Silicon Carbide Schottky Diode 650 V, 6 A

Silicon Carbide (SiC) Schottky Diodes use a completely new technology that provides superior switching performance and higher reliability compared to Silicon. No reverse recovery current, temperature independent switching characteristics, and excellent thermal performance sets Silicon Carbide as the next generation of power semiconductor. System benefits include highest efficiency, faster operating frequency, increased power density, reduced EMI, and reduced system size and cost.

Features

- Max Junction Temperature 175°C
- Avalanche Rated 24.5 mJ
- High Surge Current Capacity
- Positive Temperature Coefficient
- Ease of Paralleling
- No Reverse Recovery / No Forward Recovery
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

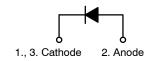
- Automotive HEV-EV Onboard Chargers
- Automotive HEV-EV DC-DC Converters

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter		Symbol	Value	Unit
Peak Repetitive Reverse Voltage		V_{RRM}	650	V
Single Pulse Avalanche Energy (T _J = 25° C, I _{L(pk)} = 9.9 A, L = 0.5 mH, V = 50 V)		E _{AS}	24.5	mJ
Continuous Rectified Forward Current	T _C < 154	lF	6.0	Α
Current	T _C < 135		9.1	
Non-Repetitive Peak Forward Surge Current	$T_C = 25^{\circ}C$, $t_P = 10 \mu s$	I _{FM}	493	Α
	$T_{C} = 150^{\circ}C,$ $t_{P} = 10 \ \mu s$		442	
Non-Repetitive Forward Surge Current (Half-Sine Pulse)	$T_{C} = 25^{\circ}C$ $t_{P} = 8.3 \text{ ms}$	I _{FSM}	28	Α
Power Dissipation	T _C = 25°C	P _{tot}	75	W
	T _C = 150°C		12.5	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

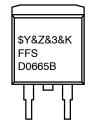
THERMAL RESISTANCE


Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	2.0	°C/W

ON Semiconductor®

www.onsemi.com

V _{RRM}	I _F
650 V	6.0 A



Schottky Diode

DPAK3 (TO-252, 3 LD) CASE 369AS

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code

&3 = Numeric Date Code &K = Lot Code

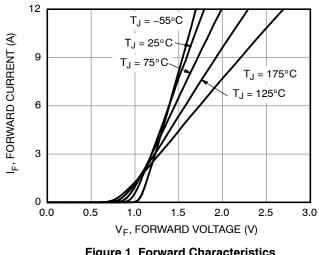
FFSD0665B = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS

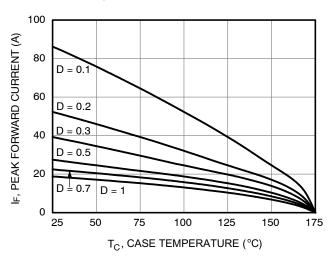
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
N CHARAC	TERISTICS					
V _F F	Forward Voltage	I _F = 6.0 A, T _J = 25°C		1.38	1.7	V
		I _F = 6.0 A, T _J = 125°C		1.53	2.0	
		I _F = 6.0 A, T _J = 175°C		1.67	2.4	
I _R Re	Reverse Current	V _R = 650 V, T _J = 25°C		0.5	40	μΑ
		V _R = 650 V, T _J = 125°C		1.0	80	
		V _R = 650 V, T _J = 175°C		2.0	160	
HARGES, C	APACITANCES & GATE RES	ISTANCE				
Q_{C}	Total Capacitive Charge	V _C = 400 V		16		nC
C _{tot}	1	V _R = 1 V, f = 100 kHz		259		pF
		V _R = 200 V, f = 100 kHz		29		1
		V _R = 400 V, f = 100 kHz		22		1


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

PART MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Packing Method [†]	Reel Size	Tape Width	Quantity
FFSD0665B-F085	FFSD0665B	DPAK	Tape & Reel	330 mm	16 mm	2500 units

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


TYPICAL CHARACTERISTICS

10 -6 IR, REVERSE CURRENT (A) 10⁻⁷ $T_J = 175^{\circ}C$ $T_J = 125^{\circ}C$ 10 -8 T_J = 75°C $T_{J} = 25^{\circ}Q$ $T_J =$ 10 -9 100 0 300 400 600 650 V_R, REVERSE VOLTAGE (V)

Figure 1. Forward Characteristics

Figure 2. Reverse Characteristics

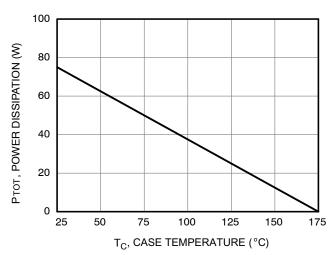
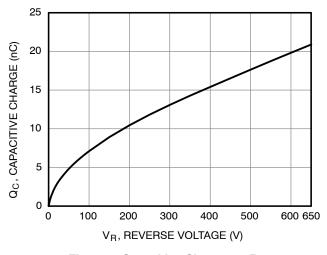



Figure 3. Current Derating

Figure 4. Power Derating

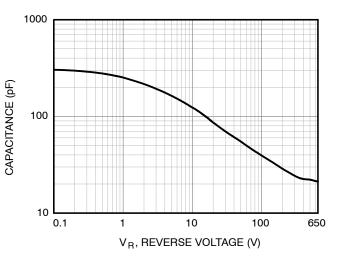


Figure 5. Capacitive Charge vs. Reverse Voltage

Figure 6. Capacitance vs. Reverse Voltage

TYPICAL CHARACTERISTICS

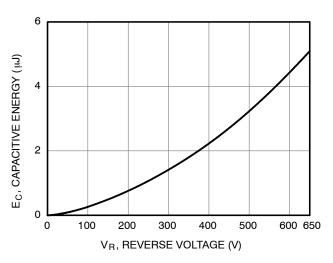


Figure 7. Capacitance Stored Energy

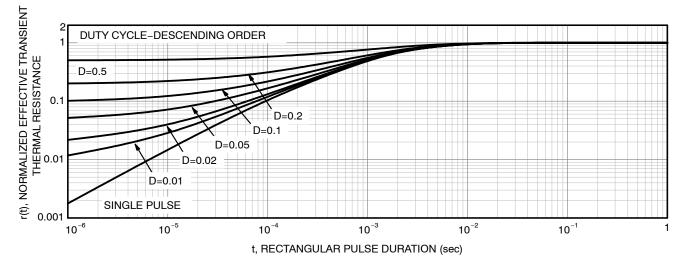


Figure 8. Junction-to-Case Transient Thermal Response

PACKAGE DIMENSIONS

DPAK3 (TO-252 3 LD) CASE 369AS Α ISSUE O 6.73 6.35 5.46 5.21 −5.55 MIN→ 6.22 5.97 6.50 MIN 0.25 MAX PLASTIC BODY C 2 3 STUB DIODE PRODUCTS VERSION 1.14 0.76 3 (0.59)-1.25 MIN 0.89 0.64 ⊕ 0.25 M AM C 2.29 4.57 LAND PATTERN RECOMMENDATION NON-DIODE PRODUCTS VERSION 2.39 SEE 2.18 4.32 MIN NOTE D 0.58 0.45 5,21 MIN 10.41 9.40 SEE DETAIL A

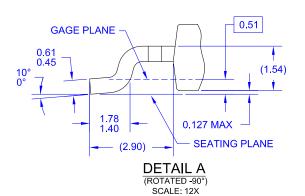
DIODE PRODUCTS VERSION

NOTES: UNLESS OTHERWISE SPECIFIED

A) THIS PACKAGE CONFORMS TO JEDEC, TO-252,

NON-DIODE PRODUCTS VERSION

- ISSUE C, VARIATION AA.


- ISSUE C, VARIATION AA.

 B) ALL DIMENSIONS ARE IN MILLIMETERS.

 C) DIMENSIONING AND TOLERANCING PER
 ASME Y14.5M-2009.

 D) SUPPLIER DEPENDENT MOLD LOCKING HOLES OR CHAMFERED
 CORNERS OR EDGE PROTRUSION.

 E) TRIMMED CENTER LEAD IS PRESENT ONLY FOR DIODE PRODUCTS
- F) DIMENSIONS ARE EXCLUSSIVE OF BURSS, MOLD FLASH AND TIE BAR EXTRUSIONS.
- G) LAND PATTERN RECOMENDATION IS BASED ON IPC7351A STD TO228P991X239-3N.

○ 0.10 B

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative