MOSFET, Dual N-Channel, POWERTRENCH[®]

Q1: 30 V, 11.6 m Ω ; Q2: 30 V, 6.4 m Ω

General Description

This device includes two specialized N–Channel MOSFETs in a dual Power33 ($3mm \times 3mm$ MLP) package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous MOSFET (Q2) have been designed to provide optimal power efficiency.

Features

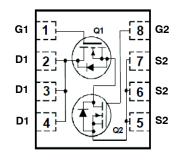
Q1: N-Channel

- Max $r_{DS(on)} = 11.6 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 10 \text{ A}$
- Max $r_{DS(on)} = 13.3 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 9 \text{ A}$ Q1: N-Channel
- Max $r_{DS(on)} = 6.4 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 16 \text{ A}$
- Max $r_{DS(on)} = 7.0 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 15 \text{ A}$
- RoHS Compliant

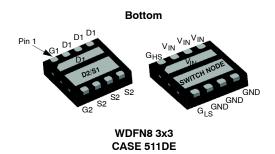
Applications

- Mobile Computing
- Mobile Internet Devices
- General Purpose Point of Load

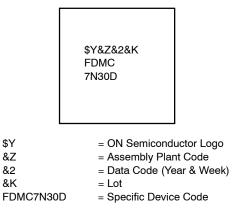
MOSFET MAXIMUM RATINGS (T_C = 25° C unless otherwise noted)


Symbol	Parameter	Q1	Q2	Unit
V _{DS}	Drain to Source Voltage	30	30	V
V _{GS}	Gate to Source Voltage (Note 4)	±12	±12	V
۱ _D	Drain Current: - Continuous, $T_C = 25^{\circ}C$ (Note 6) - Continuous, $T_C = 100^{\circ}C$ (Note 6) - Continuous, $T_A = 25^{\circ}C$	29 18 10	46 29 16	A
	(Note 1a) – Pulsed (Note 5)	(Note 1a) 113	(Note 1b) 302	
E _{AS}	Single Pulse Avalanche Energy (Note 3)	24	54	mJ
PD	Power Dissipation for Single Operation: $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$	1.9 (Note 1a) 0.7 (Note 1c)	2.5 (Note 1b) 1.0 (Note 1d)	V
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to	+150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®


www.onsemi.com

Dual N-Channel MOSFET

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Quantity
FDMC7N30D	FDMC007N30D	WDFN-8 (Power 33)	3000/Tape&Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Symbol	Parameter	Q1	Q2	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case	8.2	6.1	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	65 (Note 1a)	50 (Note 1b)	
		180 (Note 1c)	125 (Note 1d)	

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Condition	Туре	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS						
BV _{DSS}	Drain to Source Breakdown Voltage	$ I_D = 250 \; \mu \text{A}, \; V_{GS} = 0 \; \text{V} \\ I_D = 250 \; \mu \text{A}, \; V_{GS} = 0 \; \text{V} $	Q1 Q2	30 30			V
$\Delta BV_{DSS} / \Delta T_J$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25°C I_D = 250 µA, referenced to 25°C	Q1 Q2		15 16		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24$ V, $V_{GS} = 0$ V	Q1 Q2			1 1	μΑ
I _{GSS}	Gate to Source Leakage Current, Forward	$V_{GS}=\pm 12~V,~V_{DS}=0~V$	Q1 Q2			±100 ±100	nA

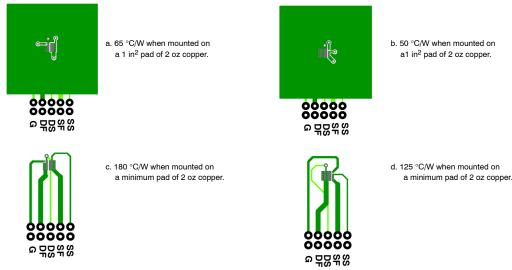
ON CHARACTERISTICS

V _{GS(th)}	Gate to Source Threshold Voltage	V_{GS} = $V_{DS},~I_D$ = 250 μA V_{GS} = $V_{DS},~I_D$ = 250 μA	Q1 Q2	1.0 1.0	1.3 1.8	3.0 3.0	V
${\Delta V_{GS(th)} \over /\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$\begin{array}{l} I_D = 250 \; \mu \text{A}, \; \text{referenced to} \; 25^\circ \text{C} \\ I_D = 250 \; \mu \text{A}, \; \text{referenced to} \; 25^\circ \text{C} \end{array}$	Q1 Q2		-4 -4		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	$ \begin{array}{l} V_{GS} = 10 \text{ V}, \text{ I}_{D} = 10 \text{ A} \\ V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 9 \text{ A} \\ V_{GS} = 10 \text{ V}, \text{ I}_{D} = 10 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C} \end{array} $	Q1		7.7 8.9 10.8	11.6 13.3 16.3	mΩ
r _{DS(on)}	Static Drain to Source On Resis- tance	$ \begin{array}{l} V_{GS} = 10 \text{ V}, \text{ I}_{D} = 16 \text{ A} \\ V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 15 \text{ A} \\ V_{GS} = 10 \text{ V}, \text{ I}_{D} = 16 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C} \end{array} $	Q2		4.4 5.4 6.2	6.4 7.0 9.0	mΩ
9 _{FS}	Forward Transconductance	$V_{DD} = 5 \text{ V}, \text{ I}_{D} = 10 \text{ A}$ $V_{DD} = 5 \text{ V}, \text{ I}_{D} = 16 \text{ A}$	Q1 Q2		46 70		S

DYNAMIC CHARACTERISTICS

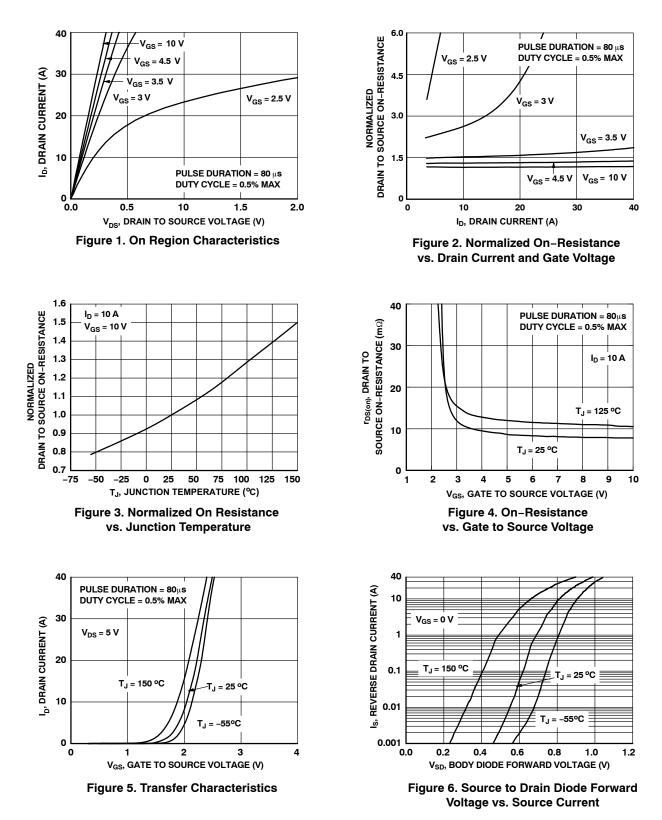
C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	Q1 Q2		792 1685	1110 2360	pF
C _{oss}	Output Capacitance		Q1 Q2		230 467	325 655	pF
C _{rss}	Reverse Transfer Capacitance		Q1 Q2		20 36	30 50	pF
R _g	Gate Resistance		Q1 Q2	0.1 0.1	2.0 1.2	4.0 2.4	Ω

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

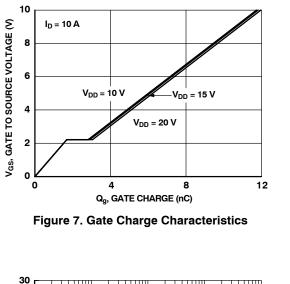

Symbol	Parameter	Test Condition	Туре	Min	Тур	Max	Unit
WITCHING	CHARACTERISTICS	·					
t _{d(on)}	Turn-On Delay Time	Q1 V _{DD} = 15 V, I _D = 10 A,	Q1 Q2		7 10	14 20	ns
t _r	Rise Time	V _{GS} = 10 V, R _{GEN} = 6 Ω Q2	Q1 Q2		2 3	10 10	ns
t _{d(off)}	Turn-Off Delay Time	V _{DD} = 15 V, I _D = 16 A, V _{GS} = 10 V, R _{GEN} = 6 Ω	Q1 Q2		19 24	33 39	ns
t _f	Fall Time		Q1 Q2		2 3	10 10	ns
Q _{g(TOT)}	Total Gate Charge		Q1 Q2		12 24	17 34	nC
			Q1 Q2		5.5 11	7.7 16	nC
Q _{gs}	Gate to Source Charge	Q2 V _{DD} = 15 V, I _D = 16 A	Q1 Q2		1.7 4.4		nC
Q _{gd}	Gate to Drain "Miller" Charge		Q1 Q2		1.3 2.7		nC

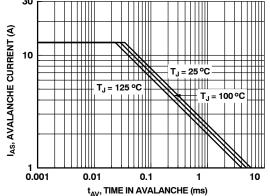
DRAIN-SOURCE DIODE CHARACTERISTICS

V _{SD}	Source-Drain Diode Forward Voltage	$ \begin{array}{l} V_{GS} = 0 \; V, \; I_S = 10 \; A \; (Note \; 2) \\ V_{GS} = 0 \; V, \; I_S = 1.5 \; A \; (Note \; 2) \\ V_{GS} = 0 \; V, \; I_S = 16 \; A \; (Note \; 2) \\ V_{GS} = 0 \; V, \; I_S = 2 \; A \; (Note \; 2) \end{array} $	Q1 Q1 Q2 Q2	0.85 0.75 0.83 0.73	1.2 1.2 1.2 1.2	V
t _{rr}	Reverse Recovery Time	Q1 I _F = 10 A, di/dt = 100 A/µs	Q1 Q2	17 27	31 42	ns
Q _{rr}	Reverse Recovery Charge	Q2 I _F = 16 A, di/dt = 100 A/µs	Q1 Q2	5 10	10 20	nC


NOTES:

1. R_{0JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. R_{0CA} is determined by the user's board design.




- Pulse Test: Pulse Width < 300 uS, Duty cycle < 2.0%.
 Q1: E_{AS} of 24 mJ is based on starting T_J = 25°C, L = 3 mH, I_{AS} = 4 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 13 A. Q2: E_{AS} of 54 mJ is based on starting T_J = 25°C, L = 3 mH, I_{AS} = 6 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 22 A.
 As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.
 Pulsed Id please refer to Figure 11 and Figure. 24 SOA graph for more details.
- 6. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS (Q1 N-CHANNEL)



TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) (continued)

Operating Area

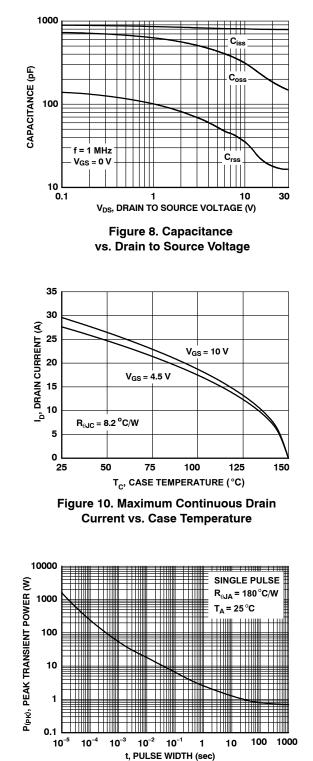


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

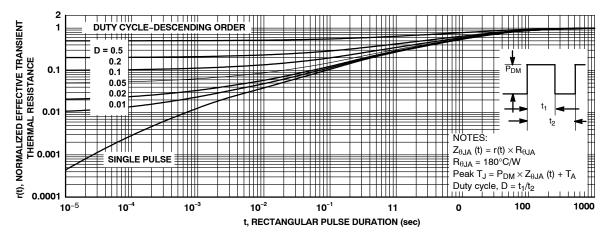
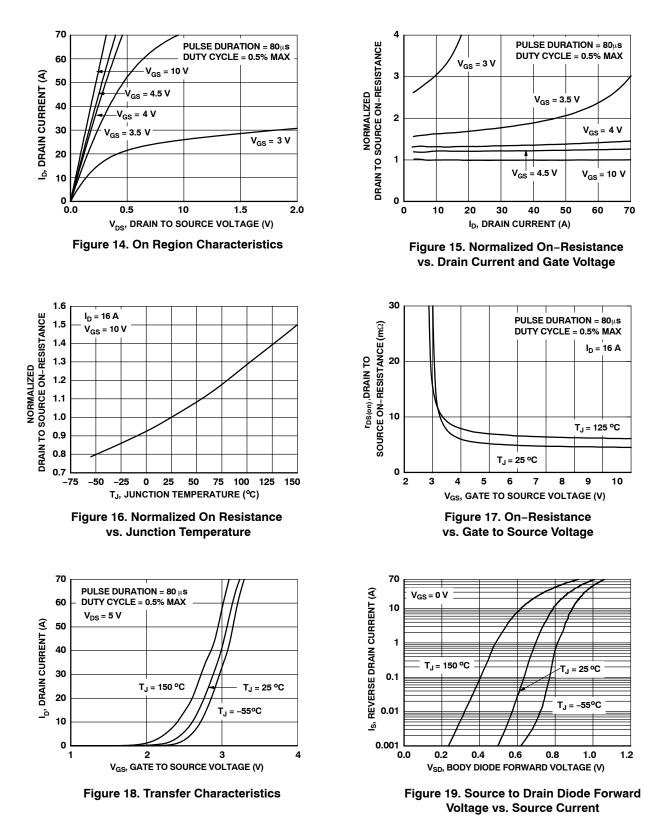



Figure 13. Junction-to-Ambient Transient Thermal Response Curve

TYPICAL CHARACTERISTICS (Q2 N-CHANNEL)

TYPICAL CHARACTERISTICS (Q2 N-CHANNEL) (continued)

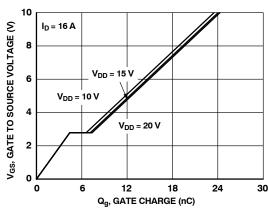
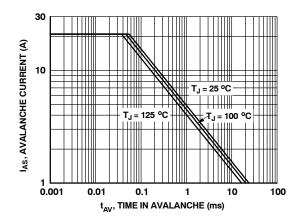
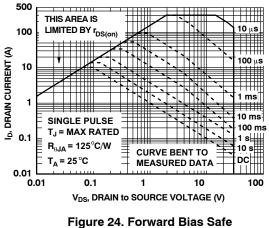




Figure 20. Gate Charge Characteristics

Operating Area

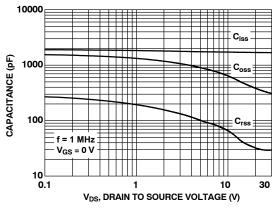


Figure 21. Capacitance vs. Drain to Source Voltage

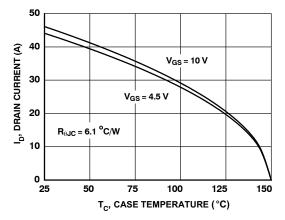


Figure 23. Maximum Continuous Drain Current vs. Case Temperature

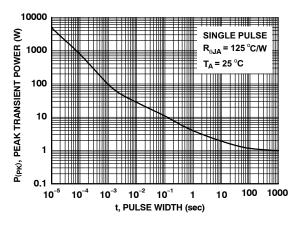


Figure 25. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (Q2 N-CHANNEL) (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

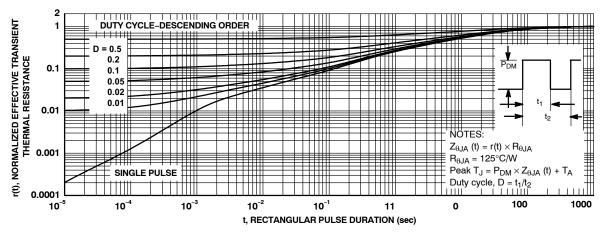


Figure 26. Junction-to-Ambient Transient Thermal Response Curve

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and or other countries.

2.550 -

ł

1.155

لـ 0.089 0.389

(8X) 0.450

t

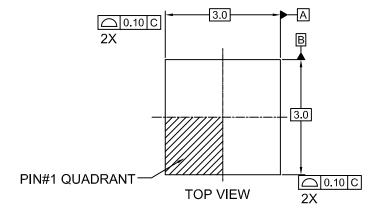
ON

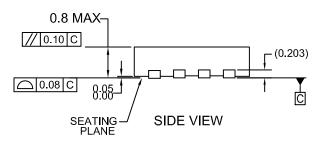
WDFN8 3x3, 0.65P CASE 511DE ISSUE O

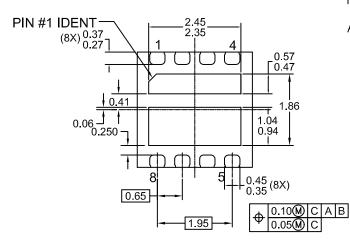
DATE 31 AUG 2016

ŧ

1 044


0.566


0.450


(8X)

- 0.325 0.650

RECOMMENDED LAND PATTERN

BOTTOM VIEW

NOTES:

- A. DOES NOT CONFORM TO JEDEC REGISTRATION MO-229
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

DOCUMENT NUMBER:	98AON13621G	Electronic versions are uncontrolled except w	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. F versions are uncontrolled except when stamp "CONTROLLED COPY" in red.	
NEW STANDARD:			
DESCRIPTION:	WDFN8 3X3, 0.65P		PAGE 1 OF 2

DOCUMENT NUMBER: 98AON13621G

PAGE 2 OF 2

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION FROM FAIRCHILD MLP08N TO ON SEMICONDUCTOR. REQ. BY B. MARQUIS.	31 AUG 2016

ON Semiconductor and with a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the BSCILLC product call create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use payers that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit Phone: 421 33 790 2910

For additional information, please contact your local

Sales Representative