FSV8100V

Ultra-Low VF Schottky Rectifier, 8 A, 100 V

Features

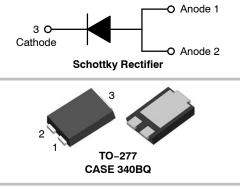
- Ultra-Low Forward Voltage Drop
- Low Thermal Resistance
- Very Low Profile: Typical Height of 1.1 mm
- Trench Schottky Technology
- Green Molding Compound as per IEC61249 Standard
- These Devices are Pb–Free, Halogen Free Free and are RoHS Compliant

Applications

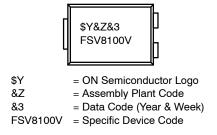
- AC-DC and DC-DC Converter
- Mobile Charger
- LED Lighting
- Solar Panel
- Reverse Polarity Protection

Specifications

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)


Symbol	Rating	Value	Unit
V _{RRM}	Peak Repetitive Reverse Voltage	100	V
V _{RWM}	Working Peak Reverse Voltage	100	V
V _{RMS}	RMS Reverse Voltage	70	V
V _R	DC Blocking Voltage	100	V
I _{F(AV)}	Average Rectified Peak Forward Surge Current	8	A
I _{FSM}	Non-Repetitive Peak Forward Surge Current	150	A
TJ	Operating Junction Temperature Range	-55 to +150	°C
T _{STG}	Storage Temperature Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

FSV8100V

THERMAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Note 1)

Symbol	Characteristic	Minimum Land Pattern	Maximum Land Pattern	Unit
$R_{\theta JA}$	Junction-to-Ambient Thermal Resistance	100	40	°C/W
Ψ_{JL}	Junction-to-Lead Thermal Characteristics, Thermocouple Soldered to Anode	15	12	°C/W
	Junction-to-Lead Thermal Characteristics, Thermocouple Soldered to Cathode	6	5	

 The thermal resistances (R_{θJA} & Ψ_{JL}) are characterized with device mounted on the following FR4 printed circuit boards, as shown in Figure 1 and Figure 2. PCB size: 76.2 x 114.3 mm. Minimum land pattern size: 4.9 x 4.8 mm (big pattern, x1), 1.4 x 1.52 mm (small pattern, x2). Maximum land pattern size: 30 x 30 mm (pattern, x2). Force line trace size = 55 mils, sense line trace size = 4 mils.

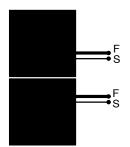


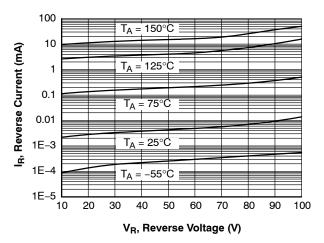
Figure 1. Minimum Land Pattern of 2 oz Copper

Figure 2. Maximum Land Pattern of 2 oz Copper

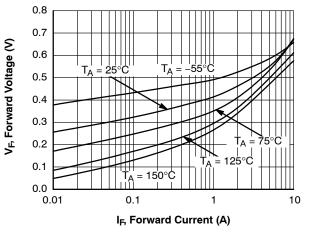
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
BV _R	Breakdown Voltage	I _R = 0.5 mA	100	-	-	V
V_{F}	Forward Voltage Drop	I _F = 5 A	-	0.542	-	V
		I _F = 5 A, T _A = 125°C	-	0.496	-	1
		I _F = 8 A	-	0.620	0.670	
		I _F = 8 A, T _A = 125°C	-	0.574	0.600	
		I _F = 10 A	-	0.674	-	
		I _F = 10 A, T _A = 125°C	-	0.611	-	1
I _R	Reverse Current	V _R = 70 V	-	0.006	-	mA
		V _R = 70 V, T _A = 125°C	-	5.57	-	
		V _R = 100 V	-	0.008	0.05	1
		V _R = 100 V, T _A = 125°C	-	15.65	20	
CJ	Junction Capacitance	V _R = 4 V, f = 1 MHz	-	672	-	pF
T _{rr}	Reverse Recovery Time	I _F = 0.5 A, I _R = 1 A, I _{rr} = 0.25 A	-	19.64	-	ns

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


ORDERING INFORMATION

Part Number	Top Mark	Package	Shipping [†]
FSV8100V	FSV8100V	TO-277 3L (Pb-Free/Halogen Free)	5000 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

FSV8100V

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Typical Forward Characteristics

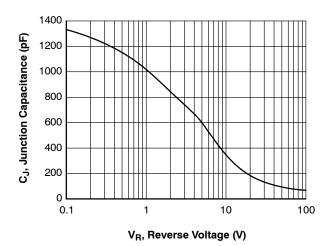
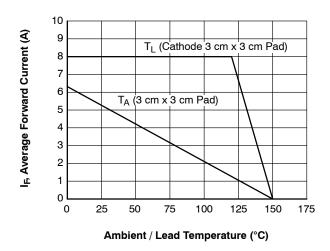
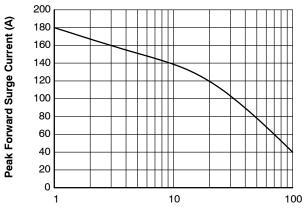
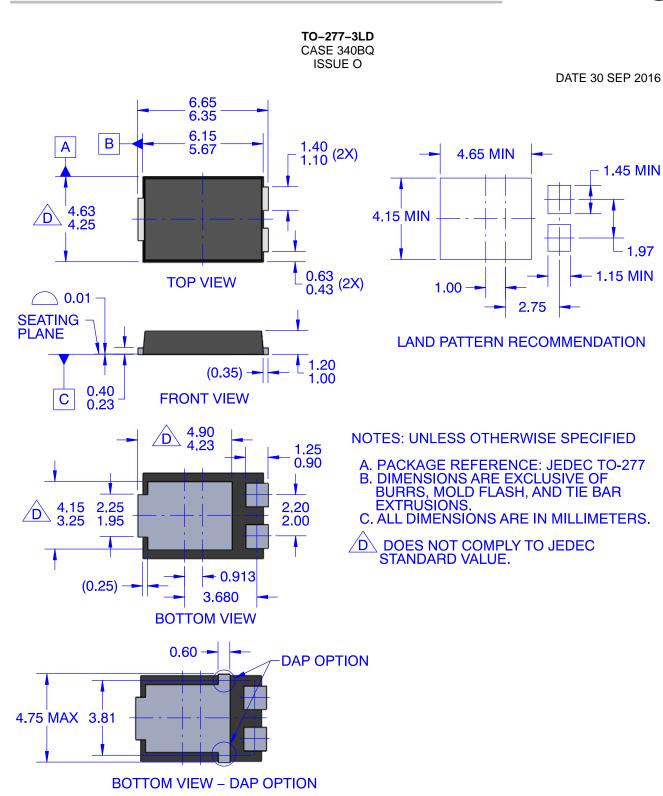


Figure 5. Typical Junction Capacitance


Figure 7. Forward Current Derating Curve

Number of Cycles

Figure 6. Maximum Non-Repetitive Peak Forward Surge Current

DOCUMENT NUMBER:	98AON13861G	Electronic versions are uncontrolled ex	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped	
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	TO-277-3LD	PA	GE 1 OF 2

DOCUMENT NUMBER: 98AON13861G

PAGE 2 OF 2

DATE 30 SEP 2016
30 SEP 2016

ON Semiconductor and with a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit Phone: 421 33 790 2910

For additional information, please contact your local

Sales Representative