Battery protection
- Battery management
- Load switch

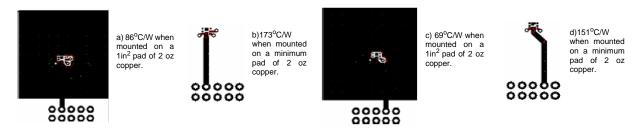
MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			-20	V	
V _{GS}	Gate to Source Voltage			±8	V	
I _D	-Continuous	T _A = 25 °C	(Note 1a)	-3.6	٨	
	-Pulsed			-15	A	
D	Power Dissipation	T _A = 25 °C	(Note 1a)	1.4		
P _D	Power Dissipation	T _A = 25 °C	(Note 1b)	0.7		
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

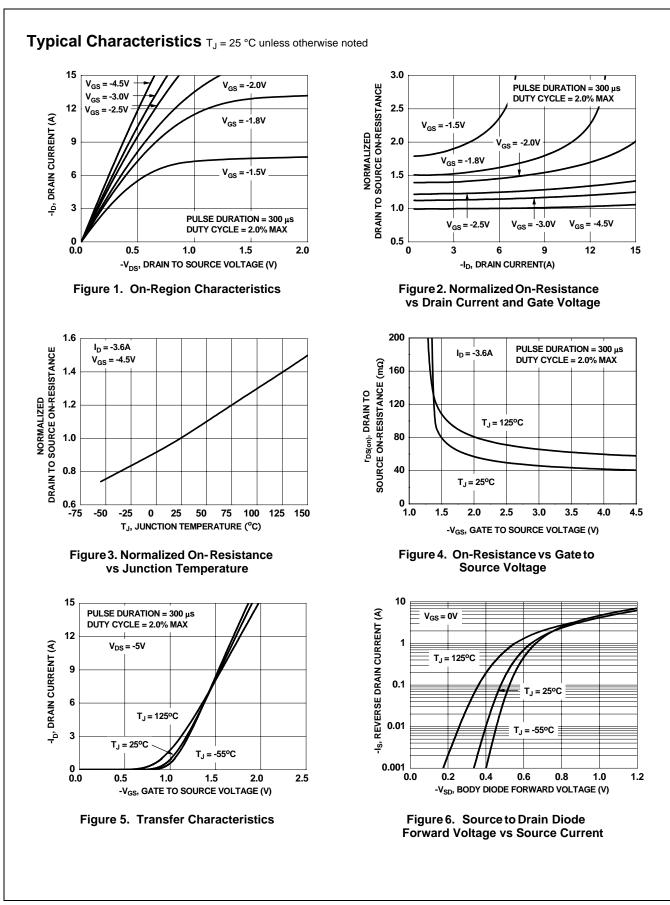
Thermal Characteristics

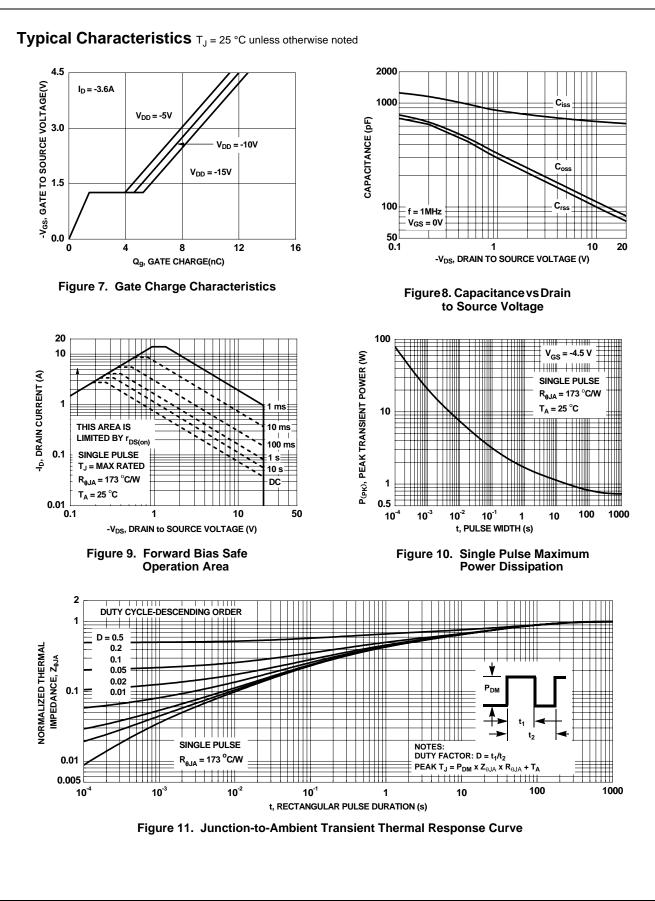
R_{\thetaJA}	Thermal Resistance for Single Operation, Junction to Ambient	(Note 1a)	86	
R_{\thetaJA}	Thermal Resistance for Single Operation, Junction to Ambient	(Note 1b)	173	°C/W
R_{\thetaJA}	Thermal Resistance for Dual Operation, Junction to Ambient	(Note 1c)	69	C/VV
R_{\thetaJA}	Thermal Resistance for Dual Operation, Junction to Ambient	(Note 1d)	151	

Package Marking and Ordering Information

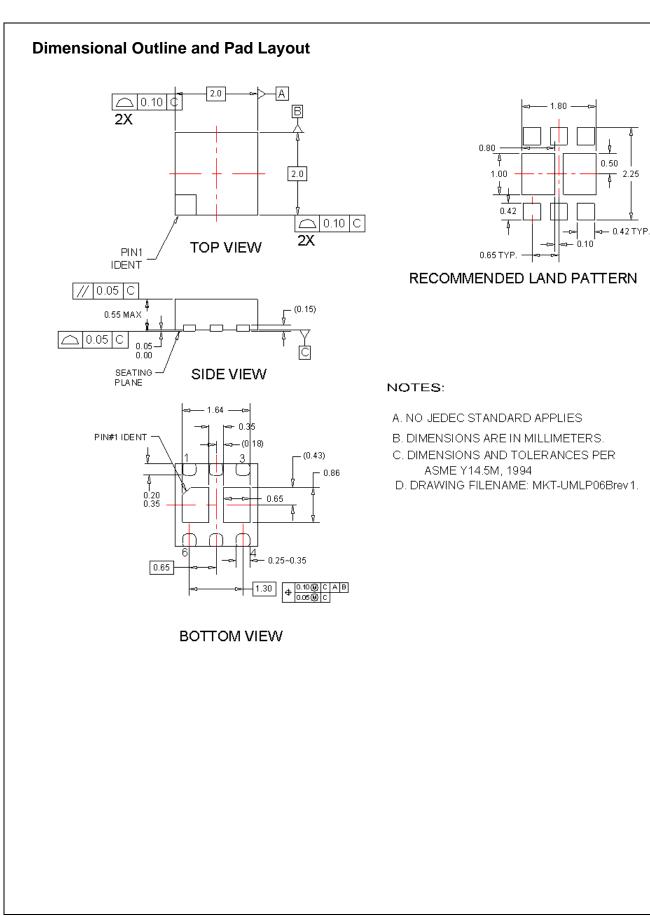

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
623	FDMA6023PZT	MicroFET 2X2 Thin	7 "	8mm	3000 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	acteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \ \mu A, \ V_{GS} = 0 \ V$	-20			V	
ΔΒV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = -250 µA, referenced to 25 °C		-12		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 V, V_{GS} = 0 V$			-1	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μΑ	
On Chara	octeristics						
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = -250 μA	-0.4	-0.5	-1.5	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, referenced to 25 °C		-2.7		mV/°C	
r _{DS(on)}	DS(on) Drain to Source On Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -3.6 \text{ A}$		40	60		
		$V_{GS} = -2.5 \text{ V}, \ I_D = -3.0 \text{ A}$		49	80	mΩ	
		$V_{GS} = -1.8 \text{ V}, I_D = -2.0 \text{ A}$		60	110		
		$V_{GS} = -1.5 \text{ V}, \ I_D = -1.0 \text{ A}$		70	170		
		$V_{GS} = -4.5 \text{ V}, I_D = -3.6 \text{ A}, T_J = 125 ^{\circ}\text{C}$		58	72		
9 _{FS}	Forward Transconductance	V _{DD} = -5 V, I _D = -3.6 A		15		S	
Dynamic	Characteristics						
C _{iss}	Input Capacitance	V 40.V.V 0.V		665	885	pF	
C _{oss}	Output Capacitance	V _{DS} = -10 V, V _{GS} = 0 V, f = 1 MHz		115	155	pF	
C _{rss}	Reverse Transfer Capacitance			100	150	pF	
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time			13	23	ns	
t _r	Rise Time	V_{DD} = -10 V, I _D = -3.6 A, V _{GS} = -4.5 V, R _{GEN} = 6 Ω		11	20	ns	
t _{d(off)}	Turn-Off Delay Time			75	120	ns	
t _f	Fall Time			47	75	ns	
Qg	Total Gate Charge	$V_{GS} = 0 V \text{ to } -4.5 V$ V _{DD} = -10 V,		12	17	nC	
Q _{gs}	Gate to Source Charge	$V_{DD} = -10 \text{ V},$ $I_{D} = -3.6 \text{ A}$		1.4		nC	
Q _{gd}	Gate to Drain "Miller" Charge	1 <u>0</u> = 0.0 //		5.2		nC	
Drain-So	urce Diode Characteristics						
I _S	Maximum Continuous Drain-Source Diode Forward Current				-1.1	Α	
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = -1.1 A (Note 2)		-0.7	-1.2	V	
t _{rr}	Reverse Recovery Time			33	53	ns	
- rr		— I _F = -3.6 A, di/dt = 100 A/μs					


Electrical Characteristics T_J = 25 °C unless otherwise noted


Notes:

- 1. R_{0,JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0,JC} is guaranteed by design while R_{0,JA} is determined by the user's board design.
 - (a) R_{0JA}= 86 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single operation.
 - (b) $R_{\theta JA}$ = 173 °C/W when mounted on a minimum pad of 2 oz copper. For single operation.
 - (c) $R_{BJA} = 69 \text{ °C/W}$ when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For dual operation.
 - (d) $R_{\theta JA}$ = 151 °C/W when mounted on a minimum pad of 2 oz copper. For dual operation.


- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

www.onsemi.com 5 FDMA6023PZT Dual P-Channel PowerTrench® MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative