

ON Semiconductor[®]

FSUSB43 — Low-Power, Two-Port, High-Speed, USB2.0 (480Mbps) Switch

Features

- Over-Voltage Tolerance (OVT) on all USB Ports up to 5.25V without External Components
- Low On Capacitance: 3.7pF Typical
- Low On Resistance: 3.9Ω Typical
- Low Power Consumption: 1µA Maximum
 - − 20µA Maximum I_{CCT} over an Expanded Voltage Range (V_{IN}=1.8V, V_{CC}=4.3V)
- Wide -3db Bandwidth: > 720MHz
- Packaged in 10-Lead MicroPak[™] (1.6 x 2.1mm)
- 8kV ESD Rating, >16kV Power/GND ESD Rating
- Power-Off Protection on All Ports when V_{CC}=0V
 D+/D- Pins Tolerate up to 5.25V

Applications

- Cell phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

Description

The FSUSB43 is a bi-directional, low-power, two-port, high-speed, USB2.0 switch. Configured as a double-pole, double-throw (DPDT) switch, it is optimized for switching between two high-speed (480Mbps) sources or a high-speed and full-speed (12Mbps) source.

The FSUSB43 is compatible with the requirements of USB2.0 and features an extremely low on capacitance (C_{ON}) of 3.7pF. The wide bandwidth of this device (720MHz) exceeds the bandwidth needed to pass the third harmonic, resulting in signals with minimum edge and phase distortion. Superior channel-to-channel crosstalk also minimizes interference.

The FSUSB43 contains special circuitry on the switch I/O pins for applications where the V_{CC} supply is powered-off (V_{CC} =0), which allows the device to withstand an over-voltage condition. This minimizes current consumption even when the control voltage applied to the SEL pin is lower than the supply voltage (V_{CC}). This feature is especially valuable to mobile applications, such as cell phones, allowing for direct interface with the general-purpose I/Os of the baseband processor. Other applications include switching and connector sharing in portable cell phones, PDAs, digital cameras, printers, and notebook computers.

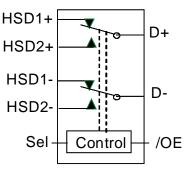
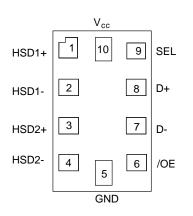



Figure 1. Analog Symbol

Part Number	Top Mark	Operating Temperature Range	🖉 Eco Status	Package
FSUSB43L10X	JH	-40 to +85°C	Green	10-Lead MicroPak™ 1.6 x 2.1mm, JEDEC MO-255B

Pin Configuration

Pin Definitions

Pin #	Name	Description
1	HSD1+	Multiplexed Source Inputs
2	HSD1-	Multiplexed Source Inputs
3	HSD2+	Multiplexed Source Inputs
4	HSD2-	Multiplexed Source Inputs
5	GND	Ground
6	/OE	Switch Enable
7	D-	USB Data Bus
8	D+	USB Data Bus
9	SEL	Switch Select
10	Vcc	Supply Voltage

Truth Table

SEL	/OE	Function
Х	HIGH	Disconnect
LOW	LOW	D+, D-=HSD1+, HSD1-
HIGH	LOW	D+, D-=HSD2+, HSD2-

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit	
Vcc	Supply Voltage	-0.5	+5.5	V	
V _{CNTRL}	DC Input Voltage (Sel, /OE) ⁽¹⁾	-0.5	Vcc	V	
Vsw	ALL PINS for Vcc 0 to 5.5V		-0.5	5.5	V
l _{ik}	DC Input Diode Current		-50		mA
Ιουτ	DC Output Current			100	mA
T _{STG}	Storage Temperature		-65	+150	°C
		All Pins		8	
ESD	Human Body Model: JEDEC JESD22-A114	I/O to GND		9	
E3D		Power to GND		16	kV
	Charged Device Model: JEDEC JESD22-C10	1		2	

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage	2.4	4.4	V
VCNTRL	Control Input Voltage ⁽²⁾ (Sel, /OE)	0	Vcc	V
Vsw	Switch I/O Voltage	-0.5	4.5	V
TA	Operating Temperature	-40	+85	°C

Note:

2. The control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Cumhal	Deveryoter	Conditions	V 00	T _A =- 40°C to +85°C			Units
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units
VIK	Clamp Diode Voltage	I _{IN} =-18mA	3.0			-1.2	V
	la sut Malta sa Libah		2.4 to 3.6	1.3			V
Vін	Input Voltage High		4.3	1.7			V
VIL			2.4 to 3.6			0.5	V
	Input Voltage Low		4.3			0.7	V
lin	Control Input Leakage	Vsw=0 to Vcc	4.3	-1.0		1.0	μA
loz	Off State Leakage	$0 \le Dn$, HSD1n, HSD2n $\le 3.6V$	4.3	-2.0		2.0	μA
IOFF	Power-Off Leakage Current (All I/O Ports)	Vsw=0V to 4.3V, Vcc=0V Figure 4	0	-2		2	μA
P	HS Switch On Resistance ⁽³⁾ V _{SW} =0.4V, I _{ON} =-8mA Figure 3	V _{sw} =0.4V, I _{ON} =-8mA	2.4		4.5	7.5	Ω
Ron		Figure 3	3.0		3.9	6.5	
ΔR_{ON}	HS Delta R _{ON} ⁽⁴⁾	V _{SW} =0.4V, I _{ON} =-8mA	3.0		0.65		Ω
la	Quiescent Supply Current	V _{CNTRL} =0 or V _{CC} , I _{OUT} =0	4.3			1.0	μA
	Increase in Ic Current per	$V_{CNTRL}=2.6V, V_{CC}=4.3V$	4.3			10.0	μA
ICCT	Control Voltage and Vcc	V _{CNTRL} =1.8V, V _{CC} =4.3V	4.3			20.0	μA

Notes:

3. Measured by the voltage drop between HSDn and Dn pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the two (HSDn or Dn ports).

4. Guaranteed by characterization.

AC Electrical Characteristics

All typical values are for Vcc=3.3V at 25°C unless otherwise specified.

Ourseland	Parameter	Conditions		T _A =-	Units		
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units
	Turn-On Time SEL, /OE to Output	R∟=50Ω, C∟=5pF, V _{SW} =0.8V Figure 5, Figure 6	2.4		24	40	
t _{ON}			3.0 to 3.6		13	30	ns
4		R _L =50Ω, C _L =5pF, V _{SW} =0.8V Figure 5, Figure 6	2.4		15	35	
LOFF			3.0 to 3.6		12	25	ns
t PD	Propagation Delay ⁽⁵⁾	$R_L=50\Omega$, $C_L=5 pF$ Figure 5, Figure 7	3.3		0.25		ns
	Break-Before-Make Time ⁽⁵⁾	RL=50Ω, CL=5pF V _{SW1} =V _{SW2} =0.8V Figure 9	2.4	2.0		10	
tввм			3.0 to 3.6	2.0		6.5	ns
OIRR	Off Isolation ⁽⁵⁾	R∟=50Ω, f=240MHz Figure 11	3.0 to 3.6		-30		dB
Xtalk	Non-Adjacent Channel Crosstalk ⁽⁵⁾	R∟=50Ω, f=240MHz Figure 12	3.0 to 3.6		-45		dB
514	-3db Bandwidth ⁽⁵⁾	$R_L=50\Omega$, $C_L=0pF$ Figure 10	3.0 to 3.6		720		MHz
BW		R∟=50Ω, C∟=5pF Figure 10	5.0 10 5.0		550		MHz

Note:

5. Guaranteed by characterization.

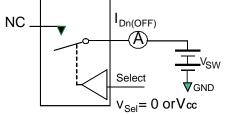
USB High-Speed-Related AC Electrical Characteristics

Symbol	Devenedar	Conditions	V _{cc} (V)	T _A =- 40°C to +85°C			Unito
Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
tsk(P)	Skew of Opposite Transitions of the Same Output ⁽⁶⁾	R∟=50Ω, C∟=5pF Figure 8	3.0 to 3.6		20		ps
tj	Total Jitter ⁽⁶⁾	R _L =50Ω, C _L =5pf, t _r =500ps (10-90%) at 480Mbps, (PRBS=2 ¹⁵ – 1)	3.0 to 3.6		200		ps

Note:

6. Guaranteed by characterization.

Capacitance


Symbol	Parameter	Conditions	T _A =- 40°C to +85°C			Units
Symbol	Parameter	Conditions	Min. Typ		Max.	Units
C _{IN}	Control Pin Input Capacitance ⁽⁷⁾	V _{CC} =0V		1.5		
Con	D+/D- On Capacitance ⁽⁷⁾	V _{CC} =3.3V, /OE=0V, f=240MHz Figure 14		3.7		pF
Coff	D1n, D2n Off Capacitance ⁽⁷⁾	V _{CC} and /OE=3.3V Figure 13		2.0		
Note:	•	·	•	•		-

Note:

7. Guaranteed by characterization.

Test Diagrams VON NC HSD, Dn /sw GND Select GND ∨_{Sel}= 0 orVcc $R_{ON} = V_{ON} / I_{ON}$ Figure 3. On Resistance HSD_r $t_{RISE} = 2.5 ns$ Dn św V_{CC}---GND R_S Input-V/OE, VSel $V_{CC}/2$ 10% GND. V_{OH} Se **∀**GND Output- V_{OUT} R_1 , R_S , and C_1 are functions of the application Vol environment (see AC Tables for specific values) C₁ includes test fixture and stray capacitance. Figure 5. AC Test Circuit Load +400mV 400m 50% Input 50% 0V 10% t_{РLH} -400mV teni - V_{OH} Output 50% 50%

**Each switch port is tested separately

Figure 4. Off Leakage

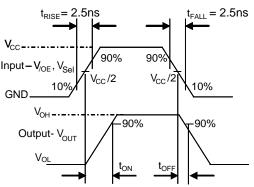


Figure 6. Turn-On / Turn-Off Waveforms

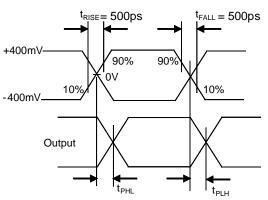
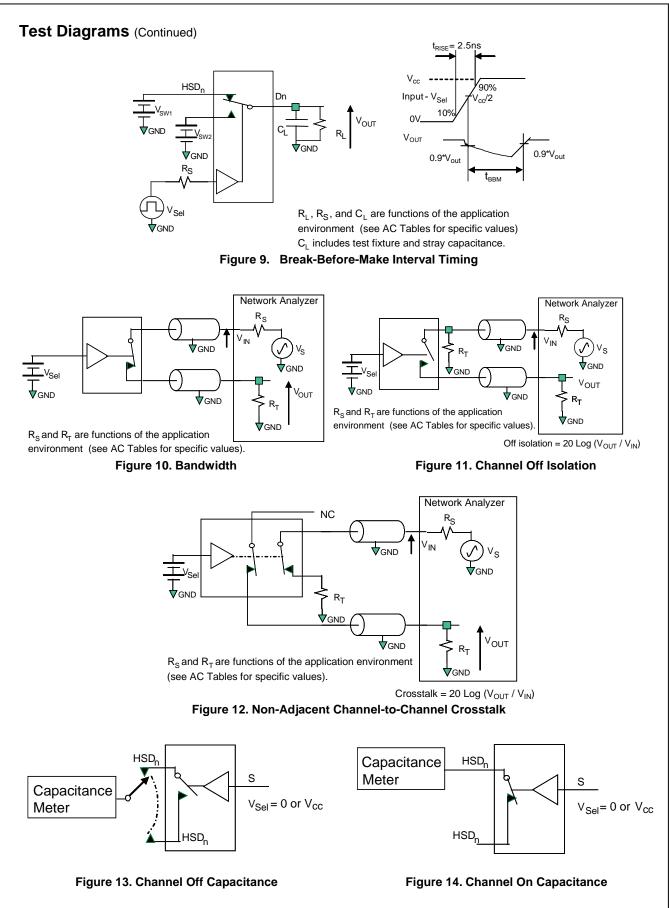



Figure 8. Intra-Pair Skew Test tsk(P)

VOL

FSUSB43 — Low-Power, Two-Port, High-Speed, USB2.0 (480Mbps) Switch

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative