Current Limit Switch, with OVP and TRCB, 28 V/5A Rated

Product Preview FPF2895V

Features

- AEC-Q100 Qualified (Grade 2)
- 28 V / 5 A Capability
- Wide Input Voltage Range: $4 \mathrm{~V} \sim 22 \mathrm{~V}$
- Ultra Low On-Resistance
- Typ. $27 \mathrm{~m} \Omega$ at 5 V and $25^{\circ} \mathrm{C}$
- Adjustable Current Limit with external RSET
- $500 \mathrm{~mA} \sim 5 \mathrm{~A}$
- Selectable OVLO with OV1 and OV2 Logic Input
- $5.95 \mathrm{~V} \pm 50 \mathrm{mV}$
- $10 \mathrm{~V} \pm 100 \mathrm{mV}$
- $16.8 \mathrm{~V} \pm 300 \mathrm{mV}$
- $23 \mathrm{~V} \pm 460 \mathrm{mV}$
- Selectable ON Polarity
- Selectable Over-Current Behavior
- Auto-Restart Mode
- Current Source Mode
- True Reverse Current Block
- Thermal Shutdown
- Open Drain Fault FLAGB Output
- UL60950-1 \& IEC 60950-1 Certification 5 A Max Loading
- Robust ESD Capability
- 2 kV HBM \& 1 kV CDM
- 15 kV Air Discharge \& 8 kV Contact Discharge under IEC 61000-4-2

Applications

- Laptop, Desktop Computing and Monitor
- Power Accessories
- Automotive

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

Description

The FPF2895V features a 28 V and 5 A rated current limit power switch, which offers Over-Current Protection (OCP), Over-Voltage Protection (OVP), and True Reverse Current Block (TRCB) to protect system. It has low On-resistance of typical $27 \Omega \mathrm{~m}$ with WL-CSP can operate over an input voltage range of 4 V to 22 V .

The FPF2895V supports $\pm 15 \%$ of current limit accuracy, over-current range of 500 mA to 2 A and $\pm 10 \%$ of current limit accuracy, over-current range of 2 A to 5 A , flexible operations such as selectable OVP, selectable ON polarity and selectable OCP behavior, which can be optimized according to system requirements.

The FPF2895V is available in a 24-bump, $1.67 \mathrm{~mm} \times 2.60 \mathrm{~mm}$ Wafer-Level Chip-Scale Package (WL-CSP) with 0.4 mm pitch.

[^0]Table 1. ORDERING INFORMATION

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FPF2895VUCX	$-40^{\circ} \mathrm{C}-+105^{\circ} \mathrm{C}$	3 K	$24-$ Ball, 0.4 mm Pitch WLCSP	Tape \& Reel

Application Diagram

Figure 1. Typical Application

Block Diagram

Figure 2. Functional Block Diagram

PIN CONFIGURATION

Figure 3. Pin Configuration

Table 2. PIN DEFINITIONS

Name	Bump	Type	Description
VIN	C3, D3, D4, E3, E4, F3, F4	Input/Supply	Switch Input and Device Supply
VOUT	C2, D1, D2, E1, E2, F1, F2	Output	Switch Output to Load
NC	A1	Dummy	Recommended to connect to GND
ON	A2	Input	Internal pull-down resistor of $1 \mathrm{M} \Omega$ is included. Active polarity is depending on POL state (Note 1)
POL	A4	Input	Enable Polarity Selection. Internal pull/up of $1 \mathrm{M} \Omega$ is included. HIGH (or Floating): Active LOW LOW: Active HIGH (Note 1)
FLAGB	A3	Output	Active LOW, open drain output indicates an over-current, under-voltage, over-voltage, or over-temperature state.
ISET	C1	Input	A resistor from ISET to ground set the current limit for the switch. See below selection Table 6.
OC_MODE	B2	Input	OCP behavior can be selected. Internal pull-up of $1 \mathrm{M} \Omega$ is included. HIGH (or Floating): Auto-restart mode during over-current condition. LOW: Current source mode during over-current condition. (Note 1)
OV1	B3	Input	Over-Voltage Selection Input 1. Internal pull-up of $1 \mathrm{M} \Omega$ is included and see below selection Table 7. (Note 1)
OV2	C4	Input	Over-Voltage Selection Input 2. Internal pull-up of $1 \mathrm{M} \Omega$ is included and see Table 7 (Note 1)
GND	B1, B4	GND	Device Ground

[^1]FPF2895V

Table 3. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Min.	Max.	Unit
VIN, VOUT	VIN, VOUT to GND		-0.3	28.0	V
$\mathrm{V}_{\text {PIN }}$	ON, POL, OC_MODE, ISET, FLAGB and OVn to GND		-0.3	6.0	V
Isw	Continuous Switch Current			5.5	A
$t_{\text {PD }}$	Total Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			2.08	W
$\mathrm{T}_{\text {STG }}$	Storage Junction Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Operating Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 Seconds)			+260	${ }^{\circ} \mathrm{C}$
$\Theta J_{\text {A }}$	Thermal Resistance, Junction-to-Ambient (1in. ${ }^{2}$ pad of 2 oz. copper)			60 (Note 2)	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	Electrostatic Discharge Capability	Human Body Model, ANSI/ESDA/JEDEC JS-001	2		kV
		Charged Device Model, JESD22-C101	1		
	IEC61000-4-2 System Level	Air Discharge	15		
		Contact Discharge	8		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
2. Measured using 2S2P JEDEC std. PCB.

Table 4. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	Supply Voltage	4.0	22.0	V
$\mathrm{C}_{\text {IN }} / \mathrm{C}_{\text {OUT }}$	Input and Output Capacitance	1.0		$\mu \mathrm{~F}$
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	+105	${ }^{\circ} \mathrm{C}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 5. ELECTRICAL CHARACTERISTICS (Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=4$ to $22 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $105^{\circ} \mathrm{C}$; typical values are at $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\text {OUt }}=1 \mu \mathrm{~F}, \mathrm{ON}=\mathrm{HIGH}, \mathrm{POL}=\mathrm{OV} 1=\mathrm{OV} 2=\mathrm{OC}, \mathrm{MODE}=\mathrm{GND}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.)

Symbol	Parameter	Conditions		Min.	Typ.	Max.	Unit
BASIC OPERATION							
$\mathrm{V}_{\text {IN }}$	Input Voltage (Note 4)			4		22	V
ISD_IN	$\mathrm{V}_{\text {IN }}$ Shutdown Current	$\begin{aligned} & \mathrm{V}_{\mathrm{ON}}=\mathrm{OFF}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\text { Short to } \\ & \mathrm{GND} \end{aligned}$			75	100	$\mu \mathrm{A}$
I_{Q}	Quiescent Current	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{~V}_{\text {ON }}=\mathrm{ON}$	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$		270	400	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$		300	450	
			$\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}$		350	500	
R_{ON}	On Resistance	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~A}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$		27	39	$\mathrm{m} \Omega$
			$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$		27	39	
			$\mathrm{V}_{\text {IN }}=20 \mathrm{~V}$		27	39	
IoN	ON Input Leakage	$\mathrm{V}_{\text {ON }}=\mathrm{V}_{\text {IN }}$ or GND				10	$\mu \mathrm{A}$
V_{IH}	Logic Pin Input (ON, POL, OV1, OV2, OC_MODE) High Voltage	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V} \sim 23 \mathrm{~V}$		1.2			V
V_{IL}	Logic Pin Input (ON, POL, OV1, OV2, OC_MODE) Low Voltage	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V} \sim 23 \mathrm{~V}$				0.4	V
VP_LOW	FLAGB Output Logic Low Voltage	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$			0.1	0.2	V
ILkg	FLAGB Output High, Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, Switch ON				1	$\mu \mathrm{A}$

PROTECTIONS

ILIM	Current Limit (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}, \mathrm{R}_{\text {SET }}=3.01 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 105^{\circ} \mathrm{C} \end{aligned}$		1.275	1.50	1.725	A
		$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}, \mathrm{R}_{\mathrm{SET}}=1.54 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 105^{\circ} \mathrm{C} \end{aligned}$		2.70	3.00	3.30	
$\mathrm{V}_{\text {FOLD }}$	ILIM Foldback Trip Voltage (Note 3)	$\mathrm{V}_{\text {OUt }}$ under ILIM Mode			2		V
$\mathrm{I}_{\text {FOLD }}$	ILIM Foldback Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}<\mathrm{V}_{\text {FOLD }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \text { OC_MODE }=\text { HIGH } \end{aligned}$			500		mA
		$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}<\mathrm{V}_{\text {FOLD }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \text { OC_MODE = LOW } \end{aligned}$			250		mA
$\mathrm{V}_{\text {UVLO }}$	Under-Voltage Lockout	$\mathrm{V}_{\text {IN }}$ Increasing			2.70	2.95	V
		$V_{\text {IN }}$ Decreasing			2.5		
	UVLO Hysteresis				200		mV
VovLo	Over-Voltage Lockout	OV1 = LOW, OV2 = LOW	$\mathrm{V}_{\text {IN }}$ Rising	22.20	23.00	23.46	V
			$\mathrm{V}_{\text {IN }}$ Falling	22.00			
		OV1 = LOW, OV2 = HIGH	$V_{\text {IN }}$ Rising	9.80	10.00	10.10	
			$\mathrm{V}_{\text {IN }}$ Falling	9.75			
		OV1 = HIGH, OV2 = LOW	$V_{\text {IN }}$ Rising	16.30	16.80	17.10	
			$\mathrm{V}_{\text {IN }}$ Falling	16.10			
		OV1 $=$ HIGH, OV2 $=$ HIGH	$\mathrm{V}_{\text {IN }}$ Rising	5.85	5.95	6.00	
			$\mathrm{V}_{\text {IN }}$ Falling	5.80			
Tovp	OVP Response Time (Note 3)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IN}}>\mathrm{V}_{\text {OVLO }} \text { to } \mathrm{V}_{\text {OUT }} \\ & =0.9 \times \mathrm{V}_{\text {IN }} \end{aligned}$				150	ns
$\mathrm{V}_{\text {T_RCB }}$	TRCB Protection Trip Point	$\mathrm{V}_{\text {OUT }}$ - $\mathrm{V}_{\text {IN }}$			25	40	mV

Table 5. ELECTRICAL CHARACTERISTICS (Unless otherwise noted, $\mathrm{V}_{I N}=4$ to $22 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $105^{\circ} \mathrm{C}$; typical values are at $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}, \mathrm{ON}=\mathrm{HIGH}, \mathrm{POL}=\mathrm{OV} 1=\mathrm{OV} 2=\mathrm{OC}$-MODE $=\mathrm{GND}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.)

$\mathrm{V}_{\text {R_RCB }}$	TRCB Protection, Release Point	$\mathrm{V}_{\text {IN }}$ - $\mathrm{V}_{\text {OUT }}$	25	40	mV
$t_{\text {RCB }}$	TRCB Response Time (Note 3)	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=\mathrm{HIGH} / \mathrm{LOW}$	5		$\mu \mathrm{S}$
$t_{\text {RCB_Release }}$	TRCB Release Time (Note 3)	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, Enabled	1		$\mu \mathrm{s}$
${ }^{\text {toc }}$	Over Current Response Time (Note 3)	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, Moderate OC	20		$\mu \mathrm{s}$
		$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, Hard Short	5		
ISD_OUT	VOUT Shutdown Current	$\mathrm{V}_{\text {ON }}=\mathrm{OFF}, \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=$ Short to GND		2	$\mu \mathrm{A}$
TSD	Thermal Shutdown (Note 3)	Shutdown Threshold	150		${ }^{\circ} \mathrm{C}$
		Hysteresis	20		

DYNAMIC BEHAVIOR

$\mathrm{t}_{\mathrm{DON}}$	Delay On Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$	1	ms
t_{R}	$V_{\text {Out }}$ Rise Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$	1	ms
ton	Turn-On Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$	2	ms
t DOFF	Delay Off Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$	10	$\mu \mathrm{s}$
t_{F}	$V_{\text {OUT }}$ Fall Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$	200	$\mu \mathrm{s}$
toff	Turn-Off Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$	210	$\mu \mathrm{s}$
$t_{\text {blank }}$	Over-Current Blanking Time (Note 3)	OC_MODE = HIGH	5	ms
$\mathrm{t}_{\text {RSTRT }}$	Auto-Restart Time (Note 3)	OC_MODE = HIGH	200	ms
$t_{\text {QUAL }}$	Over-Current Qualification Time (Note 3)	OC_MODE = LOW	5	ms
$t_{\text {deb }}$	FLAGB De-bounce Time (Note 3)	Restart-up during or after OC	3	ms
		Restart-up during or after Thermal shutdown	15	
		Restart-up during or after UVLO	1	

3. Guaranteed by characterization and design, not production test.
4. To avoid output voltage is coupled to high during cold start, the slew rate of Vin should be less than $10 \mathrm{mV} / \mathrm{us}$

Setting Current Limit

FPF2895V current limit is set with an external resistor connected between $\mathrm{I}_{\mathrm{SET}}$ and GND. This resistor is selected using the following equation:

$$
\mathrm{R}_{\mathrm{SET}}(\mathrm{k} \Omega)=\left(\frac{4674.89}{I_{\mathrm{SET}} \mathrm{~mA}}\right)^{1 / 1.0326}
$$

(eq. 1)

Resistor tolerance of 1% or less is recommended. 10% tolerance can be achieved only when ILIM is set to larger than 2 A .

Table 6. ILIM VS. RSET LOOK-UP TABLE

RSET [k ${ }^{\text {] }}$]	ILIM [mA]		
	Min.	Typ.	Max.
8.75	425	500	575
7.35	510	600	690
6.30	595	700	805
5.55	680	800	920
4.95	765	900	1035
4.45	850	1000	1150
4.06	935	1100	1265
3.73	1020	1200	1380
3.45	1105	1300	1495
3.21	1190	1400	1610
3.01	1275	1500	1725
2.82	1360	1600	1840
2.66	1445	1700	1955
2.52	1530	1800	2070
2.39	1615	1900	2185
2.28	1700	2000	2300
2.17	1890	2100	2310
2.07	1980	2200	2420
1.99	2070	2300	2530
1.91	2160	2400	2640
1.83	2250	2500	2750
1.77	2340	2600	2860
1.70	2430	2700	2970
1.64	2520	2800	3080
1.59	2610	2900	3190
1.54	2700	3000	3300
1.49	2790	3100	3410
1.44	2880	3200	3520
1.40	2970	3300	3630
1.36	3060	3400	3740
1.32	3150	3500	3850
1.29	3240	3600	3960
1.25	3330	3700	4070
1.22	3420	3800	4180
1.19	3510	3900	4290
1.16	3600	4000	4400
1.14	3690	4100	4510
1.11	3780	4200	4620
1.08	3870	4300	4730
1.06	3960	4400	4840
1.04 (Note 5)	4050	4500	4950

Table 6. ILIM VS. RSET LOOK-UP TABLE

RSET [k $\mathbf{2}$]	ILIM [mA]		
	Min.	Typ.	Max.
1.02	4140	4600	5060
0.99	4230	4700	5170
0.97	4320	4800	5280
0.96	4410	4900	5390
0.94	4500	5000	5500 (Note 6)

5. Passed UL\&CB certification with max. 5 A output current.
6. 6 A absolute limit current value. See Figure 9. for protection timing diagram.

Table 7. OVLO LEVEL SELECTION

OV1	OV2	OVLO
LOW	LOW	$23 \mathrm{~V} \pm 460 \mathrm{mV}$
LOW	HIGH (Floating)	$10 \mathrm{~V} \pm 100 \mathrm{mV}$
HIGH (Floating)	LOW	$16.3 \pm \mathrm{V} 300 \mathrm{mV}$
HIGH (Floating)	HIGH (Floating)	$5.95 \pm \mathrm{V} 50 \mathrm{mV}$

Table 8. DEVICE ENABLE POLARITY SELECTION

POL	ON	Device State	ON Polarity
LOW	LOW (Floating)	OFF	
LOW	HIGH	Octive HIGH	
HIGH (Floating)	LOW (Floating)	ON	Active LOW
HIGH (Floating)	HIGH	OFF	

TIMING DIAGRAMS

Figure 4. Normal ON/OFF Operation by ON (POL = GND)

Figure 5. OVLO Operation (POL = GND \& FLAGB is pulled up with an external VIO)

Figure 6. Current Limit Operation (OC_MODE = HIGH \& FLAGB is pulled up with an external VIO)

FPF2895V

Figure 7. Current Limit Operation (OC_MODE = LOW \& FLAGB is pulled up with an external VIO)

Figure 8. TRCB Operation (Device is Enabled)

Figure 9. VOUT Hard Short to GND (OC_MODE = HIGH \& FLAGB is pulled up with an external VIO)

FPF2895V

PRODUCT-SPECIFIC DIMENSIONS

D	E	\mathbf{X}	\mathbf{Y}
$2600 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$1670 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$235 \mu \mathrm{~m} \pm 18 \mu \mathrm{~m}$	$300 \mu \mathrm{~m} \pm 18 \mu \mathrm{~m}$

[^0]: This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

[^1]: 1. To avoid external noise influence when floating, recommend to connect these pins to a certain level.
