I3T25

Process Technology

I3T25: 0.35 μm Process Technology

ON Semiconductor®

www.onsemi.com

Overview

Providing the density of a 0.35 µm digital process, analog/mixed-signal capability and high voltage, the Intelligent Interface Technology I3T25 process from ON Semiconductor is the answer to the need for increased digital content in a mixed-signal and/or high voltage environment. Featuring high voltage devices up to 18 V as well as digital and analog operation at 3.3 V and 12 V, the I3T25 process family features a wide range of capabilities in a single IC.

Features

- 3 to 5 Metal Layers
- Metal to Metal (MIM) Linear Capacitors
- Poly to Poly Capacitors
- High and Medium Resistivity Polysilicon Resistors
- Floating HV Thick/Thin ox NDMOS and PDMOS Transistors
- Floating Low-voltage Diodes
- Schottky Diode
- Medium-voltage PNP and NPN Bipolar Transistors
- Zener Zap Diode OTP
- Buried Zener Diode for Clamping
- Medium-voltage Floating Metal Capacitors
- Deep N + Doped Guard Rings

PROCESS CHARACTERISTICS

Operating Voltage	3.3, 12 V
Substrate Material	N-epitaxy on P-sub, Retrograde Wells
Drawn Transistor Length	0.35 μm
Gate Oxide Thickness	7/~30 nm
Contact/Via Size	0.4 μm
Contacted Gate Pitch	1.3 μm
Top Metal Thickness	845 nm
Metal Pitch	
Metal 1	1.0 μm
Metal 2	1.1 μm
Top Metal	1.4 μm
Metal Composition	Al/Cu
Isolation	LOCOS
ILD Planarization	PSG/PETEOS/ +CMP
IMD Planarization	PETEOS+CMP

SAMPLE PROCESS OPTIONS

	Mask Layers
3 Metal, 25 V HIPO, OTP	19
4 Metal, 25 V HIPO, OTP	21
5 Metal, 25 V HIPO, OTP	23
Thick Oxide	+3
Poly Poly Cap	+1
MIMC	+1

DEVICE CHARACTERISTICS

All Values Typical at 25°C

LOW-VOLTAGE TRANSISTORS

NMOS Transistor	Typical Value	Units
Vt (10/0.35, linear extrapolated)	0.59	V
Vmax = Vbd	3.6	V
IDS (10/0.35, Vds = Vgs = 3.3 V)	530	μ A /μm
PMOS Transistor	Typical Value	Units
Vt (10/0.35, linear extrapolated)	-0.57	V
Vmax = Vbd	-3.6	V
IDS (10/0.35, Vds = Vgs = 3.3 V)	-250	μ A /μm

THICK OXIDE HIGH-VOLTAGE TRANSISTORS (EXTENDED DRAIN)

Floating NDMOS (18 V)	Typical Value	Units
Vt (Vd = 0.1 V)	1.3	V
Vbd (Vgs = 0)	31	V
Vgsmax	12	V
Vdsmax, SOA* (Vgs = Vgsmax, full lifetime)	12	V
Vdsmax, (Vgs full lifetime)	18	V
Ron*Area (Vg = 18 V, Vd = 0.5 V)	27	$m\Omega$ * mm^2
lds	260	μ A /μm
Floating PDMOS (18 V)	Typical Value	Units
Vt (Vd = 0.1 V)	-1.3	V
Vbd (Vgs = 0)	-35	V
Vgsmax	-12	V
Vdsmax, SOA* (Vgs = Vgsmax, full lifetime)	-12	V
Vdsmax, (Vgs full lifetime)	-18	V
Ron*Area (Vg = 18 V, Vd = 0.5 V)	71	$m\Omega$ * mm^2
lds	-110	μ A /μm

^{*} Symmetric Device Available

THIN OXIDE HIGH-VOLTAGE TRANSISTORS (EXTENDED DRAIN)

Floating NDMOS	Typical Value	Units
Vt (Vd = 0.1 V)	0.6	V
Vbd (Vgs = 0)	31	V
Vgsmax	3.6	V
Vdsmax, SOA* (Vgs = Vgsmax, full lifetime)	12	V
Vdsmax, (Vgs full lifetime)	18	V
Ron*Area (Vg = 3.3 V, Vd = 0.5 V)	35	${ m m}\Omega^{*}{ m m}{ m m}^{2}$
lds	280	μ A /μm
Floating PDMOS	Typical Value	Units
Vt (Vd = 0.1 V)	-0.6	V
Vbd (Vgs = 0)	-28	V

Vgsmax	-3.6	V
Vdsmax, SOA* (Vgs = Vgsmax, full lifetime)	-12	V
Vdsmax, (Vgs full lifetime)	-18	V
Ron*Area (Vg = 3.3 V, Vd = 0.5 V)	75	${ m m}\Omega^{*}{ m m}{ m m}^{2}$
lds	-121.5	μ A /μm

^{*} Symmetric Device Available

THICK OXIDE HIGH-VOLTAGE TRANSISTORS (NESTED DRAIN)

Floating NDMOS (12 V)	Typical Value	Units
Vt (Vd = 0.1 V)	1.3	V
Vbd (Vgs = 0)	21	V
Vgsmax	12	V
Vdsmax, SOA* (Vgs = Vgsmax, full lifetime)	8	V
Vdsmax, (Vgs full lifetime)	12	V
Ron*Area (Vg = 18 V, Vd = 0.5 V)	15	$\mathrm{m}\Omega^*\mathrm{m}\mathrm{m}^2$
lds	260	μ A /μm
Floating PDMOS (12 V)	Typical Value	Units
Vt (Vd = 0.1 V)	-1.4	V
Vbd (Vgs = 0)	-21	V
Vgsmax	-12	V
Vdsmax, SOA* (Vgs = Vgsmax, full lifetime)	-8	V
Vdsmax, (Vgs full lifetime)	-12	V
Ron*Area (Vg = 18 V, Vd = 0.5 V)	75	$m\Omega*mm^2$
lds	-92	μ A /μm

^{*} Symmetric Device Available

BIPOLAR TRANSISTORS

Bipolar Transistors Vertical Low-Voltage NPN (Parameter, E_area = 3.61 μm²)	Typical Value	Units
Hfe @ Ic = 10 μA	17.3	-
Bvceo @ lc = 1 μA	20.5	V
Bvces @ Ic = 1 μA	20.9	V
Vertical Low–Voltage PNP Transistor (Parameter, E_area = 0.64 μm²)	Typical Value	Units
Hfe @ Ic = 10 μA	20.1	-
Bvceo @ lc = 1 μA	-14.5	V
Bvces @ Ic = 1 μA	-19.5	V

DIODES

Zener Diode: PBZD (a = 2 μm)	Typical Value	Units
Vz @ 100 μA	4.6	V
Rzener	45	Ω
lleak @ Vz = 0.5 V	200	nA

Zapping Zener Diode for OTP: UZZD	Typical Value	Units
Vz @ 1 μA	1.5	V
Vbd @ 10 mA	4.5	V
lleak @ Vz = 1 V	1.4	V
Poly Diode for Gate Clamping: POLYD	Typical Value	Units
Vreverse @ la = 10 μA	6.8	V
Schottky		
Vbd @ 1 μA	15	V

CAPACITORS (PARAMETER @ 25°C)

Type (Maximum Voltage)	Typical Value	Units
Metal2 / Metal2.5 Plate: MIMC (3.6 V)	1.5	fF/μm ²
Poly Poly Capacitor (13.2 V)	1	fF/μm²

RESISTORS (PARAMETER @ 25°C)

Resistor Type	Typical Value	Units
High-Resistance Poly: HIPO	975	Ω /square
Salicided P+ Poly: LOPOR	2.4	Ω /square
Unsalicided P+ Poly: PPOLR	240	Ω /square
Unsalicided P+ in Mwell	64	Ω /square
Unsalicided N+ Poly: NPOLR	292	Ω/square
Unsalicided P+ in Pwell	47.5	Ω/square
Nwell under FOX (field oxide)	958	Ω /square
Nwell in AA (active area)	800	Ω /square
Pwell in AA (active area)	1755	Ω /square

LIBRARIES

All Values Typical at 25°C

Standard Cell		
Ultra High Density Core Shell	pn sum: 2.0	
	Area of 2–input nand (na21): 38.88 μm ²	
	Gate density (na21 @ 100% utilization): 25.72 k gates/mm ²	
	Scan Flop densoty (scan flops @ 100% utilization): 3.215 k ff/mm ²	
	Average power (@ 3.3 V): 0.2929 μW/MHz/gate	
Core Cell Level Shifters	Unidirectional: 1 cell optimized for speed, pad high to core low	
Standard I/O		
Fat Pad I/O Library (for core limited designs)	172.80 μm min in-line pad pitch	
	180.00 μm pad height	

Tall Pad I/O Library (for pad limited designs)	86 μm min in-line pad pitch
	322.50 μm pad height

MEMORY OPTIONS

RAM				
Synchronous High Speed / High Temp Single Port SRAM	Minimum: 16 words x 2 bits			
	Maximum: 128 k bits (i.e: 16 k words x 8 bits, 8 k words x 16 bits,)			
Synchronous High Speed / High Temp Dual Port SRAM	Minimum: 16 words x 2 bits			
	Maximum: 128 k bits (i.e: 16 k words x 8 bits, 8 k words x 16 bits,)			
Low Power	Minimum: 64 words x 4 bits			
Synchronous SRAM	Maximum: 128 k bits (i.e: 16 k words x 8 bits, 8 k words x 16 bits,)			
ROM				
Synchronous	Minimum: 256 words x 4 bits			
High Speed / High Temp Diffusion ROM	Maximum: 512 k bits (i.e: 64 k words x 8 bits, 32 k words x 16 bits,)			
Low Power Synchronous Via	Minimum: 256 words x 4 bits			
Programmable ROM	Maximum: 512 k bits (i.e: 64 k words x 8 bits, 32 k words x 16 bits,)			
Non-Volatile Memory				
OTP – One Time Programmable	Fuse: Zener Diode optimized for low power zapping			
	Both Serial and Parallel Output Capability			
	In field programming available			
	Vector: Up to 320 bits			
EEPROM – No Additional Masks or Processing Steps	Differential Bit Cell (Redundancy for High Reliability)			
	2 ms Write/Erase			
	Array: up to 8 k bits (128 x 64), Vector: 8 to 64 bits (1 x 8 to 1 x 64)			
	Internal Charge Pump provided			
	Memory Failure Rate: < 10 ppm, < 1 ppm with ECC (128 x 56)			
	Automotive qualification AEC-Q100			

CAD TOOL COMPATIBILITY

Digital Design	Synopsys Design Compiler
	Cadence Verilog
Analog Design	Cadence DFII (4.4.6)
	Cadence Spectre
Place and Route	Synopsys Apollo
	Cadence Silicon Ensemble
Physical Verification	Mentor graphics Calibre

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative