MOSFET - PowerTrench®, N-Channel, Dual Cool™56, **Shielded Gate**

150 V, 40 A, 17 m Ω

General Description

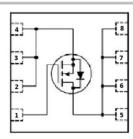
This N-Channel MOSFET is produced using ON Semiconductor's advanced PowerTrench® process that incorporates Shielded Gate technology. Advancements in both silicon and Dual CoolTM package technologies have been combined to offer the lowest r_{DS(on)} while maintaining excellent switching performance by extremely low Junction-to-Ambient thermal resistance.

Features

- Shielded Gate MOSFET Technology
- Dual CoolTM Top Side Cooling PQFN Package
- Max $r_{DS(on)} = 17 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 9.3 \text{ A}$
- Max $r_{DS(on)} = 25 \text{ m}\Omega$ at $V_{GS} = 6 \text{ V}$, $I_D = 7.8 \text{ A}$
- High Performance Technology for Extremely Low r_{DS(on)}
- 100% UIL Tested
- RoHS Compliant

Applications

- Primary MOSFET in DC DC Converters
- Secondary Synchronous Rectifier
- Load Switch


MOSFET MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit
V _{DS}	Drain to Source Voltage	150	V
V_{GS}	Gate to Source Voltage	±20	V
I _D	Drain Current: Continuous, T _C = 25°C Continuous, T _A = 25°C (Note 1a) Pulsed (Note 4)	40 9.3 100	Α
E _{AS}	Single Pulse Avalanche Energy (Note 3)	294	mJ
P _D	Power Dissipation: T _C = 25°C T _A = 25°C (Note 1a)	125 3.2	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

ON Semiconductor®

www.onsemi.com

N-Channel MOSFET

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code ጲვ = Data Code (Year & Week)

= Lot

FDMS86200DC = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

Table 1. THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case (Top Source)	2.5	
$R_{ heta JC}$	Thermal Resistance, Junction to Case (Bottom Drain)	1.0	
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient (Note 1a)	38	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1b)	81	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient (Note 1i)	16	
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient (Note 1j)	23	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1k)	11	

PACKAGE MARKING AND ORDERING INFORMATION

Device	Top Marking	Package	Reel Size	Tape Width	Quantity
86200	FDMS86200DC	Dual Cool™ 56	13″	12 mm	3000 Units

$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}C \ unless \ otherwise \ noted)$

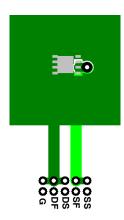
Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
BVDSS	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	150			V
ΔBV_{DSS} $/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, referenced to 25°C		105		mV/°C
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 120 V, V _{GS} = 0 V			1	μΑ
Igss	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
ON CHARA	CTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.0	3.3	4.0	V
$\Delta V_{GS(th)}$ / ΔT_J	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 250 μA, referenced to 25 °C		-11		mV/°C
	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 9.3 A		14	17	
r _{DS(on)}		V _{GS} = 6 V, I _D = 7.8 A		17	25	mΩ
· D3(011)		V _{GS} = 10 V, I _D = 9.3 A, T _J = 125 °C		29	35	11188
9FS	Forward Transconductance	V _{DS} = 10 V, I _D = 9.3 A		32		S
DYNAMIC C	HARACTERISTICS					
C _{iss}	Input Capacitance			2110	2955	pF
C _{oss}	Output Capacitance	V _{DS} = 75 V, V _{GS} = 0 V, f = 1 MHz		205	290	pF
C _{rss}	Reverse Transfer Capacitance	I = I MINZ		8.1	15	pF
R_g	Gate Resistance		0.1	1.5	3.0	Ω
SWITCHING	CHARACTERISTICS			•		•
t _{d(on)}	Turn-On Delay Time			16	29	ns
t _r	Rise Time	V _{DD} = 75 V, I _D = 9.3 A, V _{GS} = 10 V,		4	10	ns
t _{d(off)}	Turn-Off Delay Time	$R_{GEN} = 6 \Omega$		23	37	ns
t _f	Fall Time			5	10	ns

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Qg	Tabal Cada Channa	V_{GS} = 0 V to 10 V, V_{DD} = 75 V, I_D = 9.3 A		30	42	nC
	Total Gate Charge	V _{GS} = 0 V to 5 V, V _{DD} = 75 V, I _D = 9.3 A		19	27	nC
Q _{gs}	Gate to Source Charge	V _{DD} = 75 V, I _D = 9.3 A		9.7		nC
Q _{gd}	Gate to Drain "Miller" Charge	V _{DD} = 75 v, I _D = 9.5 A		5.6		nC

DRAIN-SOURCE DIODE CHARACTERISTICS

		$V_{GS} = 0 \text{ V}, I_S = 9.3 \text{ A (Note 2)}$	0.8	1.3	
VsD	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2.6 A (Note 2)	0.7	1.2	V
t _{rr}	Reverse Recovery Time		79	126	ns
Q _{rr}	Reverse Recovery Charge	I _F = 9.3 A, di/dt = 100 A/μs	126	176	nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
Rejc	Thermal Resistance, Junction to Case	(Top Source)	2.5	
Rejc	Thermal Resistance, Junction to Case	(Bottom Drain)	1.0	
R _θ JA	Thermal Resistance, Junction to Ambient	(Note 1a)	38	
Reja	Thermal Resistance, Junction to Ambient	(Note 1b)	81	
Reja	Thermal Resistance, Junction to Ambient	(Note 1c)	27	
Reja	Thermal Resistance, Junction to Ambient	(Note 1d)	34	
Reja	Thermal Resistance, Junction to Ambient	(Note 1e)	16	20044
Reja	Thermal Resistance, Junction to Ambient	(Note 1f)	19	°C/W
R _θ JA	Thermal Resistance, Junction to Ambient	(Note 1g)	26	
Reja	Thermal Resistance, Junction to Ambient	(Note 1h)	61	
RеJA	Thermal Resistance, Junction to Ambient	(Note 1i)	16	
Reja	Thermal Resistance, Junction to Ambient	(Note 1j)	23	
Reja	Thermal Resistance, Junction to Ambient	(Note 1k)	11	
RеJA	Thermal Resistance, Junction to Ambient	(Note 1I)	13	

^{1.} $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. $R_{\theta CA}$ is determined by the user's board design.

NOTES: $R_{\theta,JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 \times 1.5 in. board of FR-4 material. $R_{\theta CA}$ is determined by the user's board design.

 a) 38°C/W when mounted on a 1 in² pad of 2 oz copper.

 b) 81°C/W when mounted on a 1 in² pad of 2 oz copper.

- c) Still air, 20.9x10.4x12.7mm Aluminum Heat Sink, 1 in² pad of 2 oz copper
- d) Still air, 20.9x10.4x12.7mm Aluminum Heat Sink, minimum pad of 2 oz copper
- e) Still air, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper
- f) Still air, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper
- g) 200FPM Airflow, No Heat Sink,1 in² pad of 2 oz copper
- h) 200FPM Airflow, No Heat Sink, minimum pad of 2 oz copper
- i) 200FPM Airflow, 20.9x10.4x12.7mm Aluminum Heat Sink, 1 in² pad of 2 oz copper
- j) 200FPM Airflow, 20.9x10.4x12.7mm Aluminum Heat Sink, minimum pad of 2 oz copper
- k) 200FPM Airflow, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper
- l) 200FPM Airflow, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper
- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- 3. E_{AS} of 294 mJ is based on starting T_J = 25°C; N-ch: L = 3 mH, I_{AS} = 14 A, V_{DD} = 150 V. V_{GS} = 10 V, 100% tested at L = 0.3 mH, I_{AS} = 31 A.
- 4. Pulsed Id limited by junction temperature, td <= 10 μs, please refer to SOA curve for more details.

TYPICAL CHARACTERISTICS

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

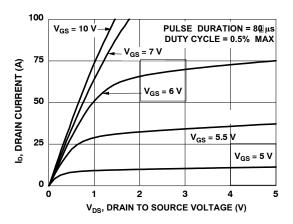


Figure 1. On-Region Characteristics

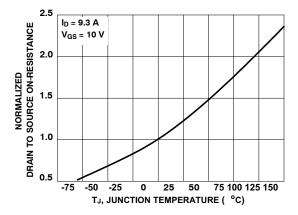


Figure 3. Normalized On-Resistance vs. Junction Temperature

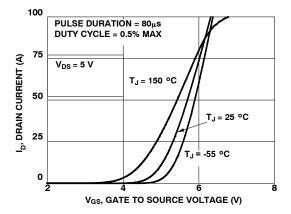


Figure 5. Transfer Characteristics

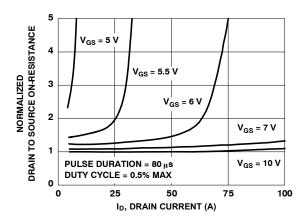


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

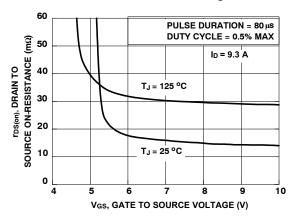


Figure 4. On-Resistance vs. Gate to Source Voltage

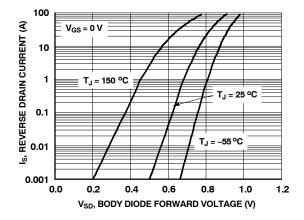


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

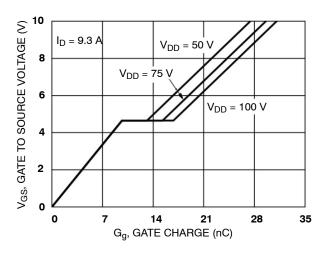


Figure 7. Gate Charge Characteristics

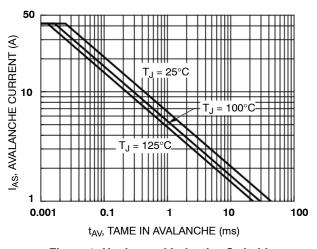


Figure 9. Unclamped Inductive Switching Capability

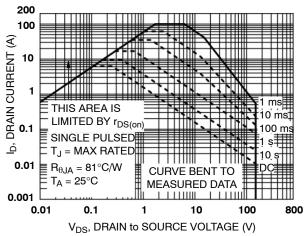


Figure 11. Forward Bias Safe Operating Area

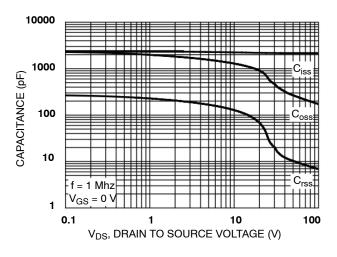


Figure 8. Capacitance vs Drain to Source Voltage

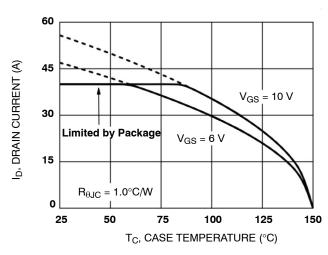


Figure 10. Maximum Continuous Drain Current vs Case Temperature

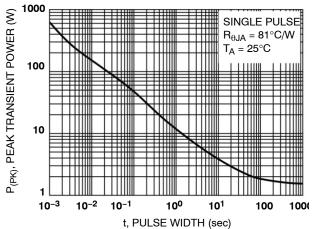


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

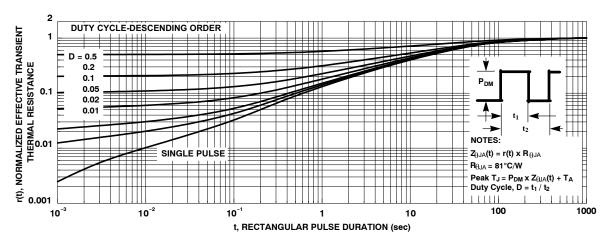
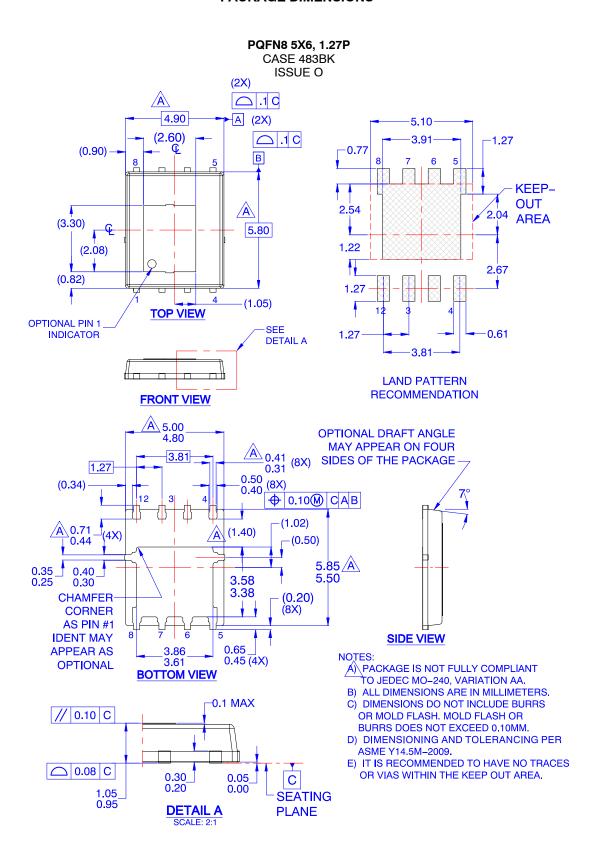



Figure 13. Junction-to-Ambient Transient Thermal Response Curve

PACKAGE DIMENSIONS

POWERTRENCH is a registered trademark and SyncFET is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

DUAL COOL is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and wakes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative