MOSFET - Complementary, POWERTRENCH®

N-Channel: 20 V, 3.8 A, 66 m Ω P-Channel: -20 V, -2.6 A, 142 m Ω

General Description

This device is designed specifically as a single package solution for a DC/DC 'Switching' MOSFET in cellular handset and other ultra-portable applications. It features an independent N-Channel & P-Channel MOSFET with low on-state resistance for minimum conduction losses. The gate charge of each MOSFET is also minimized to allow high frequency switching directly from the controlling device.

The MicroFET 1.6x1.6 Thin package offers exceptional thermal performance for it's physical size and is well suited to switching and linear mode applications.

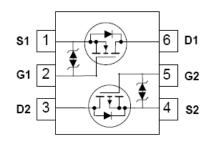
Features

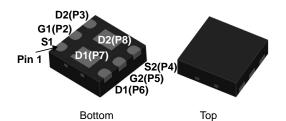
Q1: N-Channel

- Max $r_{DS(on)} = 66 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 3.4 \text{ A}$
- Max $r_{DS(on)} = 86 \text{ m}\Omega$ at $V_{GS} = 2.5 \text{ V}$, $I_D = 2.9 \text{ A}$
- Max $r_{DS(on)} = 113 \text{ m}\Omega$ at $V_{GS} = 1.8 \text{ V}$, $I_D = 2.5 \text{ A}$
- Max $r_{DS(on)}$ = 160 m Ω at V_{GS} = 1.5 V, I_D = 2.1 A O2: P-Channel

• Max $r_{DS(on)} = 142 \text{ m}\Omega$ at $V_{GS} = -4.5 \text{ V}$, $I_D = -2.3 \text{ A}$

- Max $r_{DS(on)} = 213 \text{ m}\Omega$ at $V_{GS} = -2.5 \text{ V}$, $I_D = -1.8 \text{ A}$
- Max $r_{DS(on)} = 331 \text{ m}\Omega$ at $V_{GS} = -1.8 \text{ V}$, $I_D = -1.5 \text{ A}$
- Max $r_{DS(on)} = 530 \text{ m}\Omega$ at $V_{GS} = -1.5 \text{ V}$, $I_D = -1.2 \text{ A}$
- Low Profile: 0.55 mm Maximum in the New Package MicroFET 1.6x1.6 Thin
- Free from Halogenated Compounds and Antimony Oxides
- HBM ESD Protection Level > 1600 V (Note 3)
- This Device is Pb-Free and is RoHS Compliant


Applications


- DC-DC Conversion
- Level Shifted Load Switch

ON Semiconductor®

www.onsemi.com

Note: Center pad of P7 & P8 is a virtual pin number. Actual P7 & P8 is connected to edge pad of P6 & P3 respectively.

> UDFN6 1.6x1.6, 0.5P CASE 517DW

MARKING DIAGRAM

ÞΪ	= ON Semiconductor Logo
&Z	= Assembly Plant Code
&2	= Numeric Date Code
&K	= Lot Code
5T	= Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

$\textbf{MOSFET MAXIMUM RATINGS} \ (T_A = 25^{\circ}C, \ Unless \ otherwise \ noted)$

Symbol	Parameter	Q1	Q2	Units
V _{DS}	Drain to Source Voltage		-20	V
V _{GS}	Gate to Source Voltage	±8	±8	V
I _D	Drain Current –Continuous T _A = 25°C (Note 1a)	3.8	-2.6	Α
	-Pulsed	6	-6	
P_{D}	Power Dissipation for Single Operation $T_A = 25^{\circ}C$ (Note 1a)	1	.4	W
	Power Dissipation for Single Operation $T_A = 25^{\circ}C$ (Note 1b)	0	.6	
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to	+150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Units
RөJA	Thermal Resistance, Junction to Ambient (Single Operation) (Note 1a	90	0000
RθJA	Thermal Resistance, Junction to Ambient (Single Operation) (Note 1b) 195	°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Shipping [†]
5T	FDME1034CZT	UDFN6 1.6x1.6, 0.5P (Pb-Free)	5000 units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

ELECTRICAL CHARACTERISTICS (T_{.I} = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Туре	Min.	Тур.	Max.	Units
OFF CHAR	ACTERISTICS				•		
BV _{DSS}	Drain to Source Breakdown Voltage	$\begin{split} I_D &= 250 \; \mu A, \; V_{GS} = 0 \; V \\ I_D &= -250 \; \mu A, \; V_{GS} = 0 \; V \end{split}$	Q1 Q2	20 –20			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C I_D = -250 μ A, referenced to 25°C	Q1 Q2		16 –12		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$	Q1 Q2			1 –1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$	All			±10	μΑ
ON CHARA	ACTERISTICS						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$ $V_{GS} = V_{DS}, I_D = -250 \mu A$	Q1 Q2	0.4 -0.4	0.7 -0.6	1.0 -1.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C	Q1 Q2		-3 2		mV/°C
r _{DS(on)}	Drain to Source On Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 3.4 \text{ A}$ $V_{GS} = 2.5 \text{ V}, I_D = 2.9 \text{ A}$ $V_{GS} = 1.8 \text{ V}, I_D = 2.5 \text{ A}$ $V_{GS} = 1.5 \text{ V}, I_D = 2.1 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 3.4 \text{ A}, T_J = 125^{\circ}\text{C}$	Q1		55 68 85 106 76	66 86 113 160 112	mΩ
		$\begin{split} V_{GS} &= -4.5 \text{ V}, I_D = -2.3 \text{ A} \\ V_{GS} &= -2.5 \text{ V}, I_D = -1.8 \text{ A} \\ V_{GS} &= -1.8 \text{ V}, I_D = -1.5 \text{ A} \\ V_{GS} &= -1.5 \text{ V}, I_D = -1.2 \text{ A} \\ V_{GS} &= -4.5 \text{ V}, I_D = -2.3 \text{ A}, T_J = 125^{\circ}\text{C} \end{split}$	Q2		95 120 150 190 128	142 213 331 530 190	
9FS	Forward Transconductance	$V_{DS} = 4.5 \text{ V}, I_{D} = 3.4 \text{ A}$ $V_{DS} = -4.5 \text{ V}, I_{D} = -2.3 \text{ A}$	Q1 Q2		9 7		S
DYNAMIC	CHARACTERISTICS						
C _{iss}	Input Capacitance	Q1: V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	Q1 Q2		225 305	300 405	pF
C _{oss}	Output Capacitance	Q2: $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Q1 Q2		40 55	55 75	pF
C _{rss}	Reverse Transfer Capacitance		Q1 Q2		25 50	40 75	pF
SWITCHIN	G CHARACTERISTICS						
t _{d(on)}	Turn-On Delay Time	Q1: $V_{DD} = 10 \text{ V}, I_{D} = 1 \text{ A}, V_{GS} = 4.5 \text{V}, R_{GEN} = 6 \Omega$	Q1 Q2		4.5 4.7	10 10	ns
t _r	Rise Time	Q2: $V_{DD} = -10 \text{ V}, I_{D} = -1 \text{ A}, V_{GS} = -4.5 \text{ V},$	Q1 Q2		2.0 4.8	10 10	
t _{d(off)}	Turn-Off Delay Time	$R_{GEN} = 6 \Omega$	Q1 Q2		15 33	27 53	
t _f	Fall Time		Q1 Q2		1.7 16	10 29	
Qg	Total Gate Charge	Q1: V _{DD} = 10 V, I _D = 3.4 A, V _{GS} = 4.5 V	Q1 Q2		3 5.5	4.2 7.7	nC
Q _{gs}	Gate to Source Gate Charge	Q2: $V_{DD} = -10 \text{ V}, I_{D} = -2.3 \text{ A}, V_{GS} = -4.5 \text{ V}$	Q1 Q2		0.4 0.6		
Q _{gd}	Gate to Drain "Miller" Charge		Q1 Q2		0.6 1.4		


ELECTRICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Туре	Min.	Тур.	Max.	Units
DRAIN-SO	URCE DIODE CHARACTERISTI	CS T _J = 25°C unless otherwise noted.					
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V, } I_{S} = 0.9 \text{ A}$ (Note 2) $V_{GS} = 0 \text{ V, } I_{S} = -0.9 \text{ A}$ (Note 2)	Q1 Q2		0.7 -0.8	1.2 –1.2	V
trr	Reverse Recovery Time	Q1: $I_F = 3.4 \text{ A}, \ \Delta i / \Delta t = 100 \text{ A/}\mu\text{s}$	Q1 Q2		8.5 16	17 29	ns
Q _{rr}	Reverse Recovery Charge	Q2: $I_F = -2.3 \text{ A}, \Delta i/\Delta t = 100 \text{ A/}\mu\text{s}$	Q1 Q2		1.4 4.4	10 10	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

- 2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0 %.
- 3. The diode connected between the gate and source serves only as protection ESD. No gate overvoltage rating is implied.

TYPICAL CHARACTERISTICS (Q1 N–CHANNEL) $T_J = 25$ °C unless otherwise noted.

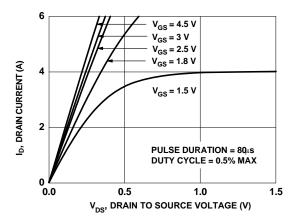


Figure 1. On-Region Characteristics

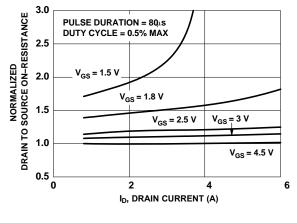


Figure 2. Normalized On–Resistance vs. Drain Current and Gate Voltage

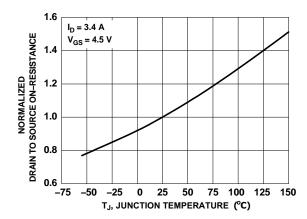


Figure 3. Normalized On Resistance vs. Junction Temperature

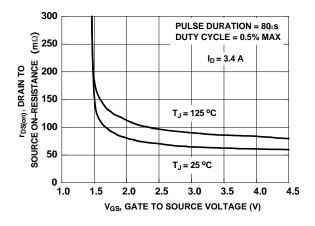


Figure 4. On–Resistance vs. Gate to Source Voltage

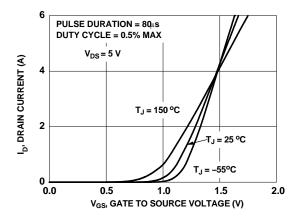


Figure 5. Transfer Characteristics

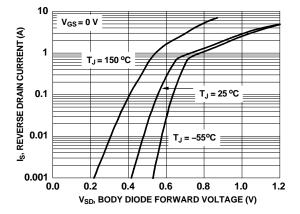


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) $T_J = 25$ °C unless otherwise noted.

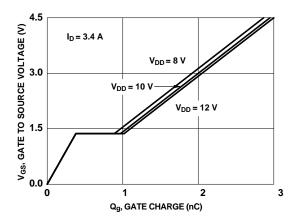


Figure 7. Gate Charge Characteristics

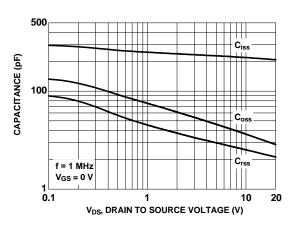


Figure 8. Capacitance vs. Drain to Source Voltage

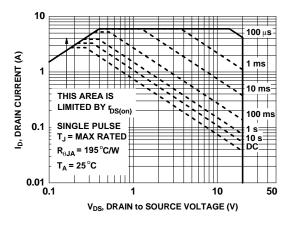


Figure 9. Forward Bias Safe Operating Area

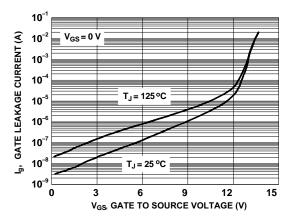


Figure 10. Gate Leakage Current vs.
Gate to Source Voltage

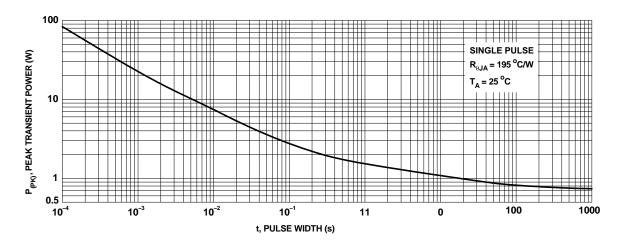


Figure 11. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (Q1 N–CHANNEL) T_J = 25°C unless otherwise noted.

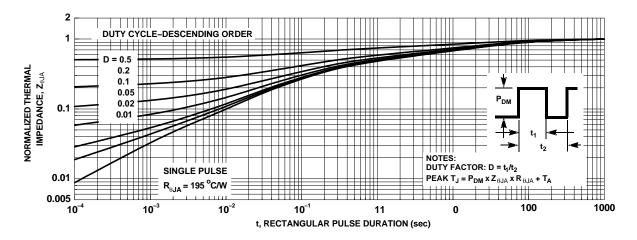


Figure 12. Junction-to-Ambient Transient Thermal Response Curve

TYPICAL CHARACTERISTICS (Q2 P-CHANNEL) $T_J = 25$ °C unless otherwise noted.

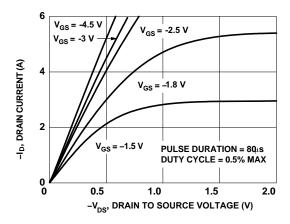


Figure 13. On-Region Characteristics

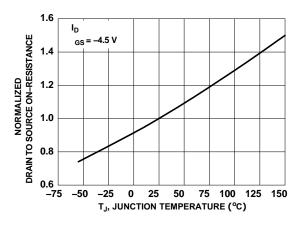


Figure 15. Normalized On–Resistance vs. Junction Temperature

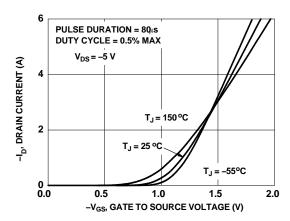


Figure 17. Transfer Characteristics

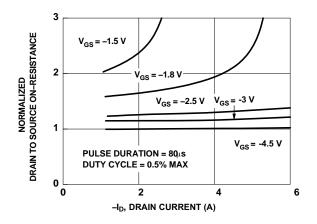


Figure 14. Normalized On–Resistance vs. Drain Current and Gate Voltage

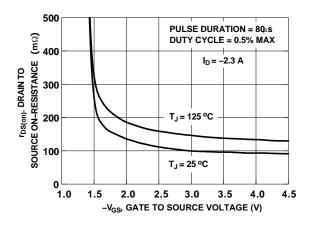


Figure 16. On Resistance vs. Gate to Source Voltage

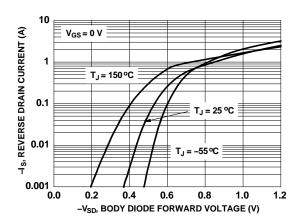


Figure 18. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (Q2 N–CHANNEL) $T_J = 25$ °C unless otherwise noted.

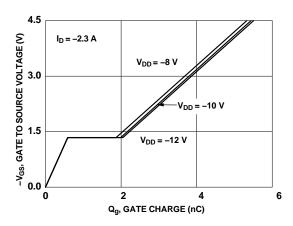


Figure 19. Gate Charge Characteristics

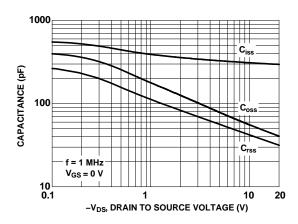


Figure 20. Capacitance vs. Drain to Source Voltage

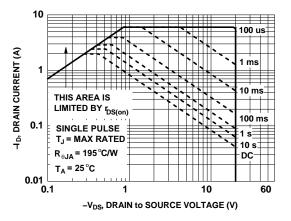


Figure 21. Forward Bias Safe Operating Area

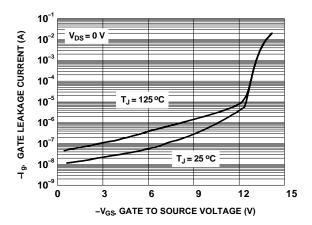


Figure 22. Gate Leakage Current vs. Gate to Source Voltage

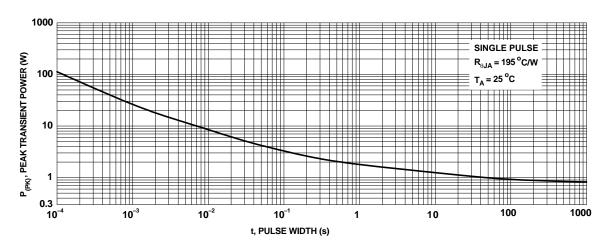
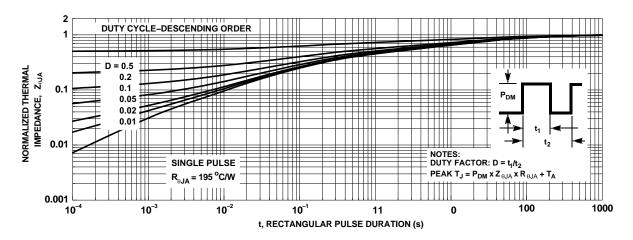
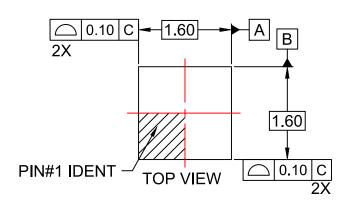
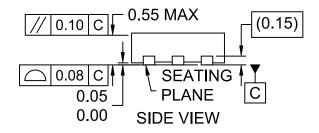
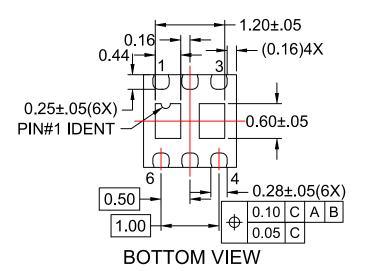


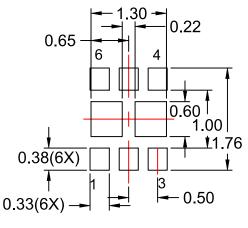
Figure 23. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (Q2 P–CHANNEL) $T_J = 25$ °C unless otherwise noted.


Figure 24. Junction -to-Ambient Transient Thermal Response Curve


POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.


UDFN6 1.6x1.6, 0.5P CASE 517DW ISSUE O

DATE 31 OCT 2016

RECOMMENDED LAND PATTERN

NOTES:

- A. PACKAGE DOES NOT CONFORM TO ANY JEDEC STANDARD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

DOCUMENT NUMBER:	98AON13701G	Electronic versions are uncontroll	•	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Re versions are uncontrolled except who	. ,	
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	UDFN6 1.6x1.6, 0.5P	F	PAGE 1 OF 2	

DOCUMENT NUMBER: 98AON13701G

PAGE 2 OF 2

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION FROM FAIRCHILD UMLP06D TO ON SEMICONDUCTOR. REQ. BY C. TAN.	31 OCT 2016
	+	

ON Semiconductor and una are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. anising out of the application of use of any product of circuit, and specifically disclaims any and an inability, including without infiniation special, consequential of inclental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates. and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

© Semiconductor Components Industries, LLC, 2016 Case Outline Number: October, 2016 - Rev. O 517DW

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative