Silicon Carbide Schottky Diode

650 V, 40 A

Description

Silicon Carbide (SiC) Schottky Diodes use a completely new technology that provides superior switching performance and higher reliability compared to Silicon. No reverse recovery current, temperature dependent switching characteristics, and excellent thermal performance sets Silicon Carbide as the next generation of power semiconductor. System benefits include highest efficiency, faster operation frequency, increased power density, reduced EMI, and reduced system size and cost.

Features

- Max Junction Temperature 175°C
- Avalanche Rated 182 mJ
- High Surge Current Capacity
- Positive Temperature Coefficient
- Ease of Paralleling
- No Reverse Recovery/No Forward Recovery

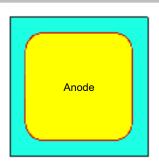
Applications

- General Purpose
- SMPS, Solar Inverter, UPS
- Power Switching Circuits

Die Information

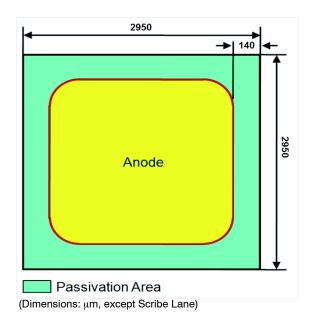
- Wafer Diameter: 6 inch
- Die Size: 3,030 × 3,030 µm (include Scribe Lane)
- Metallization:
 - Top Ti/TiN/AlCu 4 μm
 - ◆ Back Ti/NiV/Ag
- Die Thickness: Typ. 200 μm
- Bonding Pad Size
 - Anode 2,670 × 2,670 μm
- Recommended Wire Bond (Note 1)
 - Anode: $20 \text{ mil} \times 2$

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
V _R	Reverse Blocking Voltage	$I_R = 200 \ \mu A, T_C = 25^{\circ}C$	650	-	-	V
V _F	Forward Voltage	$I_F = 40 \text{ A}, T_C = 25^{\circ}\text{C}$	1.20	-	1.75	V
I _R	Reverse Current	$V_R = 650 \text{ V}, T_C = 25^{\circ}\text{C}$	_	-	200	μΑ


NOTES:

- 1. Based on TO-247 package of ON Semiconductor.
- 2. Tested 100% on wafer.

ON Semiconductor®


www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

Die Layout Cross Section

N+ Substrate

Cathode

Figure 1. Die Layout

Figure 2. Cross Section

Passivation Information

Passivation Material: Polymide (PSPI)
Passivation Type: Local Passivation
Passivation Thickness: 90 KA

The Configuration of Chips (Based on 6" Wafer)

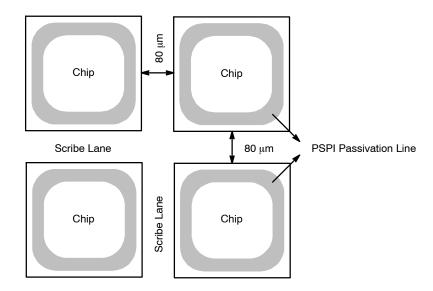


Figure 3. Saw-on-film Frame Packing Based on Tested Wafer

ABSOLUTE MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	FFSH4065A	Unit	
V_{RRM}	Peak Repetitive Reverse Voltage	650	V	
E _{AS}	Single Pulse Avalanche Energy (Note 3)	182	mJ	
IF	Continuous Rectified Forward Current @ T _C <	40	Α	
	Continuous Rectified Forward Current @ T _C <	48		
I _{F, Max}	Non-Repetitive Peak Forward Surge Current	T _C = 25°C, 10 μs	1300	Α
		T _C = 150°C, 10 μs	1200	Α
I _{F,SM}	Non-Repetitive Forward Surge Current	Half-Sine Pulse, t _p = 8.3 ms	180	Α
I _{F,RM}	Repetitive Forward Surge Current	Half-Sine Pulse, t _p = 8.3 ms	85	Α
Ptot	Power Dissipation	T _C = 25°C	349	W
		T _C = 150°C	58	W
T _J , T _{STG}	Operating and Storage Temperature Range	•	-55 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

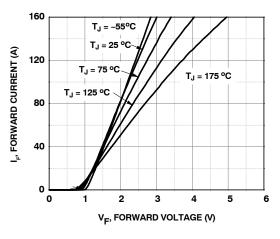
	Symbol	Parameter	Value	Unit
Ī	$R_{ heta JC}$	Thermal Resistance, Junction to Case, Max	0.43	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
V _F	Forward Voltage	I _F = 40 A, T _C = 25°C	-	1.50	1.75	V
		I _F = 40 A, T _C = 125°C	-	1.60	2.0	
		I _F = 40 A, T _C = 175°C	_	1.72	2.4	
I _R	Reverse Current	V _R = 650 V, T _C = 25°C	-	-	200	μΑ
		V _R = 650 V, T _C = 125°C	-	-	400	
		V _R = 650 V, T _C = 175°C	-	-	600	
Q _C	Total Capacitive Charge	V = 400 V	-	119	-	nC
С	Total Capacitance	V _R = 1 V, f = 100 kHz	-	1989	-	pF
		V _R = 200 V, f = 100 kHz	-	218	-	
		V _R = 400 V, f = 100 kHz	_	164	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION


Part Number	Top Marking	Package	Packing Method	Quantity
FFSH4065A	FFSH4065A	TO247-2L	Tube	30 units

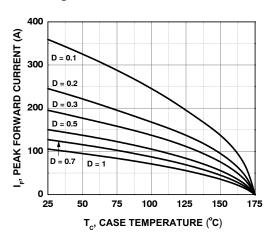
^{3.} E_{AS} of 182 mJ is based on starting $T_J = 25^{\circ}C$, L = 0.5 mH, $I_{AS} = 27$ A, V = 50 V.

TYPICAL CHARACTERISTICS

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

10⁻¹

T_J = 175 °C


T_J = 55 °C

T_J = 55 °C

T_J = 75 °C

Figure 4. Forward Characteristics

Figure 5. Reverse Characteristics

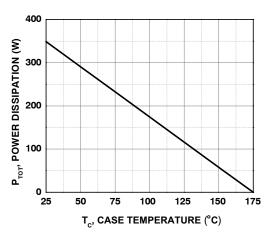
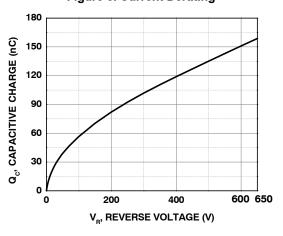



Figure 6. Current Derating

Figure 7. Power Derating

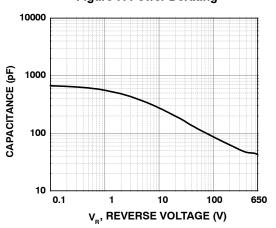


Figure 8. Capacitive Charge vs. Reverse Voltage

Figure 9. Capacitance vs. Reverse Voltage

TYPICAL CHARACTERISTICS

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

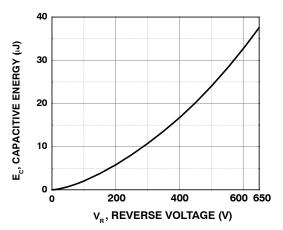


Figure 10. Capacitance Stored Energy

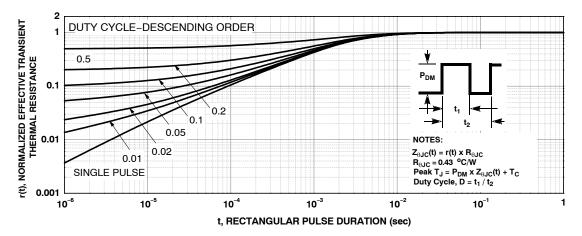


Figure 11. Junction-to-Case Transient Thermal Response Curve

TEST CIRCUIT AND WAVEFORMS

L = 0.5 mH $R < 0.1 \Omega$ $V_{DD} = 50 \text{ V}$ $EAVL = 1/2LI2 \left[V_{R(AVL)} / \left(V_{R(AVL)} - V_{DD} \right) \right]$ $Q1 = IGBT \left(BV_{CES} > DUT \ V_{R(AVL)} \right)$ V_{AVL} V_{DD} V_{DD} V_{DD}

Figure 12. Unclamped Inductive Switching Test Circuit & Waveform

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative