

ON Semiconductor®

FQD12N20LTM-F085

200V Logic Level N-Channel MOSFET

General Description

These N-Channel enhancement mode power field effect transistors are produced using ON Semiconductor's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supply, motor control.

Features

- 9.0A, 200V, $R_{DS(on)}$ = 0.28 Ω @V_{GS} = 10 V Low gate charge (typical 16 nC)
- Low Crss (typical 17 pF)
- Fast switching
- 100% avalanche tested
- · Improved dv/dt capability
- Low level gate drive requirement allowing direct opration from logic drivers
- Qualified to AEC Q101
- **RoHS Compliant**

D-PAK

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		FQD12N20LTM-F085	Units	
V _{DSS}	Drain-Source Voltage		200	V	
I _D	Drain Current - Continuous (T _C = 25°C)		9.0	Α	
	- Continuous (T _C = 100°C)		5.7	Α	
I _{DM}	Drain Current - Pulsed	(Note 1)	36	А	
V _{GSS}	Gate-Source Voltage		± 20	V	
I _{AR}	Avalanche Current	(Note 1)	9.0	Α	
dv/dt	Peak Diode Recovery dv/dt	(Note 2)	5.5	V/ns	
P _D	Power Dissipation (T _A = 25°C) *		2.5	W	
	Power Dissipation (T _C = 25°C)		55	W	
	- Derate above 25°C		0.44	W/°C	
T_J,T_STG	Operating and Storage Temperature Range		-55 to +150	°C	
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C	

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		2.27	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		50	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		110	°C/W

^{*} When mounted on the minimum pad size recommended (PCB Mount)

٧

ns

μС

1.5

128

0.56

(Note 3)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	racteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	200			V
ΔBV_{DSS} / ΔT_{J}	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		0.14		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 200 V, V _{GS} = 0 V			1	μΑ
		V _{DS} = 160 V, T _C = 125°C		-	10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -20 V, V _{DS} = 0 V		-	-100	nA
On Cha	aractariation				•	
V _{GS(th)}	racteristics Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	1.0		2.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 4.5 A		0.22	0.28	Ω
		V _{GS} = 5 V, I _D = 4.5 A		0.25	0.32	
g _{FS}	Forward Transconductance	$V_{DS} = 30 \text{ V}, I_D = 4.5 \text{ A}$ (Note 3)		11.6		S
C _{iss}	ic Characteristics Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		830	1080	pF
C _{oss}	Output Capacitance			120	155	pF
C _{rss}	Reverse Transfer Capacitance			17	22	pF
Switchi	ng Characteristics					
t _{d(on)}	Turn-On Delay Time	V 400 V 1 44 0 A		15	40	ns
t _r	Turn-On Rise Time	$V_{DD} = 100 \text{ V}, I_{D} = 11.6 \text{ A},$ $R_{G} = 25 \Omega$		190	390	ns
t _{d(off)}	Turn-Off Delay Time	NG - 23 22		60	130	ns
t _f	Turn-Off Fall Time	(Note 3, 4)		120	250	ns
Qg	Total Gate Charge	V _{DS} = 160 V, I _D = 11.6 A,		16	21	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 5 V		2.8		nC
Q _{gd}	Gate-Drain Charge	(Note 3, 4)		7.6		nC
	ourse Diede Cheresterieties e	nd Maximum Batings				
ار Drain-S	Source Diode Characteristics at Maximum Continuous Drain-Source Did			9.0	Α	
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				36	A
- SIVI	Maximum F dioca Diami-oodioc Diode I	ormana current		_		

Q_{rr}

 V_{SD}

 $t_{rr} \\$

Notes: Notes: Notes: A specific Notes: Pulse width limited by maximum junction temperature 2. $I_{SD} \leq 11.6A$, di/dt ≤ 300 A/ μ s, $V_{DD} \leq BV_{DSS}$, Starting T_J = 25°C 3. Pulse Test: Pulse width ≤ 300 μ s, Duty cycle ≤ 2 % 4. Essentially independent of operating temperature

Drain-Source Diode Forward Voltage

Reverse Recovery Time

Reverse Recovery Charge

 $V_{GS} = 0 \text{ V}, I_{S} = 9.0 \text{ A}$

 $V_{GS} = 0 \text{ V}, I_{S} = 11.6 \text{ A},$ $dI_{F} / dt = 100 \text{ A/}\mu\text{s}$

Typical Characteristics

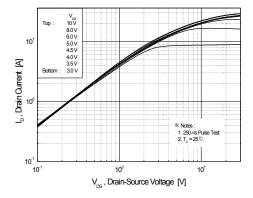


Figure 1. On-Region Characteristics

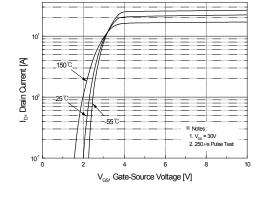


Figure 2. Transfer Characteristics

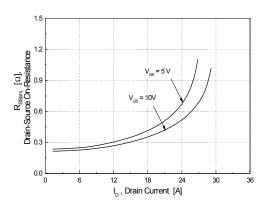


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

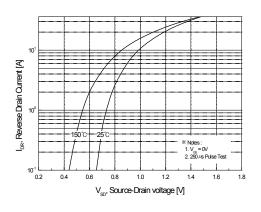


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

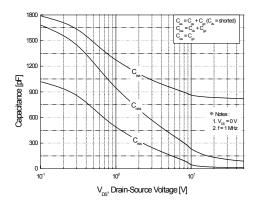


Figure 5. Capacitance Characteristics

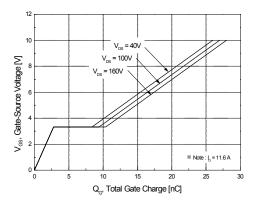


Figure 6. Gate Charge Characteristics

Typical Characteristics (Continued)

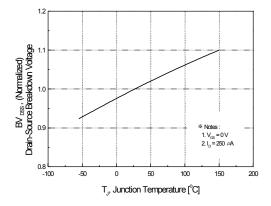


Figure 7. Breakdown Voltage Variation vs. Temperature

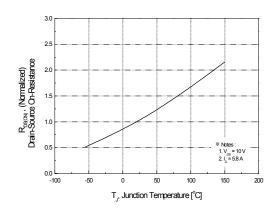


Figure 8. On-Resistance Variation vs. Temperature

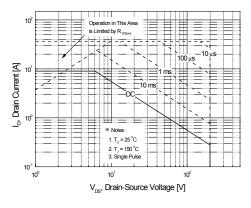


Figure 9. Maximum Safe Operating Area

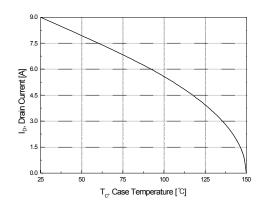


Figure 10. Maximum Drain Current vs. Case Temperature

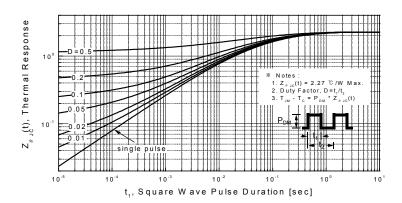
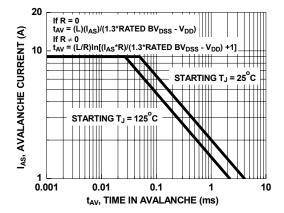
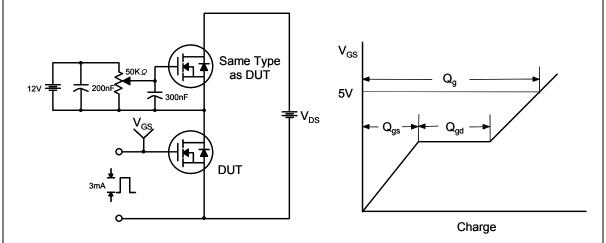
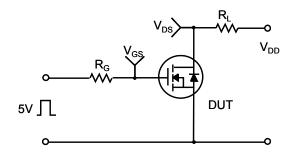
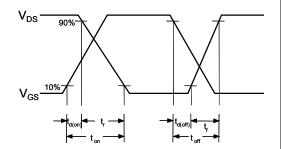


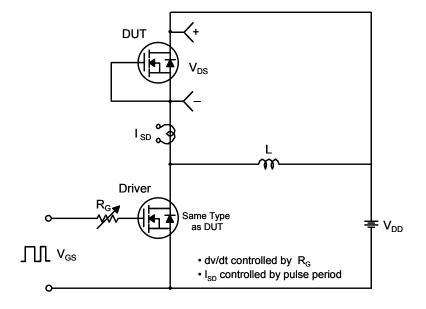
Figure 11. Transient Thermal Response Curve

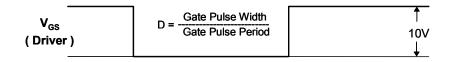
Typical Characteristics

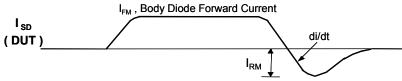




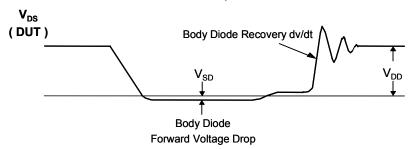

Figure 12. Unclamped Inductive **Switching Capability**

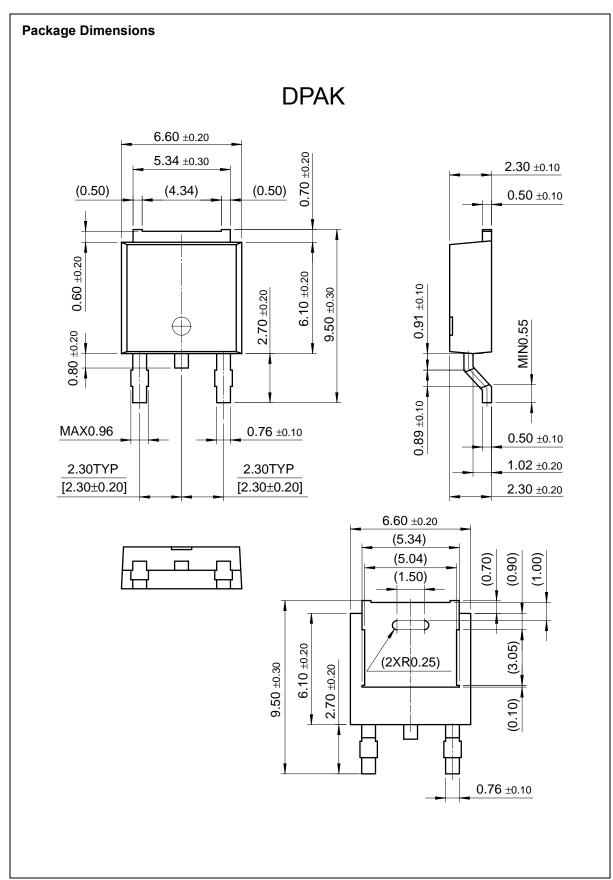
Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Peak Diode Recovery dv/dt Test Circuit & Waveforms



Body Diode Reverse Current

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative