MOSFET - N-Channel, POWERTRENCH®

60 V, 65 A, 5.6 m Ω

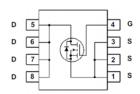
Features

- Typical $R_{DS(on)} = 4.3 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 65 \text{ A}$
- Typical $Q_{g(tot)} = 36 \text{ nC}$ at $V_{GS} = 10 \text{ V}$, $I_D = 65 \text{ A}$
- UIS Capability
- This Device is Pb-Free and is RoHS Compliant

Applications

• Primary Switch for 12 V Systems

MOSFET MAXIMUM RATINGS ($T_J = 25^{\circ}C$ Unless Otherwise Noted)


Symbol	Parameter	Ratings	Units
VDSS	Drain-to-Source Voltage	60	V
Vgs	Gate-to-Source Voltage	±20	V
I _D	Drain Current - Continuous ($V_{GS} = 10$) (Note 1) $T_C = 25^{\circ}C$	65	Α
	Pulsed Drain Current $T_C = 25^{\circ}C$	See Figure 4	
Eas	Single Pulse Avalanche Energy (Note 2)	41	mJ
P _D	Power Dissipation	100	W
	Derate Above 25°C	0.67	W/°C
ТJ, Tsтg	Operating and Storage Temperature	-55 to +175	°C
Rejc	Thermal Resistance, Junction to Case	1.5	°C/W
Reja	Maximum Thermal Resistance, Junction to Ambient (Note 3)	50	°C/W

- 1. Current is limited by bondwire configuration.
- Starting T_J = 25°C, L = 30 μH, I_{AS} = 52 A, V_{DD} = 60 V during inductor charging and V_{DD} = 0 V during time in avalanche.
 R_{θJA} is the sum of the junction-to-case and case-to-ambient thermal
- 3. R_{θJA} is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{θJC} is guaranteed by design, while R_{θJA} is determined by the board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Numeric Date Code &K = Lot Code FDMS86569 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS86569	FDMS86569	Power 56	13"	12 mm	3000 Units

ELECTRICAL CHARACTERISTICS T_J = 25°C Unless Otherwise Noted

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
OFF CHAI	RACTERISTICS				•	•	•
B _{VDSS}	Drain-to-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		60	-	-	V
I _{DSS}	Drain-to-Source Leakage Current	V _{DS} = 60 V, V _{GS} = 0 V	T _J = 25°C	-	-	1	μΑ
			T _J = 175°C (Note 4)	-	_	1	mA
I _{GSS}	Gate-to-Source Leakage Current	V _{GS} = ±20 V		-	-	±100	nA
ON CHAR	ACTERISTICS	-					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$		2.0	2.8	4.0	V
R _{DS(on)}	Drain to Source On Resistance	I _D = 65 A, V _{GS} = 10 V	T _J = 25°C	-	4.3	5.6	mΩ
			T _J = 175°C (Note 4)	ı	8.3	10.8	mΩ
DYNAMIC	CHARACTERISTICS						
C _{iss}	Input Capacitance	V _{DS} = 30 V, V _{GS} = 0 V, f = 1 MHz		-	2560	-	pF
C _{oss}	Output Capacitance			_	740	-	pF
C _{rss}	Reverse Transfer Capacitance			1	40	-	pF
Rg	Gate Resistance	V _{GS} = 0.5 V, f = 1 MHz		-	2.0	-	Ω
Q _{g(ToT)}	Total Gate Charge	V _{GS} = 0 to 10 V	V _{DD} = 30 V	=	36	54	nC
Q _{g(th)}	Threshold Gate Charge	V _{GS} = 0 to 2 V	I _D = 65 A	_	4.8	-	nC
Q_{gs}	Gate-to-Source Gate Charge			-	14	-	nC
Q_{gd}	Gate-to-Drain "Miller" Charge			ı	7	-	nC
SWITCHIN	IG CHARACTERISTICS						
t _{on}	Turn-On Time	$V_{DD} = 30 \text{ V}, I_{D} = 65 \text{ A}, V_{GS} = 10 \text{ V},$ $R_{GEN} = 6 \Omega$		-	-	36	ns
t _{d(on)}	Turn-On Delay			-	16	-	ns
t _r	Rise Time			_	11	-	ns
t _{d(off)}	Turn-Off Delay			-	23	-	ns
t _f	Fall Time			_	8	-	ns
t _{off}	Turn-Off Time			ı	-	41	ns
DRAIN-S	DURCE DIODE CHARACTERISTICS						
V _{SD}	Source-to-Drain Diode Voltage	I _{SD} = 65 A, V _{GS} = 0 V		-	-	1.25	V
		I _{SD} = 32.5 A, V _{GS} = 0 V		ı	-	1.2	٧
t _{rr}	Reverse-Recovery Time	V _{DD} = 48 V, I _F = 65 A, dI _{SD} /dt = 100 A/μs		-	55	72	ns
Q _{rr}	Reverse-Recovery Charge			_	45	59	nC

^{4.} The maximum value is specified by design at T_J = 175°C. Product is not tested to this condition in production.

TYPICAL CHARACTERISTICS

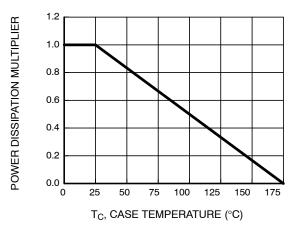


Figure 1. Normalized Power Dissipation vs. Case Temperature

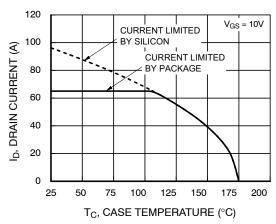


Figure 2. Maximum Continuous Drain Current vs.

Case Temperature

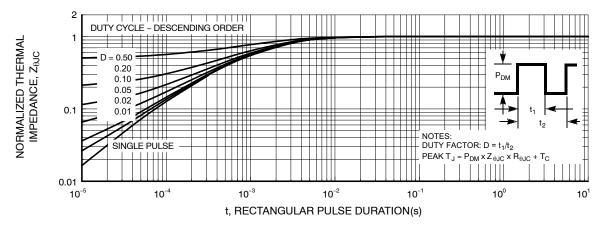


Figure 3. Normalized Maximum Transient Thermal Impedance

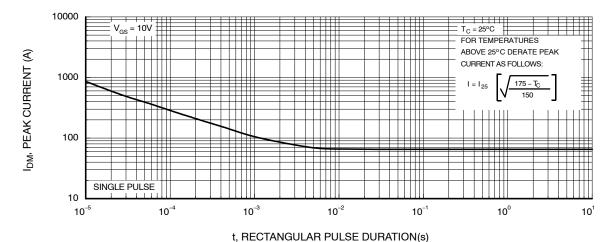


Figure 4. Peak Current Capability

TYPICAL CHARACTERISTICS (continued)

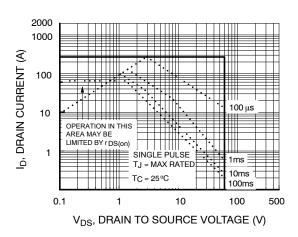


Figure 5. Forward Bias Safe Operating Area

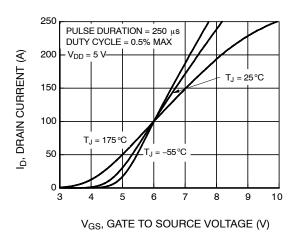
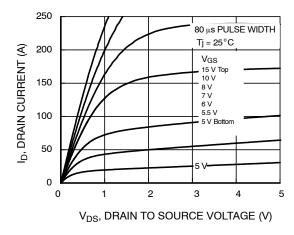
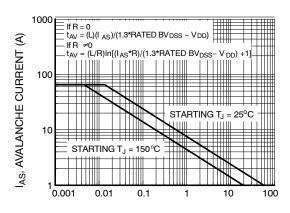
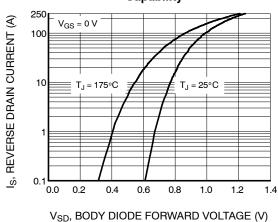


Figure 7. Transfer Characteristics


Figure 9. Saturation Characteristics

 V_{DS} , DRAIN TO SOURCE VOLTAGE (V)

NOTE: Refer to ON Semiconductor Application Notes AN7514 and AN7515.

Figure 6. Unclamped Inductive Switching Capability

()

Figure 8. Forward Diode Characteristics

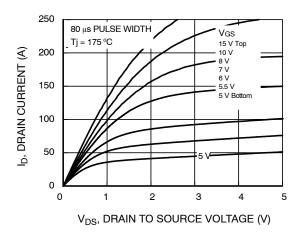


Figure 10. Saturation Characteristics

TYPICAL CHARACTERISTICS (continued)

DRAIN TO SOURCE ON-RESISTANCE

NORMALIZED

NORMALIZED DRAIN TO SOURCE

V_{GS}, GATE TO SOURCE VOLTAGE (V)

BREAKDOWN VOLTAGE

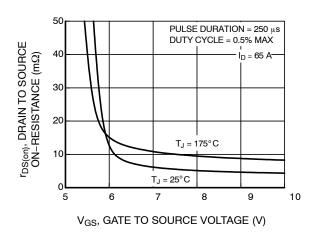


Figure 11. R_{DSON} vs. Gate Voltage

Figure 13. Normalized Gate Threshold Voltage vs. Temperature

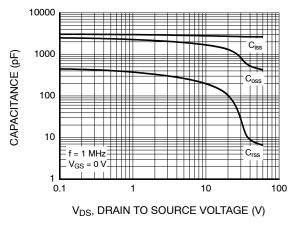


Figure 15. Capacitance vs. Drain to Source Voltage

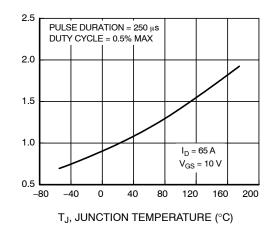
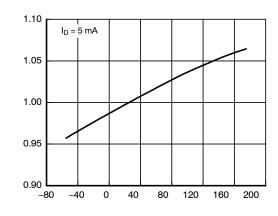



Figure 12. Normalized R_{DSON} vs. Junction Temperature

 T_J , JUNCTION TEMPERATURE (°C)

Figure 14. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

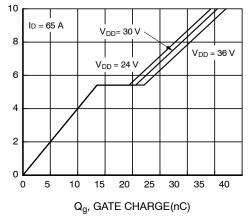
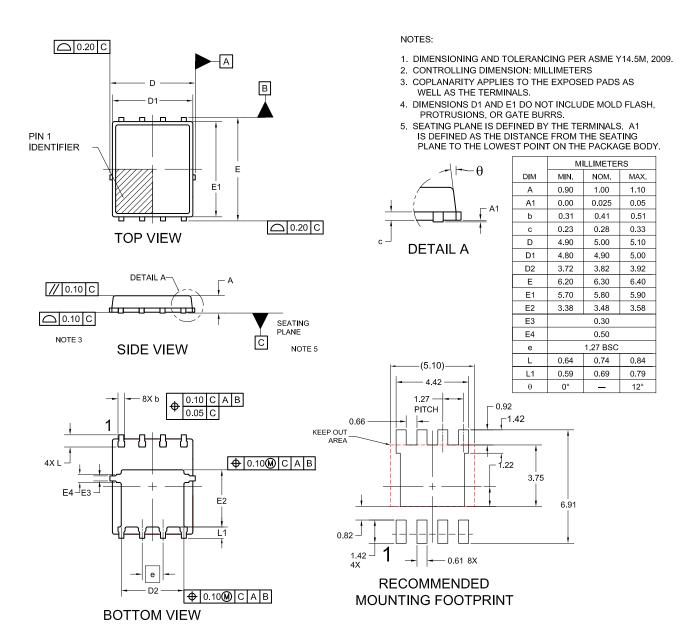



Figure 16. Gate Charge vs. Gate to Source Voltage

PACKAGE DIMENSIONS

PQFN8 5X6, 1.27P CASE 483BJ ISSUE C

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

♦ FDMS86569/D