MOSFET, N-Channel, POWERTRENCH®

60 V, 158 A, 2.5 mΩ

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency and to minimize switch node ringing of DC/DC converters using either synchronous or synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(on)}$, fast switching speed and body diode reverse recovery performance.

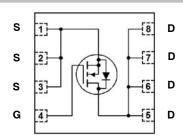
Features

- Max $r_{DS(on)} = 2.5 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 25 \text{ A}$
- Max $r_{DS(on)} = 3.7 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 20 \text{ A}$
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- Next generation enhanced body diode technology, engineered for soft recovery
- MSL1 robust package design
- 100% UIL tested
- RoHS Compliant

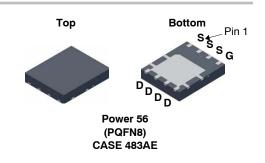
Applications

- Primary Switch in Isolated DC-DC
- Synchronous Rectifier
- Load Switch

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)


Symbol	Parameter	Ratings	Unit
V _{DS}	Drain to Source Voltage	60	V
V_{GS}	Gate to Source Voltage	±20	V
I _D	Drain Current: - Continuous $T_C = 25^{\circ}C$ (Note 5) - Continuous $T_C = 100^{\circ}C$ (Note 5) - Continuous $T_A = 25^{\circ}C$ (Note 1a) - Pulsed (Note 4)	158 100 25 799	A
E _{AS}	Single Pulse Avalanche Energy (Note 3)	240	mJ
P _D	Power Dissipation: $T_C = 25^{\circ}C$ $T_A = 25^{\circ}C$ (Note 1a)	104 2.5	V
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®

www.onsemi.com

N-Channel MOSFET

MARKING DIAGRAM

\$Y	= ON Semiconductor Logo
&Z	= Assembly Plant Code
&3	= Data Code (Year & Week)
&K	= Lot
FDMS86500L	= Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

1

PACKAGE MARKING AND ORDERING INFORMATION

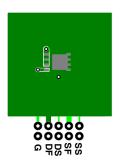
Device Marking	Device	Package	Quantity
FDMS86500L	FDMS86500L	Power 56 (PQFN8) (Pb-Free / Halogen Free)	3000/Tape&Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

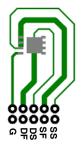
THERMAL CHARACTERISTICS

Symbol	Parameter		Unit
R _{θJC} Thermal Resistance, Junction to Case		1.2	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	50	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)


Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
FF CHARA	ACTERISTICS		•			
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	60			V
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C		30		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 48 V, V _{GS} = 0 V			1	μΑ
I _{GSS}	Gate to Source Leakage Current, Forward	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
N CHARA	CTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1	1.8	3	V
$\Delta V_{GS(th)} / \Delta T_J$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C		-7		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 25 A		2.1	2.5	mΩ
		V _{GS} = 4.5 V, I _D = 20 A		2.9	3.7	
		$V_{GS} = 10 \text{ V}, I_D = 25 \text{ A}, T_J = 125^{\circ}\text{C}$		3.1	3.7	1
g _F s	Forward Transconductance	V _{DS} = 5 V, I _D = 20 A		95		S
YNAMIC C	HARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		9420	12530	pF
Coss	Output Capacitance			1470	1955	pF
C _{rss}	Reverse Transfer Capacitance			50	80	pF
Rg	Gate Resistance	f = 1MHz	0.1	1.1	3.0	Ω
WITCHING	CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 30 \text{ V}, I_D = 25 \text{ A}, V_{GS} = 10 \text{ V},$		27	43	ns
t _r	Rise Time	$R_{GEN} = 6 \Omega$		16	28	ns
t _{d(off)}	Turn-Off Delay Time			63	100	ns
t _f	Fall Time			7.8	16	ns
Qg	Total Gate Charge	V_{GS} = 0 V to 10 V, V_{DD} = 30 V, I_D = 25 A		117	165	nC
		V_{GS} = 0 V to 4.5 V, V_{DD} = 30 V, I_D = 25 A		54	108	nC
Q _{gs}	Gate to Source Charge	V _{DD} = 30 V, I _D = 25 A		26.6		nC
Q _{gd}	Gate to Drain "Miller" Charge			11.5		nC

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)


Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
DRAIN-SOU	RCE DIODE CHARACTERISTICS		-			
Is	Continuous Drain to Source Diode Forward Current	T _C = 25°C			80	Α
I _{s,pulse}	Pulse Drain to Source Diode Forward Current	T _C = 25°C			799	Α
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2.1 A (Note 2)		0.68	1.2	V
		V _{GS} = 0 V, I _S = 25 A (Note 2)		0.79	1.3	
t _{rr}	Reverse Recovery Time	I _F = 25 A, di/dt = 100 A/μs		54	87	ns
Q _{rr}	Reverse Recovery Charge			42	67	nC
t _{rr}	Reverse Recovery Time	I _F = 25 A, di/dt = 300 A/μs		46	73	ns
Q _{rr}	Reverse Recovery Charge			84	134	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 \times 1.5 in. board of FR-4 material. $R_{\theta CA}$ is determined by the user's board design.

a. 50 °C/W when mounted on a 1 in² pad of 2 oz copper.

b. 125 °C/W when mounted on a minimum pad of 2 oz copper.

- Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.
 E_{AS} of 220 mJ is based on starting T_J = 25°C, L = 0.3 mH, I_{AS} = 40 A, V_{DD} = 54 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 66 A.
 Pulsed Id please refer to Figure 11 SOA graph for more details.
 Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS

(T_J = 25°C unless otherwise noted)

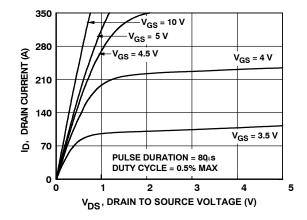


Figure 1. On Region Characteristics

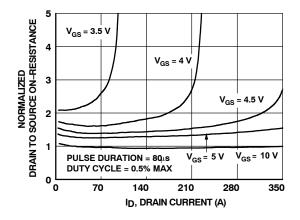


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

TYPICAL CHARACTERISTICS (continued)

(T_J = 25°C unless otherwise noted)

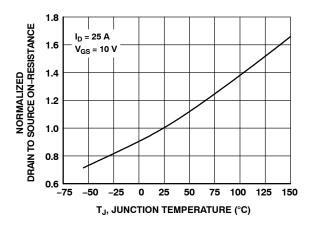


Figure 3. Normalized On Resistance vs. Junction Temperature

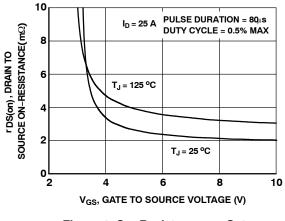


Figure 4. On-Resistance vs. Gate to Source Voltage

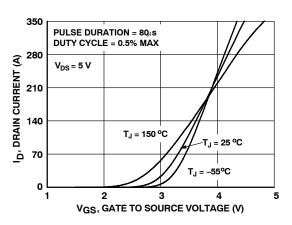


Figure 5. Transfer Characteristics

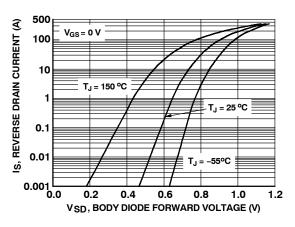


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

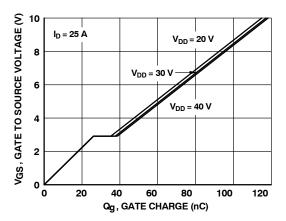


Figure 7. Gate Charge Characteristics

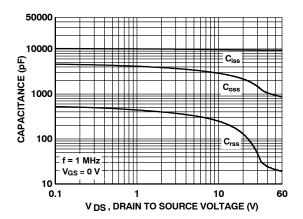


Figure 8. Capacitance vs. Drain to Source Voltage

TYPICAL CHARACTERISTICS (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

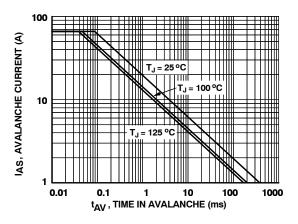


Figure 9. Unclamped Inductive Switching Capability

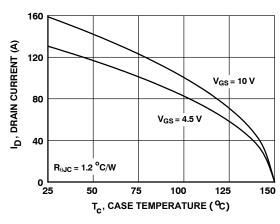


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

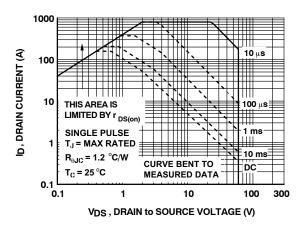


Figure 11. Forward Bias Safe Operating Area

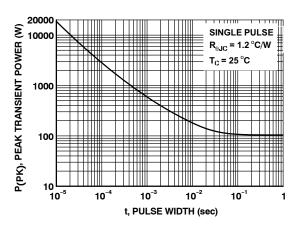


Figure 12. Single Pulse Maximum Power Dissipation

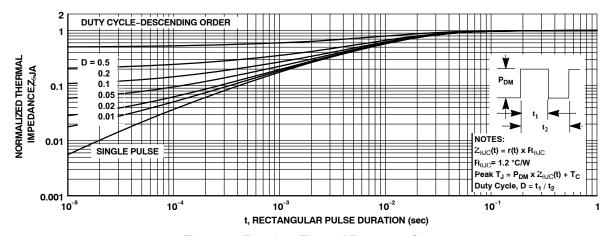
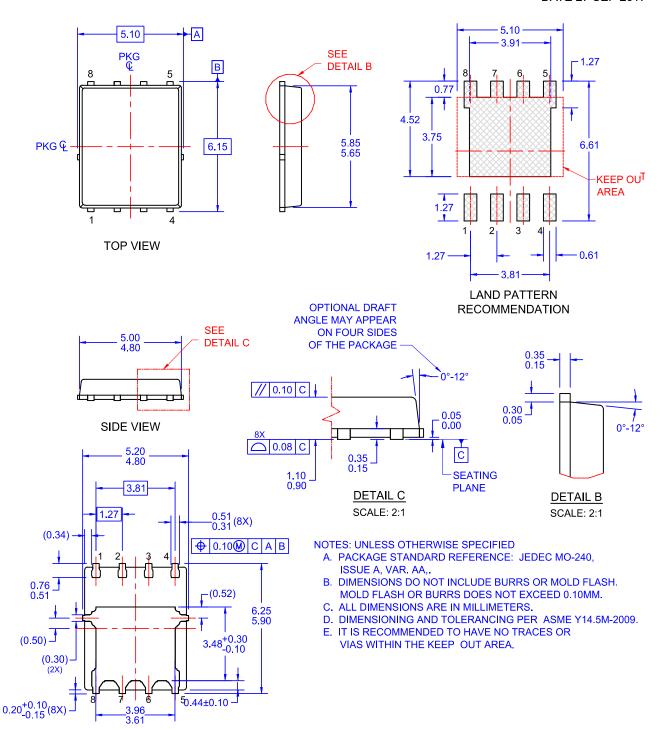



Figure 13. Transient Thermal Response Curve

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and or other countries.

PQFN8 5X6, 1.27P CASE 483AE ISSUE A

DATE 27 SEP 2017

DOCUMENT NUMBER:	98AON13655G	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PQFN8 5X6, 1.27P		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative