

FDMC0223S, FDMC0223S-P

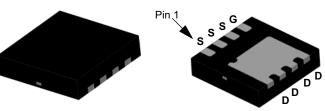
N-Channel Power Trench® SyncFETTM ' \$'V, 14.8 A, 6.0 mΩ

Features

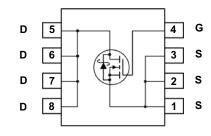
- Max $r_{DS(on)}$ = 6.0 m Ω at V_{GS} = 10 V, I_D = 14.8 A
- Max $r_{DS(on)}$ = 7.1 m Ω at V_{GS} = 4.5 V, I_D = 12.4 A
- High performance technology for extremely low r_{DS(on)}
- Termination is Lead-free and RoHS Compliant

General Description

This FDMC0223S is produced using ON Semiconductor's advanced Power Trench® process that has been especially tailored to minimize the on-state resistance. This device is well suited for Power Management and load switching applications common in Notebook Computers and Portable Battery packs.


Applications

- DC DC Buck Converters
- Notebook battery power mangement



■ Load switch in Notebook

Bottom Top

MOSFET Maximum Ratings TA = 25 °C unless otherwise noted

Symbol	Parame	Ratings	Units		
V _{DS}	Drain to Source Voltage			30	V
V _{GS}	Gate to Source Voltage			±20	V
I _D	Drain Current -Continuous	T _C = 25 °C		18	
	-Continuous	T _A = 25 °C	(Note 1a)	14.8	Α
	-Pulsed			45	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	60	mJ
P_{D}	Power Dissipation	T _A = 25 °C	(Note 1a)	2.3	W
T _J , T _{STG}	Operating and Storage Junction Tempera	ture Range		-55 to +150	°C

Thermal Characteristics

R _{θJA} Thermal Resistance, Junction to Ambient	(Note 1a)	53	°C/W
--	-----------	----	------

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC0223S	FDMC0223S,	MLP 3.3X3.3	13 "	12 mm	3000 units
	FDMC0223S-P				

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV_{DSS}	Drain to Source Breakdown Voltage	I _D = 1 mA, V _{GS} = 0 V	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I _D = 10 mA, referenced to 25 °C		12		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 20 V, V _{GS} = 0 V			1	mA
I _{GSS}	Gate to Source Leakage Current	V _{GS} = 20 V, V _{DS} = 0 V			100	nA

On Characteristics (Note 2)

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$	1.2	1.6	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 10 mA, referenced to 25 °C		-6		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 14.8 A		5.0	6.0	mΩ
		$V_{GS} = 4.5 \text{ V}, I_D = 12.4 \text{ A}$		6.1	7.1	
		V _{GS} = 10 V, I _D = 14.8 A T _J = 125 °C		5.9	9.0	
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 14.8 A		78		S

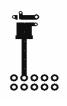
Dynamic Characteristics

C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	1895	2520	pF
C _{oss}	Output Capacitance		770	1025	pF
C _{rss}	Reverse Transfer Capacitance		85	130	pF
R _q	Gate Resistance		1.2	3.2	Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		11	21	ns
t _r	Rise Time	V _{DD} = 15 V, I _D = 14.8 A,	4	10	ns
t _{d(off)}	Turn-Off Delay Time	V_{DD} = 15 V, I_{D} = 14.8 A, V_{GS} = 10 V, R_{GEN} = 6 Ω	26	42	ns
t _f	Fall Time		3	10	ns
Qg	Total Gate Charge	V _{GS} = 0 V to 10 V	30	42	nC
Qg	Total Gate Charge	$V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $V_{DD} = 15 \text{ V}$	14	20	nC
Q_{gs}	Gate to Source Gate Charge	I _D = 14.8 A	5.3		nC
Q _{qd}	Gate to Drain "Miller" Charge		4.0		nC

Drain-Source Diode Characteristics


V _{SD}	Source to Drain Dioge Forward Voltage	V _{GS} = 0 V, I _S = 14.8 A (Note 2)	0.8	1.3	V
		$V_{GS} = 0 \text{ V}, I_S = 1.9 \text{ A}$ (Note 2)	0.5	1.2	v
t _{rr}	Reverse Recovery Time	I _F = 14.8 A, di/dt = 300 A/μs	29	45	ns
Q _{rr}	Reverse Recovery Charge	1F - 14.6 A, αι/αι - 300 A/μs	28	44	nC

Notes

^{1.} $R_{\theta,JA}$ is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,CA}$ is determined by the user's board design.

a. 53 °C/W when mounted on a 1 in² pad of 2 oz copper.

b. 125 °C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- 3. E_{AS} of 60 mJ is based on starting T_J = 25 °C, L = 1 mH, I_{AS} = 11 A, V_{DD} = 23 V, V_{GS} = 10 V. 100% test at L = 3 mH, I_{AS} = 4.8 A.

Typical Characteristics T_J = 25 °C unless otherwise noted

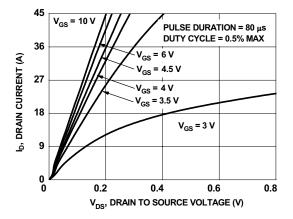


Figure 1. On-Region Characteristics

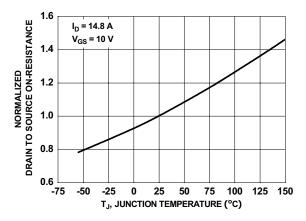


Figure 3. Normalized On-Resistance vs. Junction Temperature

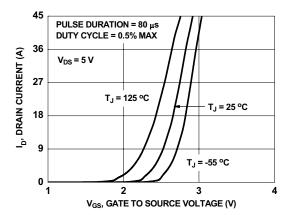


Figure 5. Transfer Characteristics

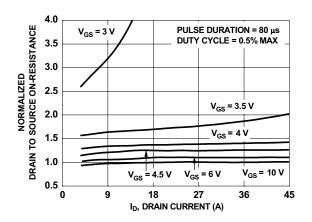


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

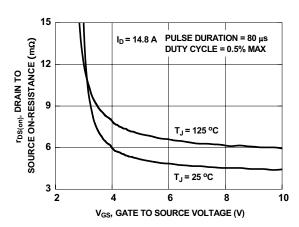


Figure 4. On-Resistance vs. Gate to Source Voltage

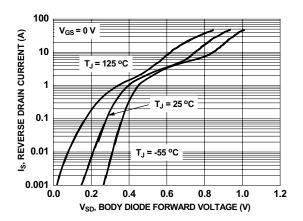


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

Typical Characteristics $T_J = 25$ °C unless otherwise noted

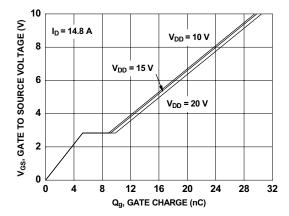


Figure 7. Gate Charge Characteristics

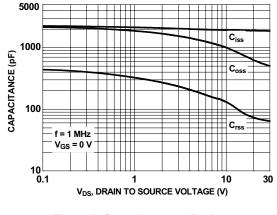


Figure 8. Capacitance vs.Drain to Source Voltage

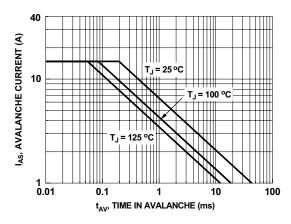


Figure 9. Unclamped Inductive Switching Capability

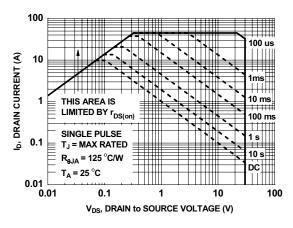


Figure 10. Forward Bias Safe Operating Area

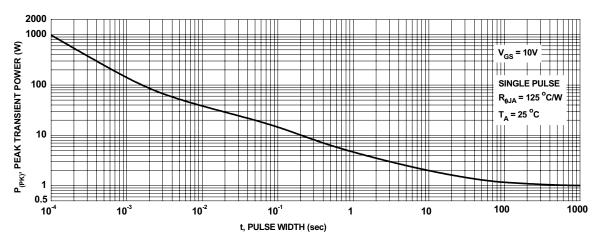


Figure 11. Single Pulse Maximum Power Dissipation

Typical Characteristics T_J = 25 °C unless otherwise noted

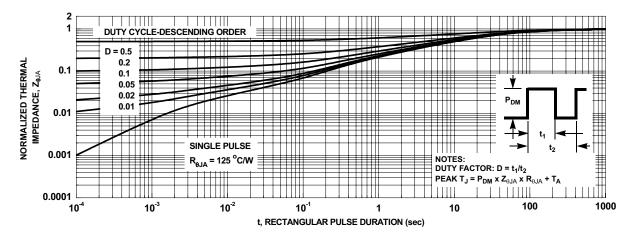


Figure 12. Junction-to-Ambient Transient Thermal Response Curve

Typical Characteristics (continued)

ON Semiconductor's SyncFET process embeds a Schottky diode in parallel with PowerTrench MoSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 13 shows the reverses recovery characteristic of the FDMC0223S.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

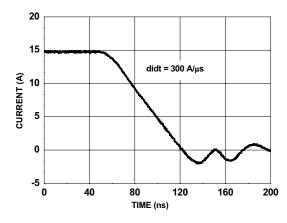
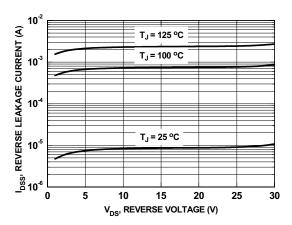
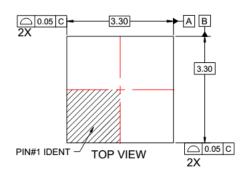
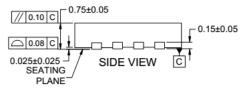
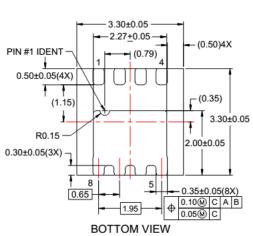
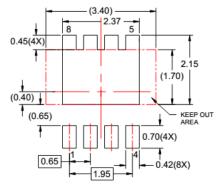


Figure 13. SyncFET $^{\text{TM}}$ Body Diode Reverse Recovery Characteristic


Figure 14. SyncFET[™] Body Diode Reverses Leakage vs. Drain-Source Voltage

Dimensional Outline and Pad Layout

RECOMMENDED LAND PATTERN

NOTES:

- A. DOES NOT CONFORM TO JEDEC REGISTRATION MO-229
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- E. DRAWING FILENAME: MKT-MLP08Srev3.

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, spe-cifically the warranty therein, which covers ON Semiconductor products.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative