FSA1153

DP3T USB Type C Audio and UART Analog Switch with OVP

Description

The FSA1153 is a bi-directional, low power, high speed USB2.0 Type-C, Audio and UART analog switch with overvoltage protection. It is configured as a Double-Pole, Triple Throw (DP3T) switch. The FSA1153s protection function prevents damage to Type-C USB 2.0 port pins caused by high voltage. It provides a receptacle side OVP function on the USB 2.0 data pins and will turn off the relative switch once the voltage level on DN_L or DP_R exceed the OV threshold. It can withstand up to 20.5 V DC.

Features

- DP3T USB Type C Audio and UART Analog Switch
- $\mathrm{V}_{\mathrm{DD}}: 2.7 \mathrm{~V}$ to 5.5 V
- $\mathrm{I}_{\mathrm{CC}}: 35 \mu \mathrm{~A}$ Typical
- USB Switch - -3 dB Bandwidth (Sdd21): 850 MHz
- Audio Switch:
- Negative Rail Capability: -3 V to +3 V
- Audio Path $\mathrm{R}_{\mathrm{ON}}=1 \Omega$ (Typ.) at 3.3 V
- THD + N = $-110 \mathrm{~dB} ; 1 \mathrm{~V}_{\mathrm{RMS}}, 32 \Omega$ Load; $\mathrm{f}=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}$ with A-Weighted Filter
- UART Switch:
- RON: 5Ω (Typ.) at 3.3 V
- Signal Range: 0-4.4 V
- High Power Supply Ripple Rejection
- 20.5 V Overvoltage Protection on DN_L/DP_R
- 20.5 V Surge Protection on DN_L/DP_R

Applications

- Mobile Phones
- Tablets
- Notebook PC
- Media Player

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

Typical Application

Figure 1. Typical Application

Pin Definitions

Figure 2. Top Through View

PIN DESCRIPTION

Pin	Name	
A1	DN	Description
A2	DP	USB Data (Differential -)
A3	TXD	UART Transmit Data
B1	DN_L	USB/Audio/UART Common Connector
B2	DP_R	USB/Audio/UART Common Connector
B3	RXD	UART Receive Data
C1	L	Audio - Left Channel
C2	R	Audio - Right Channel
C3	S0	Data Switch Select
D1	GND	Chip Ground
D2	VDD	Power Supply (2.7 to 5.5 V)
D3	S1	Data Switch Select

FSA1153

Table 1. CONTROL LOGIC STATUS

S1	S0	USB Switch	Audio Switch	UART Switch
0	0	ON	OFF	OFF
0	1	OFF	ON	OFF
1	0	OFF	OFF	ON
1	1	Disable	Disable	Disable

ORDERING INFORMATION

Part Number	Operating Temperature Range	Package	Top Mark
FSA1153UCX	-40 to $+85^{\circ} \mathrm{C}$	$12-$ Ball WLCSP, Non-JEDEC	6 G

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ABSOLUTE MAXIMUM RATINGS

Symbol		Parameter	Min.	Max.	Unit
VDD	Supply Voltage from VDD		-0.5	6.5	V
$\mathrm{V}_{\text {SW_C }}$	$\mathrm{V}_{\mathrm{DP} \text { _R }}$ to $\mathrm{GND}, \mathrm{V}_{\mathrm{DN}} \mathrm{L}$ to GND (Note 1)		-3.6	20.5	V
$\mathrm{V}_{\text {SW_USB }}$	$\mathrm{V}_{\text {DP }}$ to GND, $\mathrm{V}_{\text {DN }}$ to GND (Note 1)		-0.5	6.5	V
$\mathrm{V}_{\text {SW_Audio }}$	V_{L} to GND, V_{R} to GND (Note 1)		-3.6	6.5	V
$\mathrm{V}_{\text {SW_UART }}$	$\mathrm{V}_{\text {TXD }}$ to GND, $\mathrm{V}_{\mathrm{RXD}}$ to GND (Note 1)		-0.5	6.5	V
$\mathrm{V}_{\text {SW }}$	Control Input Voltage: S1, S0 (Note 2)		-0.5	6.5	V
Isw_Audio	Switch I/O Current, Audio path: R, L, DP_R, DN_L		-250	250	mA
ISw_USB	Switch I/O Current, USB path; DP to DP_R, DN to DN_L		-	100	mA
Isw_UART	Switch I/O Current, UART path; TXD to DP_R, RXD to DN_L		-	50	mA
IK	DC Input Diode Current		-50	-	mA
ESD	Human Body Model, ANSI / ESDA / JEDEC JS-001-2012	Connector side and power pins: VDD, DP_R, DN_L	4	-	kV
		Host side pins: The rest pins	2	-	
	Charged Device Model, JEDEC: JESD22-C101		1	-	
Surge	IEC 61000-4-5 System	Connector side pins: DP_R, DN_L	-20.5	+20.5	V
T_{A}	Absolute Maximum Operating Temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.
2. V_{SW} refers to analog data switch paths.

FSA1153

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
POWER					
VDD	Supply Voltage	2.7	-	5.5	V
USB SWITCH					
$V_{\text {SW_USB }}$		0	-	4.5	V
AUDIO SWITCH					
$\mathrm{V}_{\text {SW_Audio }}$	$\mathrm{V}_{\mathrm{DP} \text { _R }}$ to GND, $\mathrm{V}_{\mathrm{DN}} \mathrm{L}$ to GND, V_{L} to GND, V_{R} to GND,	-3.0	-	+3.0	V
UART SWITCH					
$\mathrm{V}_{\text {SW_UART }}$	$\mathrm{V}_{\text {TXD }}$ to GND, $\mathrm{V}_{\mathrm{RXD}}$ to GND	0	-	4.4	V
OPERATING TEMPERATURE					
T_{A}	Ambient Operating Temperature	-40	25	+85	${ }^{\circ} \mathrm{C}$
CONTROL VOLTAGE (S1, S0)					
V_{IH}	Input Voltage High	1.3	-	VCC	V
V_{IL}	Input Voltage Low	0	-	0.5	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

FSA1153

DC AND TRANSIENT CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}\right.$ to 5.5 V . V_{DD} (Typ.) $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and T_{A} (Typ.) $=25^{\circ} \mathrm{C}$, unless otherwise specified)

GENERAL DEVICE PINS

$\mathrm{I}_{\text {cc }}$	Supply current	For all switches	VDD: 2.7 to 5.5	-	-	35	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCz }}$	Quiescent current	S0, 1 = 1		-	-	3	
ICCT		$\mathrm{Vin}=1.5 \mathrm{~V}$		-	10	-	$\mu \mathrm{A}$

COMMON PINS: DP_R, DN_L

IOZ	Off leakage current of Port DP_R and DN_L	DP_R, DN_L = -3 V to 4.0 V	VDD: 2.7 to 5.5	-3.0	0.1	3.0	$\mu \mathrm{~A}$
IOFF	Power-Off leakage current of Port DP_R and DN_L	DP_R, DN_L = 0 V to 4.0 V	Power off	-3.0	0.1	3.0	$\mu \mathrm{~A}$
VOV_TRIP	Input OVP Lockout	Sweep from 3 V to 6 V	VDD: 2.7 to 5.5	4.7	5.0	5.3	V
V OV_HYS	Input OVP Hysteresis		VDD: 2.7 to 5.5	0.2	0.3	0.4	V

AUDIO SWITCH

IoN	On leakage current of Audio switch	DN_L, DP_R = -3 V to 3.0 V , $\mathrm{R}, \overline{\mathrm{L}}=\mathrm{Flo} \overline{\mathrm{a}}$	VDD: 2.7 to 5.5	-2.0	0.1	2.0	$\mu \mathrm{A}$
loz	Off leakage current of	$\mathrm{L} / \mathrm{R}=-3 \mathrm{~V}$ to 3.0 V	VDD: 2.7 to 5.5	-1	0.1	1	$\mu \mathrm{A}$
Ioff	Input Leakage Current, Power off	$\begin{aligned} & \mathrm{L}, \mathrm{R}=0 \text { to } 3 \mathrm{~V}, \\ & D P _R, D P=\mathrm{L}=\mathrm{Float}, \\ & \left(\mathrm{I}_{\mathrm{SW}}=0 \mathrm{~mA}\right) \end{aligned}$	Power off	-1.0	0.1	1.0	$\mu \mathrm{A}$
Ron	Switch On Resistance	$\begin{aligned} & \mathrm{ISW}=100 \mathrm{~mA}, \\ & \mathrm{~V} \mathrm{SW}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$	VDD: 2.7 to 5.5	-	1	2	Ω
$\triangle \mathrm{R}_{\text {ON }}$	On Resistance Matching, Channel to Channel	$\begin{aligned} & I_{S W}=100 \mathrm{~mA}, \\ & \mathrm{~V} \mathrm{SW}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$	VDD: 2.7 to 5.5	-	0.1	0.2	Ω
$\mathrm{R}_{\text {FLAT }}$	On Resistance Flatness	$\begin{aligned} & \mathrm{ISW}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{SW}}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$	VDD: 2.7 to 5.5	-	10	-	$\mathrm{m} \Omega$

USB SWITCH

Ion	On leakage current of USB switch	DN_L, DP_R = 0 V to 3.6 V , $\mathrm{DP}^{-}=\mathrm{DN}=$ Float	VDD: 2.7 to 5.5	-3.0	0.1	5	$\mu \mathrm{A}$
		$\begin{aligned} & \text { DN_L, DP_R = } 3.6 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \\ & \mathrm{DP}^{=} \mathrm{DN}=\text { Float } \end{aligned}$		-5	-	15	$\mu \mathrm{A}$
l OZ	Off leakage current of Port DP and DN	DN, DP = 0 V to 4.5 V	VDD: 2.7 to 5.5	-3.0	0.1	3.0	$\mu \mathrm{A}$
Ioff	Power-Off leakage current of Port DP and DN	DN, DP $=0 \mathrm{~V}$ to 4.5 V	Power off	-3.0	0.1	3.0	$\mu \mathrm{A}$
RON_USB	Switch On Resistance	$\mathrm{V}_{\text {SW }}=0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=-8 \mathrm{~mA}$	VDD: 2.7 to 5.5	-	3	5	Ω
		$\mathrm{Vsw}=4.0 \mathrm{~V}, \mathrm{I}_{\text {ON }}=-8 \mathrm{~mA}$		-	3	5	

UART SWITCH

Ion	On leakage current of UART switch	DN L, DP_R=0 V to 4.4 V, $U A \bar{R} T=$ Float	VDD: 2.7 to 5.5	-3.0	0.1	15	$\mu \mathrm{A}$
Ioz	Off leakage current of Port TXD and RXD	TXD/RXD $=0 \mathrm{~V}$ to 4.4 V ,	VDD: 2.7 to 5.5	-3.0	0.1	3.0	$\mu \mathrm{A}$
IOFF	Power-Off leakage current of Port TXD/RXD	TXD/RXD $=0 \mathrm{~V}$ to 4.4 V ,	Power off	-3.0	0.1	3.0	$\mu \mathrm{A}$
RON_UART	UART Switch On Resistance	$\mathrm{V}_{\mathrm{SW}}=0$ to 4.4 V , $\mathrm{I}_{\mathrm{ON}}=-8 \mathrm{~mA}$	VDD: 2.7 to 5.5	-	5	7	Ω

S1, S0

V_{IH}	Input Voltage High		VDD: 2.7 to 5.5	1.3	-	VDD	V
V_{IL}	Input Voltage Low		VDD: 2.7 to 5.5	-	-	0.5	V
R_{PD}	Internal Pull down resistor on S1,S0	$\mathrm{S} 1, \mathrm{SO}=\mathrm{VDD}$	VDD: 2.7 to 5.5	-	3	-	$\mathrm{M} \Omega$

AC CHARACTERISTICS

($\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V . V_{DD} (Typ.) $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{A}}$ (Typ.) $=25^{\circ} \mathrm{C}$, unless otherwise specified)

		Condition	Power	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			Unit
Symbol	Parameter			Min	Typ	Max	Unit

AUDIO PATH SWITCH

t_{ON}	Turn On Time (Note 3)	$\mathrm{DP} / \mathrm{R}=\mathrm{DN} / \mathrm{L}=0 \mathrm{~V} \rightarrow$ to $1 \mathrm{~V}, \mathrm{~L}, \mathrm{R}=32 \Omega$ to GND		-	80	-	$\mu \mathrm{s}$
toff	Turn OFF Time (Note 3)	DP/R = DN/L = 1 V fall to GND, L, R = 32 Ω to GND		-	0.4	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {BBM }}$	Break Before Make (Note 3)	$\mathrm{USB} \rightarrow$ Audio, $\mathrm{DP} / \mathrm{R}=\mathrm{DN} / \mathrm{L}=0 \mathrm{~V} \rightarrow 1 \mathrm{~V}$, L, $\mathrm{R}=32 \Omega$ to GND, DP, $\mathrm{DN}=50 \Omega$ to GND UART \rightarrow Audio, UART $=50 \Omega$		-	80	-	μs
T_{EN}	Enable Time (Note 3)	$\mathrm{DP} / \mathrm{R}=\mathrm{DN} / \mathrm{L}=1 \mathrm{~V},$ $\mathrm{L}, \mathrm{R}=32 \Omega$ to $\mathrm{GND}, \mathrm{S}[1,0]$ from 11 to 01		-	230	-	$\mu \mathrm{s}$
$\mathrm{T}_{\text {Dis }}$	Disable Time (Note 3)	$\mathrm{DP} / \mathrm{R}=\mathrm{DN} / \mathrm{L}=1 \mathrm{~V},$ $\mathrm{L}, \mathrm{R}=32 \Omega$ to GND, $\mathrm{S}[1,0]$ from 01 to 11		-	0.3	-	$\mu \mathrm{S}$
tove	Response Time	$\mathrm{R}_{\text {LOAD }}=32 \Omega$, Vsw $=3 \mathrm{~V}$ to 6 V (slew rate $>10 \mathrm{~V} / 1 \mu \mathrm{~s}$), measure OV threshold to 90% OVP trigger level of output falling		-	0.2	1	$\mu \mathrm{s}$
$\mathrm{O}_{\text {IRR }}$	Off Isolation (Note 3)	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{V}_{\mathrm{SW}}=1 \mathrm{~V}_{\mathrm{RMS}}$		-	-100	-	dB
		$\mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{V}_{\mathrm{SW}}=1 \mathrm{~V}_{\mathrm{RMS}}$			-65		
$\mathrm{X}_{\text {TALK }}$	Cross Talk (Adjacent) (Note 3)	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{SW}}=1 \mathrm{~V}_{\mathrm{RMS}}$		-	-120	-	dB
	Cross Talk (USB-Audio) (Note 3)	$\mathrm{f}=1 \mathrm{kHz}$ or $20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{SW}}=1 \mathrm{~V}_{\mathrm{RMS}}$ on DP or DN		-	-108	-	
BW	-3 dB Bandwidth (Note 3)	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		-	500	-	MHz
PSRR	Power Supply Rejection Ratio (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{PSRR}}=\mathrm{VDD}+100 \mathrm{mV}_{\mathrm{RMS}} \\ & \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { or } 32 \Omega \\ & (\mathrm{at} \mathrm{DP} / \mathrm{R}, \mathrm{DN} / \mathrm{L}), \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=32 \Omega$	-	-119	-	dB
			$\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$	-	-105	-	
THD+N	Total Harmonic Distortion + Noise (Note 3)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=16 \Omega, \mathrm{f}=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{SW}}=0.5 \mathrm{~V}_{\mathrm{RMS}} \end{aligned}$	With A-weighted	-	-108	-	dB
			Non A-weighted	-	-105		
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{SW}}=1 \mathrm{~V}_{\mathrm{RMS}} \end{aligned}$	With A-weighted	-	-110		dB
			Non A-weighted	-	-105		
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{f}=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{SW}}=0.3 \mathrm{~V}_{\mathrm{RMS}} \end{aligned}$	With A-weighted	-	-110		dB
			Non A-weighted	-	-105		

USB SWITCH

t_{ON}	Turn-on time (Note 3)	DP/R = DN/L = $1.0 \mathrm{~V}, \mathrm{DP}, \mathrm{DN}=50 \Omega$ to GND		-	40	-	$\mu \mathrm{s}$
toff	Turn-off time (Note 3)	$\mathrm{DP} / \mathrm{R}=\mathrm{DN} / \mathrm{L}=1.0 \mathrm{~V}, \mathrm{DP}, \mathrm{DN}=50 \Omega$ to GND		-	0.35	-	$\mu \mathrm{S}$
$\mathrm{T}_{\text {BBM }}$	Break-Before-Make (Note 3)	Audio \rightarrow USB; DP/R = DN/L $=1.5 \mathrm{~V}$, $\mathrm{L}, \mathrm{R}=50 \Omega$ to GND, DP, DN $=50 \Omega$ to GND UART \rightarrow USB: UART $=50 \Omega$		-	40	-	$\mu \mathrm{S}$
T_{EN}	Enable Time (Note 3)	$\mathrm{DP} / \mathrm{R}=\mathrm{DN} / \mathrm{L}=1 \mathrm{~V}, \mathrm{DP} / \mathrm{DN}=50 \Omega \text { to GND, }$ $\mathrm{S}[1,0]$ from 11 to 00		-	200	-	$\mu \mathrm{S}$
$\mathrm{T}_{\text {Dis }}$	Disable Time (Note 3)	$\mathrm{DP} / \mathrm{R}=\mathrm{DN} / \mathrm{L}=1 \mathrm{~V}, \mathrm{DP} / \mathrm{DN}=50 \Omega \text { to GND, }$ $\mathrm{S}[1,0]$ from 00 to 11		-	0.25	-	$\mu \mathrm{S}$
BW	-3dB Bandwidth (Note 3)	RL $=50 \Omega$, Switch ON		-	0.85	-	GHz
$\mathrm{X}_{\text {TALK }}$	Cross Talk (Adjacent) (Note 3)	RL = 50Ω, Switch ON, f = 240 MHz		-	-40	-	dB
OIRR	Off Isolation (Note 3)	RL $=50 \Omega$, Switch OFF, f = 240 MHz		-	-24	-	dB
tovp	Response Time	$\mathrm{R}_{\text {LOAD }}=50 \Omega$, $\mathrm{Vsw}=3 \mathrm{~V}$ to 6 V (slew rate $>10 \mathrm{~V} / 1 \mu \mathrm{~s}$), measure OV threshold to 90% OVP trigger level of output falling		-	0.2	1	$\mu \mathrm{s}$

AC CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}\right.$ to 5.5 V . V_{DD} (Typ.) $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{A}}$ (Typ.) $=25^{\circ} \mathrm{C}$, unless otherwise specified) (continued)

				$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit	
	Symbol	Parameter	Condition	Power	Min	Typ	Max

USB SWITCH

$\mathrm{t}_{\text {Recovery }}$	Recovery Debounced time (Note 3)	$\mathrm{R}_{\text {LOAD }}=50 \Omega$, Vsw $=6 \mathrm{~V}$ to 3 V (slew rate $<10 \mathrm{~V} / 1 \mu \mathrm{~s}$), measure OV threshold to 90% output rising	-	30	-	us
$t_{\text {PD }}$	Propagation Delay (Note 3)	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	-	100	-	ps
$\mathrm{t}_{\text {SK(P) }}$	Skew of Opposite Transitions of the Same Output (Note 3)	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	-	10	-	ps
t_{J}	Total Jitter (Note 3)	$V_{S W}=0.4 \text { difffpr }, R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=500 \mathrm{ps}$ $(10-90 \%) @ 480 \mathrm{Mbps}\left(\mathrm{PBRS}=2^{15}-1\right)$	-	200	-	ps

UART SWITCH

ton	Turn-on time (Note 3)	UART $=1.8 \mathrm{~V}$, Rload $=50 \Omega$	-	50	-	$\mu \mathrm{s}$
toff	Turn-off time (Note 3)	UART $=1.8 \mathrm{~V}$, Rload $=50 \Omega$	-	0.4	-	us
TBBM	Break-Before-Make (Note 3)	USB \rightarrow UART, USB $=50 \Omega$, UART $=50 \Omega$ Audio \rightarrow UART	-	50	-	$\mu \mathrm{s}$
$\mathrm{T}_{\text {EN }}$	Enable Time (Note 3)	$\mathrm{DP} / \mathrm{R}=\mathrm{DN} / \mathrm{L}=1 \mathrm{~V}, \mathrm{DP} / \mathrm{DN}=50 \Omega$ to GND, $\mathrm{S}[1,0]$ from 11 to 10	-	200	-	$\mu \mathrm{s}$
$\mathrm{T}_{\text {Dis }}$	Disable Time (Note 3)	$\mathrm{DP} / \mathrm{R}=\mathrm{DN} / \mathrm{L}=1 \mathrm{~V}, \mathrm{DP} / \mathrm{DN}=50 \Omega \text { to } \mathrm{GND},$ $\mathrm{S}[1,0]$ from 10 to 11	-	300	-	$\mu \mathrm{s}$
tovp	Response Time	$\mathrm{R}_{\text {LOAD }}=50 \Omega$, Vsw $=3 \mathrm{~V}$ to 6 V (slew rate $>10 \mathrm{~V} / 1 \mu \mathrm{~s}$), measure OV threshold to 90% OVP trigger level of output falling	-	0.2	1	$\mu \mathrm{s}$
BW	Bandwidth (Note 3)	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	-	400	-	MHz

3. Guaranteed by characterization, not production tested.

CAPACITANCE ($\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} . \mathrm{V}_{\mathrm{DD}}(\mathrm{Typ})=.3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{A}}$ (Typ.) $=25^{\circ} \mathrm{C}$, unless otherwise specified)

AUDIO PATH SWITCH

Con_usb/Audio/UART	On Capacitance (Common Port) (Note 4)	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, 240 \mathrm{MHz}, 100 \mathrm{mV} \text { PK-PK, } 100 \mathrm{mV} \\ & \text { DC bias } \end{aligned}$		3.3	-	7	-	pF
COFF_USB/Audio/UART	Off Capacitance (Common Port) (Note 4)	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, 240 \mathrm{MHz}, 100 \mathrm{mV} \text { PK-PK, } 100 \mathrm{mV} \\ & \mathrm{DC} \text { bias } \end{aligned}$		3.3	-	7	-	pF
Coff_usb	Off Capacitance (Non-Common Ports) (Note 4)	$\mathrm{f}=240 \mathrm{MHz}, 100 \mathrm{mV}$ PK-PK, 100 mV DC bias		3.3	-	2.5	-	pF
COFF_Audio	Off Capacitance (Non-Common Ports) (Note 4)	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV}$ PK-PK, 100 mV DC bias		3.3	-	3.5	-	pF
CofF_UART	Off Capacitance (Non-Common Ports) (Note 4)	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV}$ PK-PK, 100 mV DC bias		3.3	-	3.5	-	pF
C_{IN}	EN,SEL Pin Capacitance (Note 4)	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \mathrm{PP}$, 100 mV DC bias	S1, S0	0	-	2.5	-	pF

4. Guaranteed by characterization, not production tested.

Application Information

Over-Voltage Protection
The FSA1153 features over-voltage protection (OVP) on the receptacle side pins DN_L and DP_R which will switch off the internal signal routing path if the input voltage
exceeds the OVP threshold. When an over voltage condition has occurred the switch will open immediately and remain open until the over voltage condition is removed.

Test Diagrams

Figure 3. On Resistance

Figure 5. On Leakage

R_{L} and C_{L} are functions of the application environment (see AC/DC Tables).
C_{L} includes test fixture and stray capacitance.

** Each switch port is tested separately
Figure 4. Off Leakage (loz)

** Each switch port is tested separately
Figure 6. Power Off Leakage (loff)

Figure 7. Test Circuit Load

Figure 8. Timing Waveforms

Test Diagrams (continued)

Figure 9. OVP Timing

Figure 10. Bandwidth

Figure 12. Adjacent Channel Crosstalk

Figure 14. Channel On Capacitance

OFF - Isolation $=20$ Log $\left(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right)$
Figure 11. Channel Off Isolation

Figure 13. Channel Off Capacitance

Figure 15. Total Harmonic Distortion (THD+N)

WLCSP12, 1.41x1.575x0.599
CASE 567WM
ISSUE O
DATE 31 MAY 2018

1. DIMENSIONING AND TOLERANCING PER ACME Y14.5M, 2009.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DATUM C APPLIES TO THE SPHERICAL CROWN OF THE SOLDER BALLS

DIM	MILLIMETERS		
	MIN.	NOM.	MAX.
A	0.561	0.599	0.637
A1	0.174	0.194	0.214
A2	0.387	0.405	0.423
b	0.240	0.260	0.280
D	1.380	1.410	1.440
E	1.545	1.575	1.605
e	0.40 BSC		
x	0.290	0.305	0.320
y	0.1725	0.1875	0.2025

BOTTOM VIEW

Al

e

$\bigcirc \bigcirc \bigcirc$
RECOMMENDED
MOUNTING FOOTPRINT
(NSMD PAD TYPE)

| DOCUMENT NUMBER: | 98AON92156G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WLCSP12, 1.41x1.575x0.599 | PAGE 1 OF 1 |

ON Semiconductor and (in) are trademarks of Semiconductor Components Industries, LLC aba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

Abstract

ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

