MOSFET – N-Channel, POWERTRENCH[®], Dual

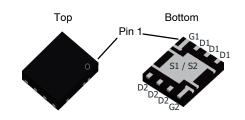
30 V, 167 A, 1.0 m Ω

General Description

This package integrates two N-Channel devices connected internally in common-source configuration. This enables very low package parasitics and optimized thermal path to the common source pad on the bottom. Provides a very small footprint (5 x 6 mm) for higher power density.

Features

- Common Source Configuration to Eliminate PCB Routing
- Large Source Pad on Bottom of Package for Enhanced Thermals
- Max $r_{DS(on)} = 1.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 38 \text{ A}$
- Max $r_{DS(on)} = 1.3 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 33 \text{ A}$
- Ideal for Flexible Layout in Secondary Side Synchronous Rectification
- 100% UIL Tested
- This Device is Pb-Free and is RoHS Compliant


Applications

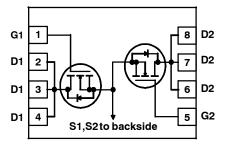
- Isolated DC-DC Synchronous Rectifiers
- Common Ground Load Switches

ON Semiconductor®

www.onsemi.com

PQFN8 5X6, 1.27P CASE 483AS

MARKING DIAGRAM


\$Y&Z&3&K FDMD 8630

&Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Numeric Date Code

&K = Lot Code

FDMD8630 = Specific Device Code

PIN CONFIGURATION

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MOSFET MAXIMUM RATINGS T_A = 25°C Unless Otherwise Noted

Symbol	Parameter	Ratings	Units
VDS	Drain to Source Voltage	30	V
Vgs	Gate to Source Voltage	±20	V
I _D	Drain Current -Continuous - T _C = 25°C (Note 5)	167	А
	-Continuous - T _C =100°C (Note 5)	106	1
	-Continuous - T _A = 25°C (Note 1a)	38	1
	-Pulsed - (Note 4)	1178	
Eas	Single Pulse Avalanche Energy (Note 3)	726	mJ
P _D	Power Dissipation for Single Operation T _C = 25 °C	43	W
. 6	Power Dissipation for Single Operation T _A = 25 °C (Note 1a)	2.3]
ТJ, Tsтg	Operating and Storage Junction Temperature Range	-55 to +150	°C

THERMAL CHARACTERISTICS

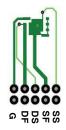
Symbol	Parameter	Ratings	Unit
RеJC	Thermal Resistance, Junction to Case	2.9	°C/W
RеJA	Thermal Resistance, Junction to Ambient (Note 1a)	55	

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMD8630	FDMD8630	Power 5 x 6	13"	12 mm	3000 Units

ELECTRICAL CHARACTERISTICS $T_J = 25^{\circ}C$ Unless Otherwise Noted

TERISTICS Train to Source Breakdown Voltage reakdown Voltage Temperature	$I_D = 250 \mu A, V_{GS} = 0 V$	30		1	·
reakdown Voltage Temperature	$I_D = 250 \mu A, V_{GS} = 0 V$	30			
		50			V
coefficient	I _D = 250 μA, referenced to 25°C		15		mV/°C
ero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μΑ
ate to Source Leakage Current, orward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
ERISTICS			•		
ate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.0	1.6	3.0	V
ate to Source Threshold Voltage emperature Coefficient	I_D = 250 μ A, referenced to 25°C		-6		mV/°C
tatic Drain to Source On Resistance	V _{GS} = 10 V, I _D = 38 A		0.6	1.0	mΩ
	V _{GS} = 4.5 V, I _D = 33 A		0.8	1.3	1
	$V_{GS} = 4.5 \text{ V}, I_D = 33 \text{ A}, T_J = 125^{\circ}\text{C}$		0.9	1.5	1
orward Transconductance	V _{DD} = 5 V, I _D = 38 A		281		S
ARACTERISTICS			•		
nput Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz		7090	9930	pF
Output Capacitance	7		2025	2835	pF
leverse Transfer Capacitance			212	300	pF
ate Resistance	1	0.1	1.9	3.8	Ω
ia ia e	erward ERISTICS ate to Source Threshold Voltage ate to Source Threshold Voltage emperature Coefficient atic Drain to Source On Resistance erward Transconductance ARACTERISTICS put Capacitance utput Capacitance everse Transfer Capacitance	Threshold Voltage atte to Source On Resistance	Threshold Voltage atte to Source On Resistance	The property of the property	ERISTICS ate to Source Threshold Voltage $V_{GS} = V_{DS}$, $I_{D} = 250$ μA 1.0 1.6 3.0 ate to Source Threshold Voltage emperature Coefficient $I_{D} = 250$ μA, referenced to 25°C -6 -6 atic Drain to Source On Resistance $V_{GS} = 10$ V, $I_{D} = 38$ A 0.6 1.0 $V_{GS} = 4.5$ V, $I_{D} = 33$ A 0.8 1.3 $V_{GS} = 4.5$ V, $I_{D} = 33$ A, $V_{D} = 125$ °C 0.9 1.5 Drivard Transconductance $V_{DD} = 5$ V, $I_{D} = 38$ A 281 ARACTERISTICS $V_{DS} = 15$ V, $V_{GS} = 0$ V, $V_{CS} = 0$ V,


ELECTRICAL CHARACTERISTICS T_J = 25°C Unless Otherwise Noted (continued)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
SWITCHIN	G CHARACTERISTICS	•			•		•
t _{d(on)}	Turn-On Delay Time	V _{DD} = 15 V, I _D = 38 A			14	26	ns
t _r	Rise Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6$	ο Ω		15	27	ns
t _{d(off)}	Turn-Off Delay Time	1			66	105	ns
t _f	Fall Time]			24	39	ns
Q _{g(TOT)}	Total Gate Charge	V _{GS} = 0 V to 10 V	V _{DD} = 15 V I _D = 38 A		97	142	nC
Q _{g(TOT)}	Total Gate Charge	V _{GS} = 0 V to 4.5 V	- ID - 35 / C		46	74	nC
Q _{gs}	Gate to Source Gate Charge				17		nC
Q_{gd}	Gate to Drain "Miller" Charge	1			12		nC
DRAIN-SO	URCE DIODE CHARACTERISTICS						
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 38 A (Note 2)			0.8	1.3	V
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2 A (Note 2)			0.7	1.2	V
t _{rr}	Reverse Recovery Time	I _F = 38 A, di/dt = 100 A/μs			64	103	ns
Q_{rr}	Reverse Recovery Charge				56	90	nC

^{1.} $R_{\theta JA}$ is determined with the device mounted on a 1 in2 pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JA}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a. 55°C/W when mounted on a 1 in² padof 2 oz copper

b. 125°C/W when mounted on a minimum pad of 2 oz copper

- Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.
 E_{AS} of 726 mJ is based on starting T_J = 25°C, L = 3 mH, I_{AS} = 22 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 70 A.
 Pulsed Id please refer to Fig 11 SOA graph for more details.
 Computed continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS

T_J = 25°C Unless Otherwise Noted

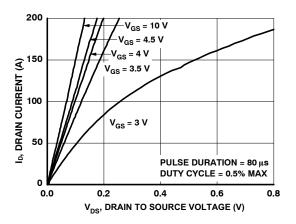


Figure 1. On-Region Characteristics

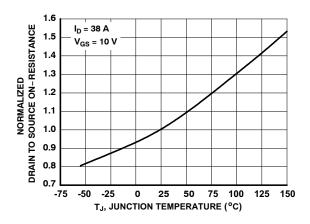


Figure 3. Normalized On Resistance vs Junction Temperature

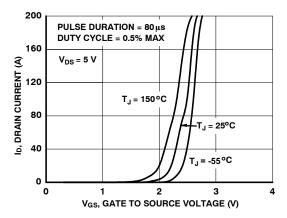


Figure 5. Transfer Characteristics

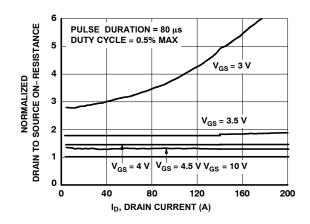


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

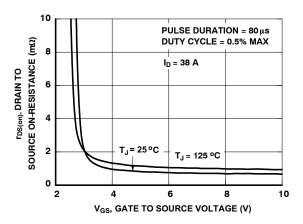


Figure 4. On-Resistance vs Gate to Source Voltage

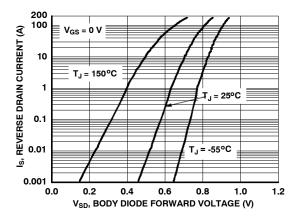


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

TYPICAL CHARACTERISTICS

 $T_J = 25^{\circ}C$ Unless Otherwise Noted (continued)

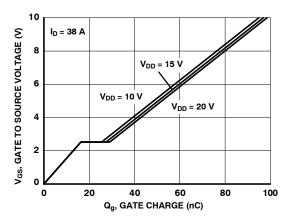


Figure 7. Gate Charge Characteristics

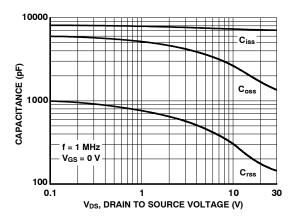


Figure 8. Capacitance vs Drain to Source Voltage

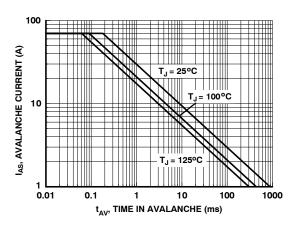


Figure 9. Unclamped Inductive Switching Capability

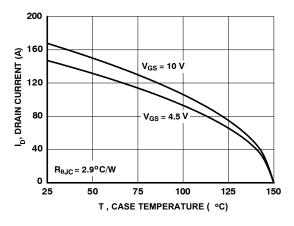


Figure 10. Maximum Continuous Drain Current vs Case Temperature

Figure 11. Forward Bias Safe Operating Area

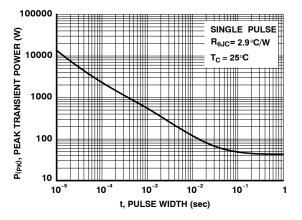


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS

T_J = 25°C Unless Otherwise Noted (continued)

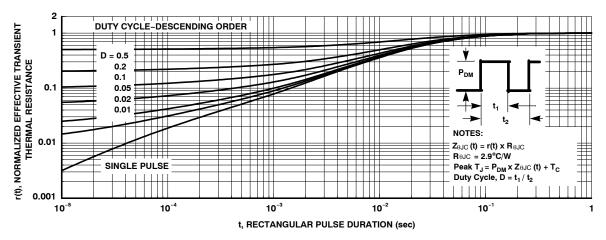
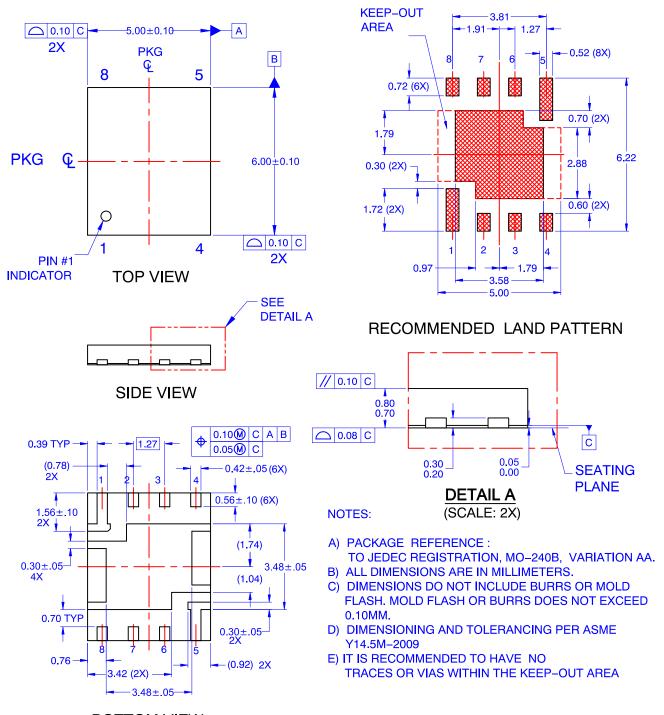



Figure 13. Junction-to-Ambient Transient Thermal Response Curve

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

PQFN8 5X6, 1.27P CASE 483AS ISSUE O

DATE 30 SEP 2016

BOTTOM VIEW

DOCUMENT NUMBER:	98AON13667G	Electronic versions are uncontrolle	'	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except	' '	
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	PQFN8 5X6, 1.27P		PAGE 1 OF 2	

DOCUMENT	NUMBER:
98AON13667	'G

PAGE 2 OF 2

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION FROM FAIRCHILD PQFN08O TO ON SEMICONDUCTOR. REQ. BY I. CAMBALIZA.	30 SEP 2016

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative