
ON Semiconductor® FGH40T100SMD 1000 V, 40 A Field Stop Trench IGBT

Features

- High Current Capability
- Low Saturation Voltage: V_{CE(sat)} = 1.9 V(Typ.) @ I_C = 40 A
- High Input Impedance
- Fast Switching
- RoHS Compliant

Applications

• UPS, welder, PFC

Using innovative field stop trench IGBT technology, ON Semiconductor new series of field stop trench IGBTs offer the

optimum perfor-mance for hard switching application such as

General Description

UPS, welder and PFC applications.

Absolute Maximum Ratings

Symbol	Description		Ratings	Unit	
V _{CES}	Collector to Emitter Voltage		1000	V	
V _{GES}	Gate to Emitter Voltage		± 25	V	
	Transient Gate to Emitter Voltage		± 30	V	
	Collector Current	@ T _C = 25 ^o C	80	A	
I _C	Collector Current	@ T _C = 100°C	40	A	
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25 ^o C	120	A	
I _F	Diode Forward Current	@ T _C = 25 ^o C	80	A	
'F	Diode Forward Current @ $T_{\rm C}$ = 100°C	40	A		
I _{FM (1)}	Pulsed Diode Forward Current	@ T _C = 25°C	120	A	
P _D	Maximum Power Dissipation	@ T _C = 25°C	333	W	
· D	Maximum Power Dissipation	@ T _C = 100°C	166	W	
TJ	Operating Junction Temperature		-55 to +175	°C	
T _{stg}	Storage Temperature Range		-55 to +175	°C	
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

Notes:

1: Repetitive rating: Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case	-	0.45	°C/W
$R_{\theta JC}(Diode)$	Thermal Resistance, Junction to Case	-	0.8	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	-	40	°C/W

Device Marking		Device	Package Reel Size TO-247 A03 -	Reel Size	Tape Width		Quantity	
		FGH40T100SMD		-		30ea		
		TO-247 G03 -		-		30ea		
Electric	al Chai	racteristics of the I	GBT T _C = 25°	C unless otherwise noted				
Symbol		Parameter	Test C	Conditions	Min.	Тур.	Max.	Unit
Off Charac	teristics							
BV _{CES}		to Emitter Breakdown Voltage	V _{GE} = 0 V, I _C	= 1 mA	1000	-	-	V
$\frac{\Delta BV_{CES}}{\Delta T_J}$	Temperat Voltage	ure Coefficient of Breakdown	$V_{GE} = 0 \text{ V}, \text{ I}_{C} = 250 \text{ uA}$		-	0.6	-	V/ºC
I _{CES}	Collector	Cut-Off Current	V _{CE} = V _{CES} , V	V _{CE} = V _{CES} , V _{GE} = 0 V		-	1000	μA
I _{GES}	G-E Leak	age Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$		-	-	±500	nA
On Charac	teristics		-					
V _{GE(th)}	G-E Three	shold Voltage	I _C = 250 uA, \	/ _{CE} = V _{GE}	4.2	5.3	6.5	V
	Collector to Emitter Saturation Voltage		I _C = 40 A, V _{GE}		-	1.9	2.3	V
V _{CE(sat)}			$I_{C} = 40 \text{ A}, V_{GE} = 15 \text{ V},$ $T_{C} = 175^{\circ}\text{C}$		-	2.4	-	V
Dynamic C	haracteris	tics						
C _{ies}	Input Cap	pacitance			-	3980	5295	pF
C _{oes}	Output Ca	apacitance		V _{CE} = 30 V _, V _{GE} = 0 V, f = 1 MHz		124	165	pF
C _{res}	Reverse ⁻	Transfer Capacitance			-	76	115	pF
Switching	Characteri	istics						
t _{d(on)}	Turn-On [Delay Time			-	29	38	ns
t _r	Rise Time	9	-		-	42	55	ns
t _{d(off)}	Turn-Off [Delay Time	V _{CC} = 600 V,	I _C = 40 A,	-	285	371	ns
t _f	Fall Time		R_{G} = 10 Ω, V_{GE} = 15 V,		-	23	30	ns
E _{on}	Turn-On S	Switching Loss	Inductive Loa	d, T _C = 25°C	-	2.35	3.1	mJ
E _{off}	Turn-Off S	Switching Loss				1.15	1.5	mJ
E _{ts}	Total Swit	ching Loss				3.5	4.6	mJ
t _{d(on)}	Turn-On [Delay Time			-	27	36	ns
t _r	Rise Time	9			-	49	64	ns
t _{d(off)}	Turn-Off [Delay Time	$V_{CC} = 600 \text{ V}, I_C = 40 \text{ A},$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$	-	285	371	ns	
t _f	Fall Time			-	20	26	ns	
E _{on}	Turn-On S	Switching Loss	Inductive Loa	Inductive Load, T _C = 175 ^o C		4.4	5.7	mJ
E _{off}	Turn-Off S	Switching Loss				1.9	2.5	mJ
E _{ts}	Total Swit	ching Loss			-	6.3	8.2	mJ
Qg	Total Gate	e Charge			-	265	398	nC
Q _{ge}	Gate to E	mitter Charge	$V_{CE} = 600 V,$	I _C = 40 A,	-	32	48	nC
Q _{gc}		ollector Charge	– V _{GE} = 15 V			135	203	nC

Symbol	Parameter	Test Conditions		Min.	Тур.	Max	Unit
V_{FM}	Diode Forward Voltage	I _F = 40 A	T _C = 25°C	-	3.4	4.4	V
			T _C = 175 ^o C	-	2.6	-	
t _{rr}	Diode Reverse Recovery Time	I _F =40 A, dI _F /dt = 200 A/μs	T _C = 25°C	-	60	78	ns
			T _C = 175 ^o C	-	256	-	
Q _{rr}	Diode Reverse Recovery Charge		T _C = 25 ^o C	-	185	260	nC
			T _C = 175 ^o C	-	1512	-	

Typical Performance Characteristics

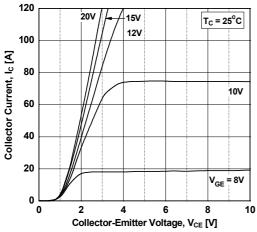


Figure 3. Typical Saturation Voltage Characteristics

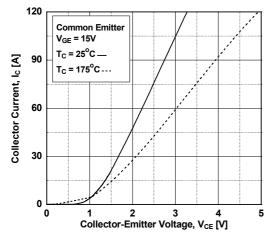


Figure 5. Saturation Voltage vs. V_{GE}

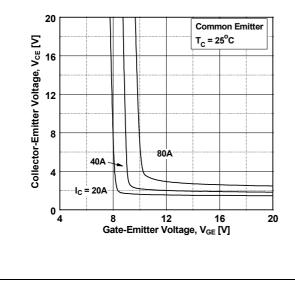
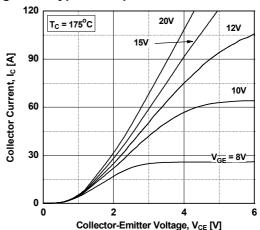
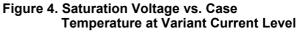




Figure 2. Typical Output Characteristics

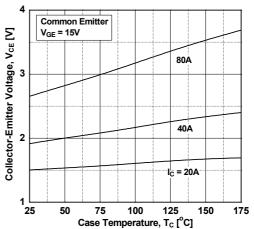
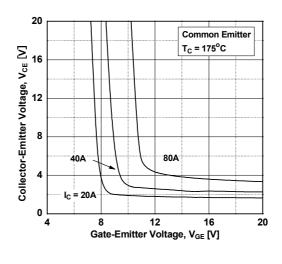
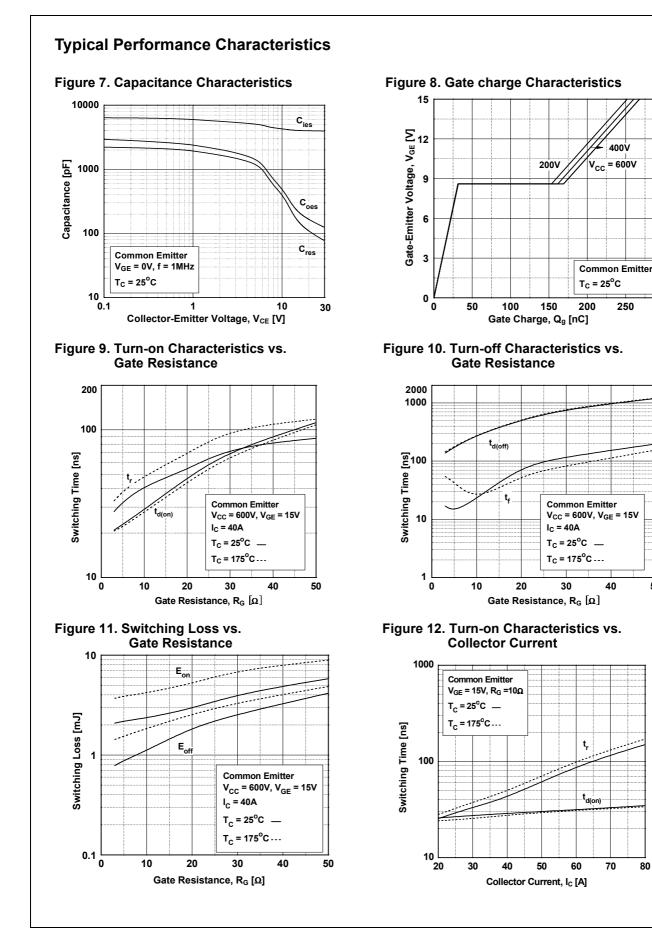
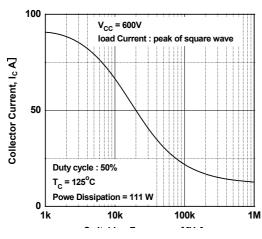
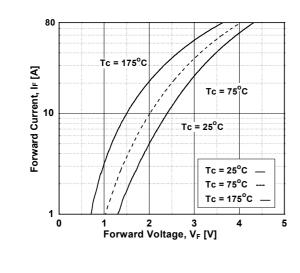




Figure 6. Saturation Voltage vs. V_{GE}


FGH40T100SMD — 1000 V, 40 A Field Stop Trench IGBT


www.onsemi.com

FGH40T100SMD — 1000 V, 40 A Field Stop Trench IGBT

Typical Performance Characteristics Figure 13. Turn-off Characteristics vs. **Collector Current** 1000 t_{d(off)} Switching Time [ns] 100 t_f 10 Common Emitter $V_{GE} = 15V, R_G = 10\Omega$ $T_{c} = 25^{\circ}C$ — T_C = 175°C... 20 30 40 80 50 60 70 Collector Current, I_C [A] Figure 15. Load Current Vs. Frequence

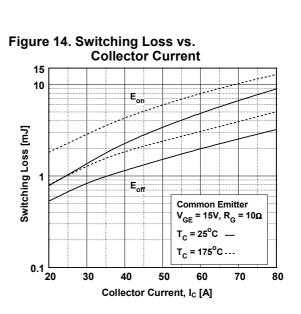


Figure 16. SOA Characteristics

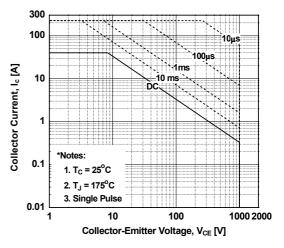
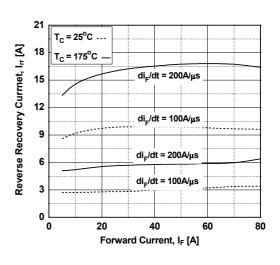
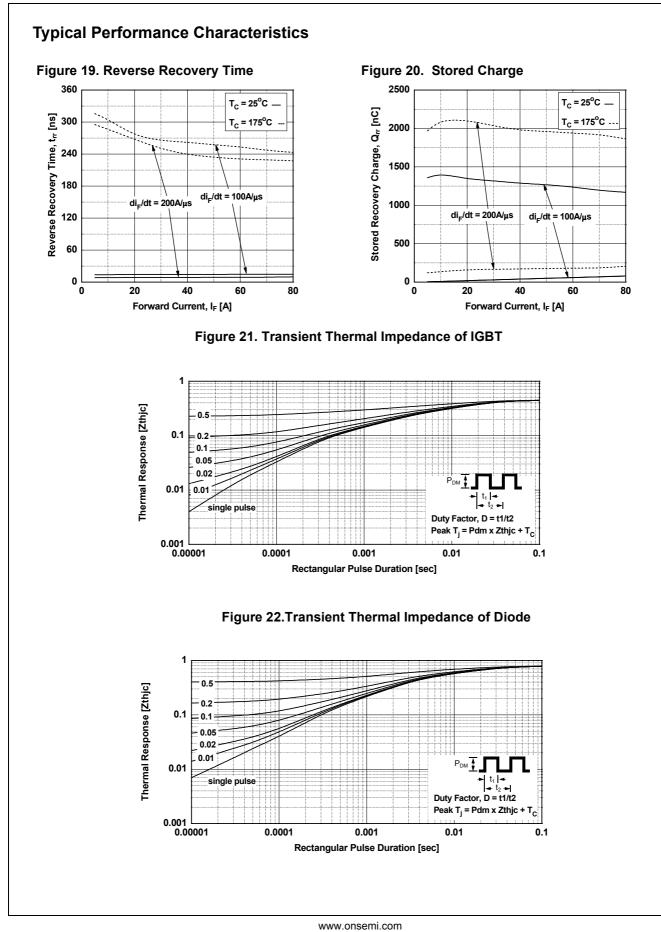
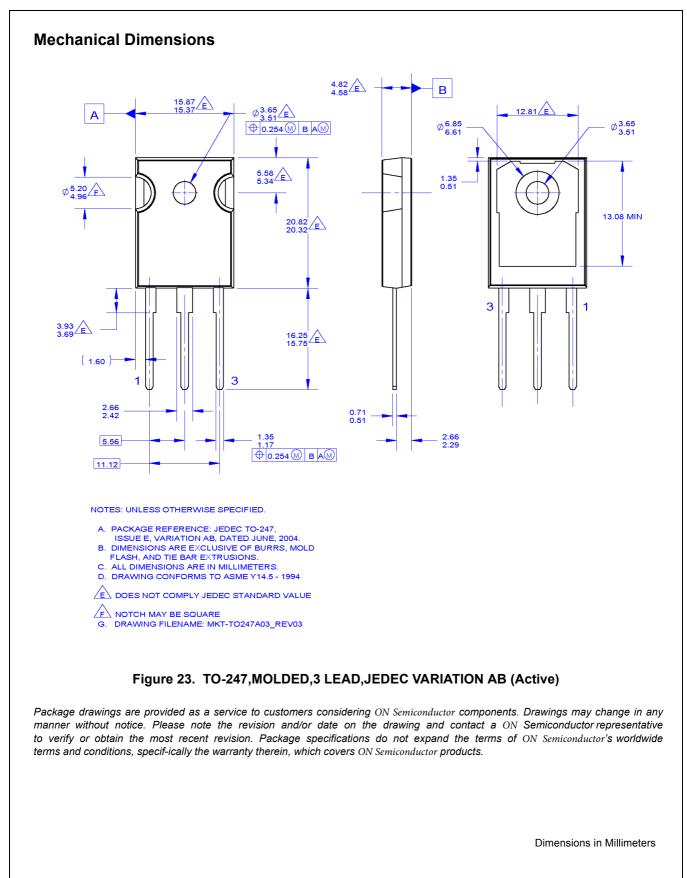
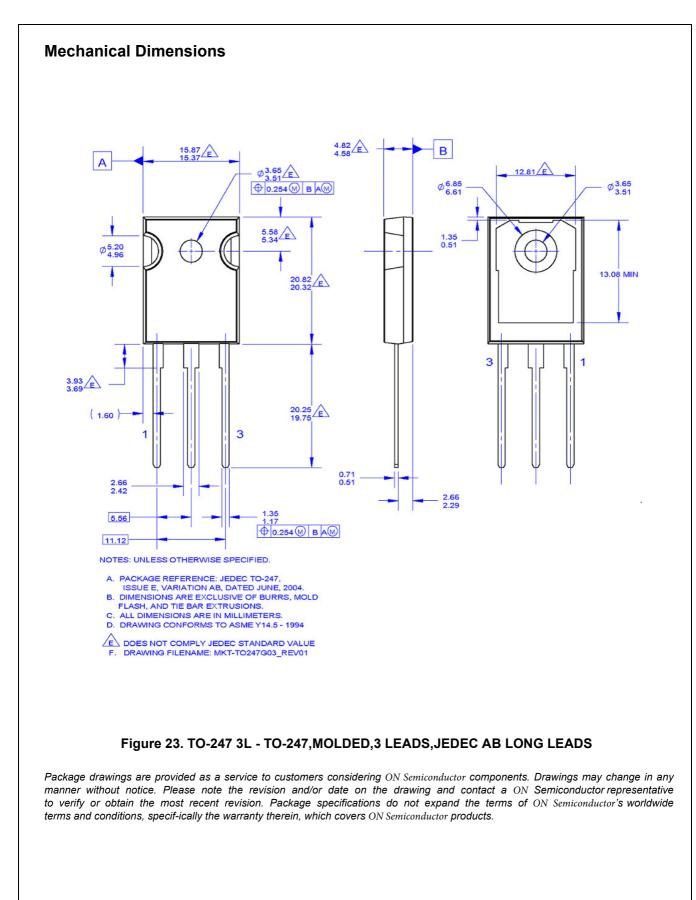






Figure 18. Reverse Recovery Current

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hardnes, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with su

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

www.onsemi.com

Semiconductor Components Industries, LLC