MOSFET – **POWERTRENCH®**, **N-Channel**

60 V, 30 A, 15 m Ω

Features

- Typical $R_{DS(on)} = 12.5 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 30 \text{ A}$
- Typical $Q_{G(tot)} = 13 \text{ nC}$ at $V_{GS} = 10 \text{ V}$, $I_D = 25 \text{ A}$
- UIS Capability
- RoHS Compliant
- Qualified to AEC Q101

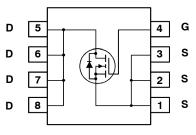
Applications

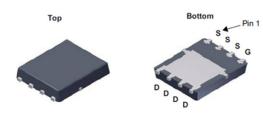
- Automotive Engine Control
- PowerTrain Management
- Solenoid and Motor Drivers
- Electronic Steering
- Integrated Started/Alternator
- Distributed Power Architectures and VRM
- Primary Switch for 12 V Systems

MOSFET MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit
V _{DSS}	Drain-to-Source Voltage	60	V
V _{GS}	Gate-to-Source Voltage	±20	V
I _D	Drain Current – Continuous (VGS = 10) T _C = 25°C (Note 1)	30	Α
	Pulsed Drain Current, T _C = 25°C	See Figure 4	
E _{AS}	Single Pulse Avalanche Energy (Note 2)	13.5	mJ
P_{D}	Power Dissipation	50	W
	Derate Above 25°C	0.33	W/°C
T _J , T _{STG}	Operating and Storage Temperature	-55 to +175	°C
$R_{ heta JC}$	Thermal Resistance, Junction to Case	3	°C/W
$R_{\theta JA}$	Maximum Thermal Resistance, Junction to Ambient (Note 3)	50	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Current is limited by bondwire configuration.
- 2. Starting $T_J=25^{\circ}C$, $\dot{L}=40\mu H$, $I_{AS}=26$ A, $V_{DD}=60$ V during inductor charging and $V_{DD}=0V$ during time in avalanche.
- 3. $R_{\theta JA}$ is the sum of the junction–to–case and case–to–ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design, while $R_{\theta JA}$ is determined by the board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2 oz copper.


ON Semiconductor®

www.onsemi.com

ELECTRICAL CONNECTION

N-Channel MOSFET

Power 56 (PQFN8 5x6) CASE 483BJ

MARKING DIAGRAM

\$Y&Z&3&K FDMS 86581

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Numeric Date Code &K = Lot Code

FDMS86581 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Shipping [†]
FDMS86581	FDMS86581-F085	Power 56	3000 Units/ Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions		Min	Тур.	Max.	Units
OFF CHAR	ACTERISTICS					•	
B _{VDSS}	Drain-to-Source Breakdown Voltage	$I_D = 250 \mu\text{A}, V_{GS} = 0 V$		60	-	-	V
I _{DSS}	Drain-to-Source Leakage Current	V _{DS} = 60 V	T _J = 25°C	-	-	1	Α
		V _{GS} = 0 V	T _J = 175°C (Note 4)	_	-	1	mA
I _{GSS}	Gate-to-Source Leakage Current	V _{GS} = ± 20 V		-	-	±100	nA
ON CHARA	CTERISTICS						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D}$) = 250 μΑ	2.0	2.7	4.0	V
R _{DS(on)}	Drain to Source On Resistance	I _D = 30 A	T _J = 25°C	_	12.5	15.0	mΩ
		V _{GS} = 10 V	T _J = 175°C (Note 4)	-	25.1	30.1	mΩ
DYNAMIC C	CHARACTERISTICS						
C _{iss}	Input Capacitance	V _{DS} = 30 V, V _{GS} = 0 V, f = 1 MHz		-	881	-	pF
C _{oss}	Output Capacitance			-	281	-	pF
C _{rss}	Reverse Transfer Capacitance			-	15	-	pF
R _G	Gate Resistance			-	3.1	-	Ω
Q _{g(ToT)}	Total Gate Charge	V _{GS} = 0 to 10 V		-	13	19	nC
Q _{g(th)}	Threshold Gate Charge	V_{GS} = 0 to 2 V V_{DD} = 30 V I_{D} = 25 A		-	2	-	nC
Q _{gs}	Gate-to-Source Gate Charge			-	4	-	nC
Q_{gd}	Gate-to-Drain "Miller" Charge			_	3	-	nC
SWITCHING	CHARACTERISTICS						
t _{on}	Turn-On Time	V_{DD} = 30 V, I_{D} = 30 A V_{GS} = 10 V, R_{GEN} = 6 Ω		_	-	20	ns
t _{d(on)}	Turn-On Delay	VGS = 10 V, H	GEN = 0 52	-	9	-	ns
t _r	Rise Time		-	-	5	-	ns
t _{d(off)}	Turn-Off Delay			-	15	-	ns
t _f	Fall Time			-	4	-	ns
t _{off}	Turn-Off Time			_	-	28	ns
DRAIN-SOL	JRCE DIODE CHARACTERISTICS	•	•		-	-	-
V _{SD} Source	Source-to-Drain Diode Voltage	I _{SD} = 30 A, V _G	_{iS} = 0 V	-	-	1.25	V
		I _{SD} = 15 A, V _G	_{iS} = 0 V	-	-	1.2	V
t _{rr}	Reverse–Recovery Time	I _F = 30 A, dl _{SD} /dt = 100 A/μs, V _{DD} = 48 V		-	37	55	ns
Q _{rr}	Reverse Recovery Charge			-	22	33	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{4.} The maximum value is specified by design at $T_J = 175^{\circ}C$. Product is not tested to this condition in production.

TYPICAL CHARACTERISTICS

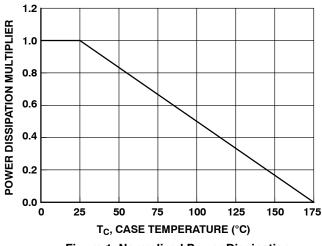


Figure 1. Normalized Power Dissipation vs. Case Temperature

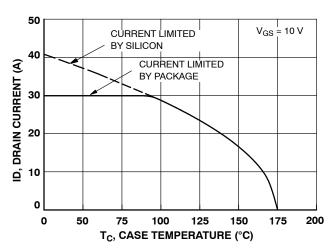


Figure 2. Maximum Continuous Drain Current vs. Case Temperature

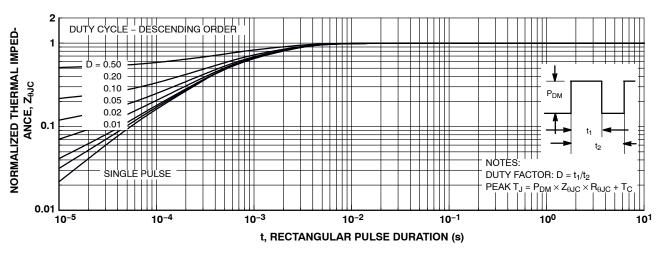


Figure 3. Normalized Maximum Transient Thermal Impedance

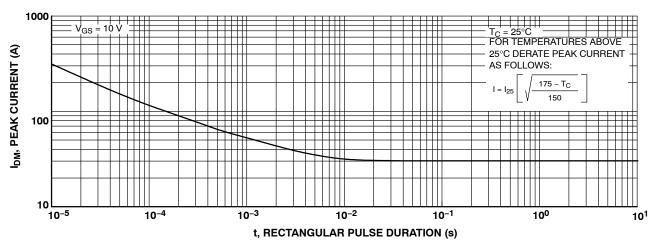


Figure 4. Peak Current Capability

TYPICAL CHARACTERISTICS (continued)

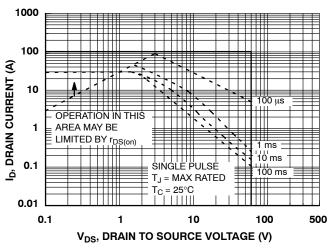
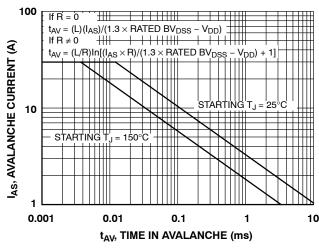



Figure 5. Forward Bias Safe Operating Area

NOTE: Refer to ON Semiconductor Application Notes AN7514 and AN7515.

Figure 6. Unclamped Inductive Switching Capability

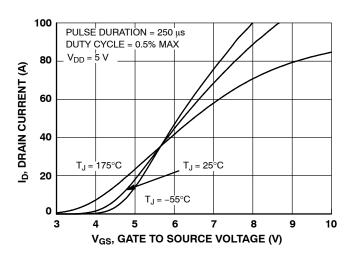


Figure 7. Transfer Characteristics

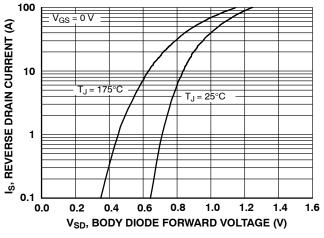


Figure 8. Forward Diode Characteristics

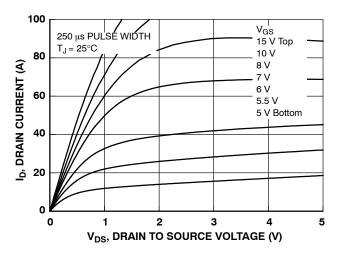


Figure 9. Saturation Characteristics

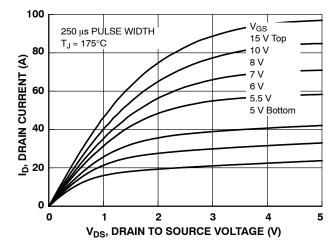
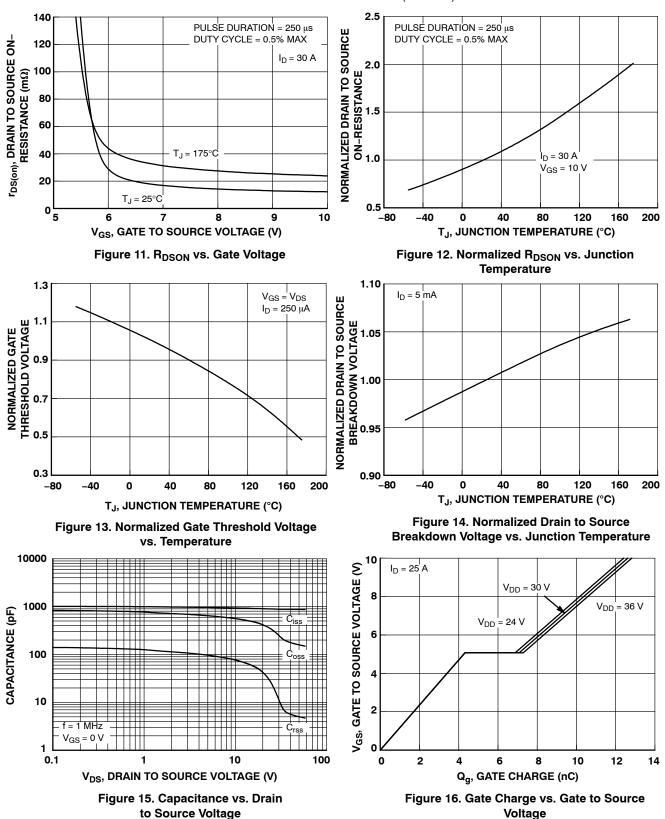
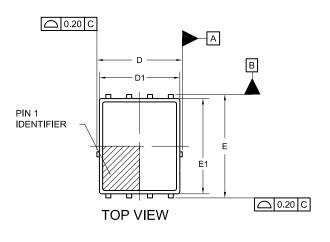
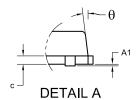



Figure 10. Saturation Characteristics

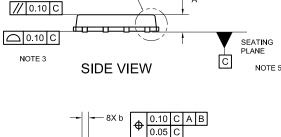

TYPICAL CHARACTERISTICS (continued)

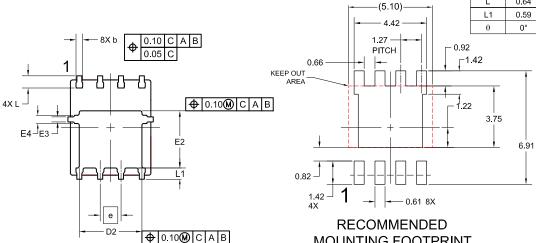
POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.


PQFN8 5X6, 1.27P CASE 483BJ ISSUE C

DATE 13 DEC 2017

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- 4. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- 5. SEATING PLANE IS DEFINED BY THE TERMINALS. A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.


MOUNTING FOOTPRINT

	MILLIMETERS		
DIM	MIN.	NOM.	MAX.
Α	0.90	1.00	1.10
A1	0.00	0.025	0.05
b	0.31	0.41	0.51
С	0.23	0.28	0.33
D	4.90	5.00	5.10
D1	4.80	4.90	5.00
D2	3.72	3.82	3.92
E	6.20	6.30	6.40
E1	5.70	5.80	5.90
E2	3.38	3.48	3.58
E3	0.30		
E4	0.50		
е	1.27 BSC		
L	0.64	0.74	0.84
L1	0.59	0.69	0.79

12°

BOTTOM VIEW

DOCUMENT NUMBER:	98AON13688G
STATUS:	ON SEMICONDUCTOR STANDARD
NEW STANDARD:	
DESCRIPTION:	PQFN8 5X6, 1.27P

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

PAGE 1 OF 2

DOCUMENT NUMBER: 98AON13688G

PAGE 2 OF 2

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION FROM FAIRCHILD PQFN08M TO ON	30 SEP 2016
	SEMICONDUCTOR. REQ. BY I. CAMBALIZA.	00 021 2010
Α	MODIFIED DRAWING TO ADD PIN NUMBERING AND TOP OF PACKAGE DIMENSIONS. REQ. BY J. COMPARATIVO.	02 JUN 2017
В	ROTATED CASE OUTLINE TO CORRECT PIN NUMBERING. REQ. BY H. ALLEN.	14 JUN 2017
С	REDRAWN TO ON SEMI JEDEC STANDARDS. MODIFIED DIMENSIONS FOR A, D & E. REQ. BY J. COMPARATIVO.	13 DEC 2017

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative