P-Channel Power Trench® MOSFET

-20 V, -75 A, 4.9 m Ω

General Description

This P-Channel MOSFET is produced using ON Semiconductor's advanced PowerTrench® process that has been optimized for $r_{DS(on)}$, switching performance and ruggedness.

Features

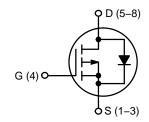
- Max $r_{DS(on)} = 4.9 \text{ m}\Omega$ at $V_{GS} = -4.5 \text{ V}$, $I_D = -18 \text{ A}$
- Max $r_{DS(on)} = 16.4 \text{ m}\Omega$ at $V_{GS} = -1.8 \text{ V}$, $I_D = -9 \text{ A}$
- High Performance Trench Technology for Extremely Low r_{DS(on)}
- High Power and Current Handling Capability in a Widely Used Surface Mount Package
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

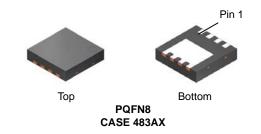
Applications

- Load Switch
- Battery Management
- Power Management
- Reverse Polarity Protection

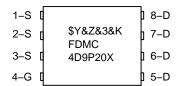
MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Ratings	Units	
V _{DS}	Drain to Source Voltage	-20	V	
V _{GS}	Gate to Source Voltage	±12	V	
I _D		-75 -47 -18 -335	Α	
E _{AS}	Single Pulse Avalanche Energy (Note 3)	54	mJ	
P _D	Power Dissipation: T _C = 25°C T _A = 25°C (Note 1a)	40 2.4	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to +150	°C	


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


ON Semiconductor®

www.onsemi.com


V _{DS}	R _{DS(ON)} MAX	I _D MAX
	4.9 mΩ @ –4.5 V	
–20 V	6.5 mΩ @ -2.5 V	–75 A
	16.4 mΩ @ –1.8 V	

P-Channel MOSFET

MARKING DIAGRAM

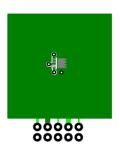
\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Data Code (Year & Week) &K = Lot FDMC4D9P20X8 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	FDMC4D9P20X8	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case	3.1	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	53	


ELECTRICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
OFF CHARACT	ERISTICS				•	•
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-20			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I_D = -250 μ A, Referenced to 25 $^{\circ}$ C		-15		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -16 V, V _{GS} = 0 V			-1	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±12 V, V _{DS} = 0 V			±100	nA
ON CHARACTE	RISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-0.4	-0.7	-1.6	V
$\Delta V_{GS(th)} \ \Delta T_J$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \mu\text{A}$, referenced to 25 °C		4		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -18 \text{ A}$		3.3	4.9	mΩ
		V _{GS} = -2.5 V, I _D = -11 A		4.1	6.5	
		$V_{GS} = -1.8 \text{ V}, I_D = -9 \text{ A}$		6.2	16.4	
		$V_{GS} = -4.5 \text{ V}, I_D = -18 \text{ A}, T_J = 125 ^{\circ}\text{C}$		4.5	6.8	
9FS	Forward Transconductance	$V_{DS} = -5 \text{ V}, I_D = -18 \text{ A}$		113		S
OYNAMIC CHA	RACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		7535	10550	pF
C _{oss}	Output Capacitance			1100	1540	pF
C _{rss}	Reverse Transfer Capacitance			1040	1455	pF
R_g	Gate Resistance		0.1	4.5	10	Ω
WITCHING CH	IARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -10 \text{ V}, I_{D} = -18 \text{ A},$		13	23	ns
t _r	Rise Time	$V_{GS} = -4.5 \text{ V}, R_G = 6 \Omega$		17	31	ns
t _{d(off)}	Turn-Off Delay Time			312	499	ns
t _f	Fall Time			176	282	ns
Qg	Total Gate Charge	$V_{GS} = 0$ V to -4.5 V, $V_{DD} = -10$ V, $I_D = -18$ A		78	109	nC
		$V_{GS} = 0$ V to -2.5 V, $V_{DD} = -10$ V, $I_D = -18$ A		50	70	nC
Q _{gs}	Gate to Source Charge	$V_{DD} = -10 \text{ V}, I_D = -18 \text{ A}$		12		nC
Q_{gd}	Gate to Drain "Miller" Charge	$V_{DD} = -10 \text{ V}, I_D = -18 \text{ A}$	-	24		nC
DRAIN-SOURC	E DIODE CHARACTERISTICS					
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = -18 A (Note 2)		-0.7	-1.2	V
		V _{GS} = 0 V, I _S = -2 A (Note 2)		-0.6	-1.2	1
t _{rr}	Reverse Recovery Time	$I_S = -18 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		41	66	ns
Q _{rr}	Reverse Recovery Charge	1		22	35	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta CA}$ is determined by the user's board design.

NOTES:

a) 53 $^{\circ}\text{C/W}$ when mounted on a 1 in² pad of 2 oz copper.

b) 125 $^{\circ}\text{C/W}$ when mounted on a minimum pad of 2 oz copper.

- Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0 %
 E_{AS} of 54 mJ is based on starting T_J = 25 C, L = 3 mH, I_{AS} = -6 A, V_{DD} = 20 V, V_{GS} = -10 V.
 Pulsed Id please refer to Fig 11 SOA graph for more details.
 Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC4D9P20X8	FDMC4D9P20X8	PQFN8 (Pb Free)	13"	12 mm	3000 Units

TYPICAL CHARACTERISTICS

(T_{.1} = 25 °C unless otherwise noted)

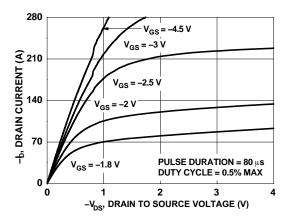


Figure 1. On-Region Characteristics

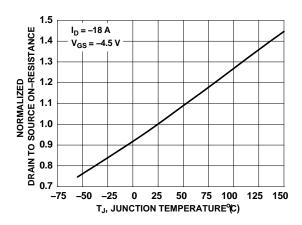


Figure 3. Normalized On–Resistance vs Junction Temperature

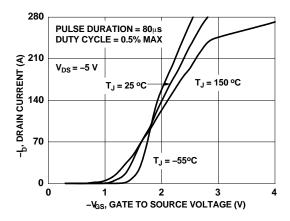


Figure 5. Transfer Characteristics

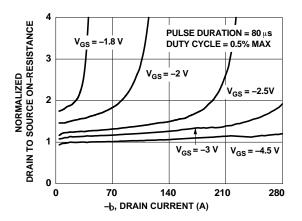


Figure 2. Normalized On–Resistance vs Drain Currentand Gate Voltage

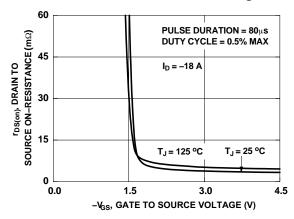


Figure 4. On–Resistance vs Gate to Source Voltage

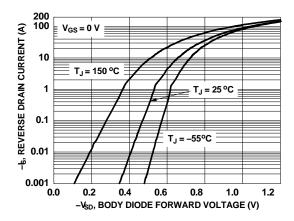


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

TYPICAL CHARACTERISTICS

(T_J = 25 °C unless otherwise noted)

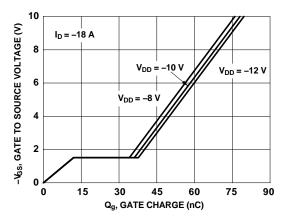
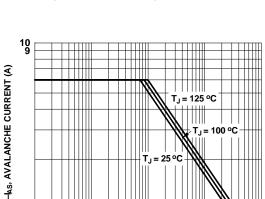



Figure 7. Gate Charge Characteristics

1 <u></u>

Figure 9. Unclamped Inductive Switching Capability

t_{AV}, TIME IN AVALANCHE (ms)

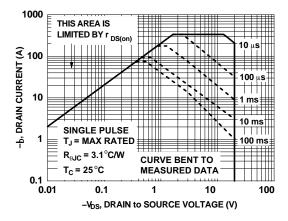


Figure 11. Forward Bias Safe Operating Area

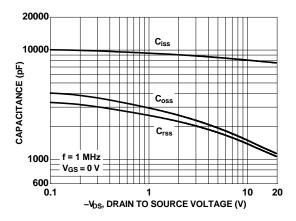


Figure 8. Capacitance vs Drain to Source Voltage

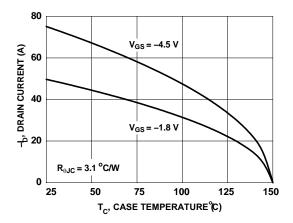


Figure 10. Maximum Continuous Drain Current vs Case Temperature

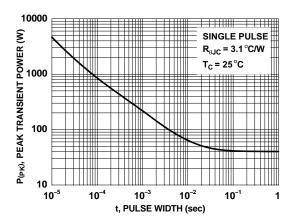


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS

(T_J = 25 °C unless otherwise noted)

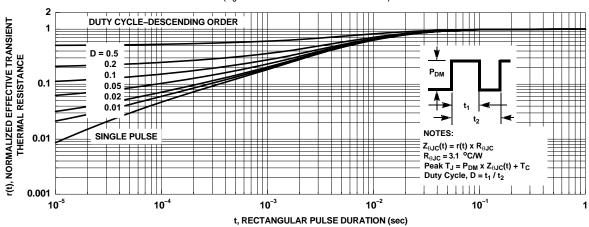
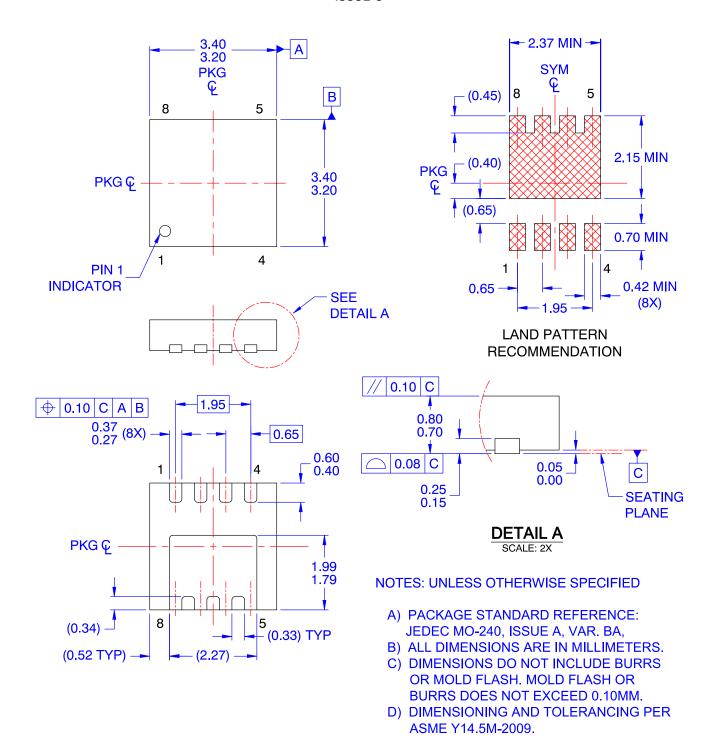



Figure 13. Junction-to-Case Transient Thermal Response Curve

PQFN8 3.3X3.3, 0.65P CASE 483AX ISSUE O

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnif

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative