Silicon Carbide Schottky Diode

650 V, 10 A

Silicon Carbide (SiC) Schottky Diodes use a completely new technology that provides superior switching performance and higher reliability compared to Silicon. No reverse recovery current, temperature independent switching characteristics, and excellent thermal performance sets Silicon Carbide as the next generation of power semiconductor. System benefits include highest efficiency, faster operating frequency, increased power density, reduced EMI, and reduced system size and cost.

Features

- Max Junction Temperature 175°C
- Avalanche Rated 49 mJ
- High Surge Current Capacity
- Positive Temperature Coefficient
- Ease of Paralleling
- No Reverse Recovery / No Forward Recovery
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

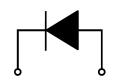
Applications

- Automotive HEV-EV Onboard Chargers
- Automotive HEV-EV DC-DC Converters

ABSOLUTE MAXIMUM RATINGS

(T_C = 25°C, Unless otherwise specified)

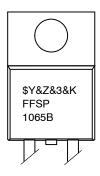
Symbol	Parar	FF- SP1065B-F085	Unit		
V_{RRM}	Peak Repetitive Rev	verse Voltage	650	V	
E _{AS}	Single Pulse Avalan	che Energy (Note 1)	49	mJ	
IF	Continuous Rectified @ T _C < 139°C	10	Α		
	Continuous Rectified @ T _C < 135°C	11			
I _{F, Max}	Non-Repetitive Peak Forward	T _C = 25°C, 10 μs	650	Α	
	Surge Current	T _C = 150°C, 10 μs	570		
I _{F, SM}	Non-Repetitive Forward Surge Current	Half-Sine Pulse, t _p = 8.3 ms	45	Α	
P _{tot}	Power Dissipation	T _C = 25°C	75	W	
		T _C = 150°C	12.5		
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	°C	


^{1.} E_{AS} of 49 mJ is based on starting $T_J = 25^{\circ}C$, L = 0.5 mH, $I_{AS} = 14$ A, V = 50 V.

ON Semiconductor®

www.onsemi.com

ELECTRICAL CONNECTION


1. Cathode

2. Anode

TO-220-2LD CASE 340BB

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Numeric Date Code

= Lot Code

FFSP1065B-F085 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case, Max.	2.0	°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FFSP1065B-F085	FFSP1065B	TO220	Tube	N/A	N/A	50 Units

ELECTRICAL CHARACTERISTICS $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _F	Forward Voltage	I _F = 10 A, T _C = 25°C	_	1.38	1.7	V
		I _F = 10 A, T _C = 125°C	_	1.6	2.0	
		I _F = 10 A, T _C = 175°C	_	1.72	2.4	
I _R	Reverse Current	V _R = 650 V, T _C = 25°C	_	0.5	40	μΑ
		V _R = 650 V, T _C = 125°C	-	1.0	80	
		$V_R = 650 \text{ V}, T_C = 175^{\circ}\text{C}$	-	2.0	160	
Q_{C}	Total Capacitive Charge	V = 400 V	-	25	-	nC
С	Total Capacitance	V _R = 1 V, f = 100 kHz	_	421	-	pF
		V _R = 200 V, f = 100 kHz	_	46	_	
		V _R = 400 V, f = 100 kHz	_	35	-	

TYPICAL CHARACTERISTICS $T_J = 25^{\circ}C$ Unless Otherwise Noted

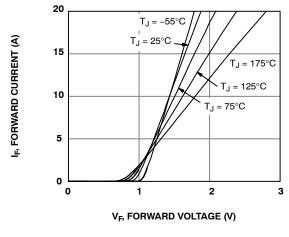


Figure 1. Forward Characteristics

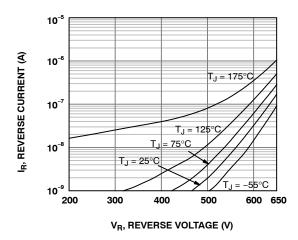


Figure 2. Reverse Characteristics

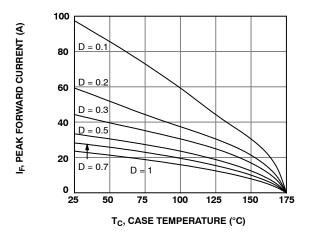


Figure 3. Current Derating

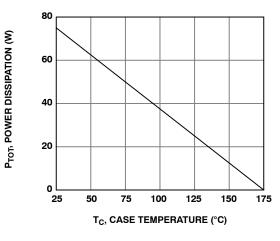


Figure 4. Power Dissipation

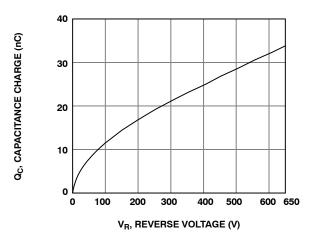


Figure 5. Capacitance Charge vs. Reverse Voltage

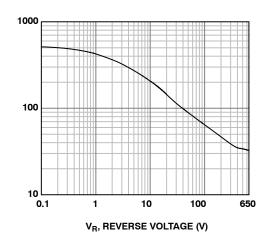


Figure 6. Capacitance vs. Reverse Voltage

CAPACITANCE (pF)

TYPICAL CHARACTERISTICS T_J = 25°C Unless Otherwise Noted (continued)

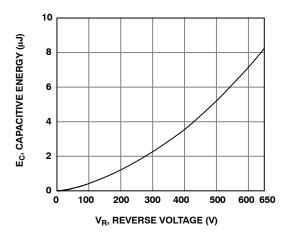


Figure 7. Capacitance Stored Energy

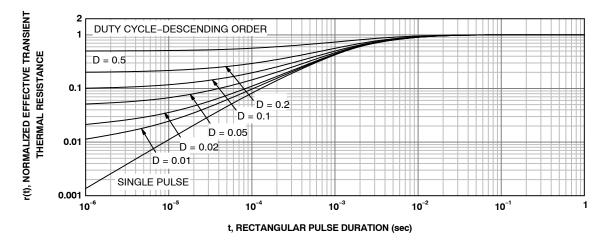


Figure 8. Junction-to-Case Transient Thermal Response Curve

TEST CIRCUIT AND WAVEFORMS

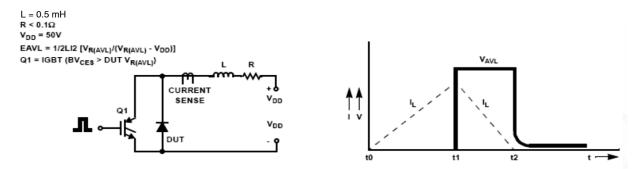
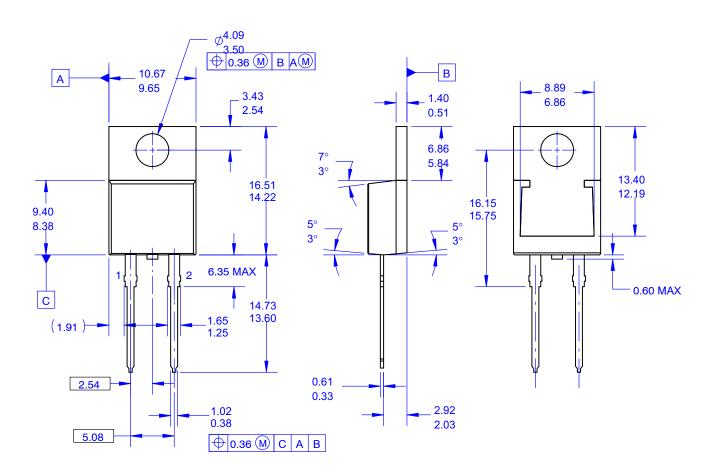
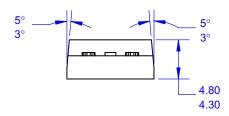




Figure 9. Unclamped Inductive Switching Test Circuit & Waveform

PACKAGE DIMENSIONS

TO-220-2LD CASE 340BB **ISSUE O**

NOTES:

- A. PACKAGE REFERENCE: JEDEC TO220,ISSUE K, VARIATION AC,DATED APRIL 2002. B. ALL DIMENSIONS ARE IN MILLIMETERS. C. DIMENSION AND TOLERANCE AS PER ASME
- Y14.5-2009.
- D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative