I3T50

Process Technology I3T50: 0.35 μm Process Technology

ON Semiconductor®

www.onsemi.com

Overview

Providing the density of a 0.35 µm digital process, analog/mixed-signal capability and high voltage, the ON Semiconductor Intelligent Interface Technology I3T50 process is the answer to the need for increased digital content in a mixed-signal and/or high voltage environment. Featuring high voltage devices up to 40 V as well as digital and analog operation at 3.3 V, the I3T50 process family is the first to use deep trenches for isolating high voltage devices.

Features

- 3 to 5 Metal Layers
- Metal to Metal (MIM) Linear Capacitors
- High-Voltage Metal Capacitors
- High-Resistivity Polysilicon Resistors
- Two Types of Medium–Resistivity Polysilicon Resistors
- Floating High-Voltage NDMOS & PDMOS Transistors
- Floating Medium–Voltage NDMOS Transistors
- Zener Zap Diode for OTP
- Floating High–Voltage and Low–Voltage Diodes
- Polysilicon Gate Protection Diodes
- Medium-voltage NPN Bipolar Transistors
- Deep Trench Isolation
- EEPROM Capability
- High Temperature Capability

PROCESS CHARACTERISTICS

Operating Voltage	3.3 V
Substrate Material	N-epitaxy on P-sub, Retrograde Wells
Drawn Transistor Length	0.35 μm
Gate Oxide Thickness	7.0 nm
Contact/Via Size	0.4 μm
Contacted Gate Pitch	1.3 μm
Top Metal Thickness	1020 nm
Metal Pitch	
Metal 1	1.0 μm
Metal 2	1.1 μm
Top Metal	1.4 μm
Metal Composition	Al/Cu
Isolation	LOCOS for CMOS, DT for HV
ILD Planarization	USG/BPTEOS+CMP
IMD Planarization	HDP/PETEOS+CMP

SAMPLE PROCESS OPTIONS

	Mask Layers
3 Metal, 40 V, MIMC, HIPO, OTP	21
4 Metal, 40 V, MIMC, HIPO, OTP	23
5 Metal, 40 V, MIMC, HIPO, OTP	25

1

DEVICE CHARACTERISTICS

All Values Typical at 25°C

LOW-VOLTAGE TRANSISTORS

NMOS Transistor	Typical Value	Units
Vt (10/0.35, linear extrapolated)	0.59	V
Vmax = Vbd	3.6	V
IDS (10/0.35, Vds = Vgs = 3.3 V)	530	μ A /μm
PMOS Transistor	Typical Value	Units
Vt (10/0.35, linear extrapolated)	-0.57	V
Vmax = Vbd	-3.6	V
IDS (10/0.35, Vds = Vgs = 3.3 V)	-250	μ A /μm

HIGH-VOLTAGE TRANSISTORS

Floating NMOS Transistor: VFNDM50	Typical Value	Units
Vt (W = 40 μm)	0.77	V
Vdsmax (guaranteed by hot carrier measurements)	40	V
Vgsmax (full lifetime)	3.6	V
lds (Vds = 25 V, Vgs = 3.3 V, 4 channels)	220	μA/μm
Ron*Area (20 channels)	52	m Ω^* mm ²
Floating PDMOS Transistor: LFPDM50	Typical Value	Units
Vt (W = 40 μm)	-0.57	V
Vdsmax (guaranteed by hot carrier measurements)	-40	V
Vgsmax (full lifetime)	-3.6	V
lds (Vds = 10 V, Vgs = 3.3 V)	-110	μ A /μm
Ron*Area	150	m Ω^* mm ²
Floating Medium Voltage Transistor: LFNDM14	Typical Value	Units
Vt (W = 40 μm)	0.59	V
Vdsmax (guaranteed by hot carrier measurements)	14	V
Vgsmax (full lifetime)	3.6	V
lds (Vds = 10 V, Vgs = 3.3 V)	300	μ A /μm
Ron*Area	31	m Ω *mm ²

BIPOLAR TRANSISTORS (PARAMETER E_area = 0.16 μ m²)

Medium Voltage NPN	Typical Value	Units
Hfe @ Ic = 50 nA – 0.5 mA (emitter area 0.16 μm ²)	> 100	-
Hfe @ Ic = 10 nA – 1.0 mA (emitter area 0.49 μm ²)	> 80	-
Vce max @ lc = 1 μA	11	V
Vce max @ lc = 0 µA	40	V

DIODES (PARAMETER K_area = 6.76 μ m²)

Floating High Voltage Diode: FID50	Typical Value	Units
Vbd	51	V
Vak_forw, lk = 1 μA	0.68	V
Poly Diode for Gate Clamping: POLYD	Typical Value	Units
Vbd	6.8	V
Vbe_forw	0.6	V
lleak/W @ Vrev = 5 V	40	nA/μm
Vbd_max	7.5	V

DIODES (PARAMETER W = 2 µm)

Zapping Zener Diode for OTP: Z224	Typical Value	Units
Vz @ 50 μA	2.7	V
Vbd @ 10 mA	4.5	V
lleak_max @ 1 V	1.7	μΑ

CAPACITORS (PARAMETER @ 25°C)

Metal2 / Metal2.5 Capacitor: MIMC	Typical Value	Units
С	1.5	fF/μm²
V max	3.6	V
Metal1 / Metal3 Plate Capacitor	Typical Value	Units
С	0.1	fF/μm²
V max	50	V
Poly / Metal3 Plate Capacitor	Typical Value	Units
С	0.14	fF/μm²
V max	50	V
Metal1 / Metal3 Bar Capacitor	Typical Value	Units
С	0.26	fF/μm²
V max	50	V
Poly / Metal3 Bar Capacitor	Typical Value	Units
С	0.33	fF/μm²
V max	50	V

RESISTORS (PARAMETER @ 25°C)

Resistor Type	Typical Value	Units
High-Resistance Poly: HIPO	1000	Ω /square
Unsalicided P+ Poly: PPOLR	240	Ω/square
Unsalicided N+ Poly: NPOLR	270	Ω/square

LIBRARIES

Standard Cell	
Ultra High Density Core Shell	pn sum: 2.0
Core Shell	Area of 2–input nand (na21): 38.88 μm^2
	Gate density (na21 @ 100% utilization): 25.72 k gates/mm ²
	Scan Flop density (scan flops @ 100% utilization): 3.215 k ff/mm ²
	Average power (@ 3.3 V): 0.2929 μW/MHz/gate
Standard I/O	
5 V Capable Fat Pad I/O Library	191.40 μm min in–line pad pitch
(for core limited designs)	214.60 μm pad height
5 V Capable Tall Pad I/O Library	150.80 μm min in–line pad pitch
(for pad limited designs)	417.60 μ m pad height
Fat Pad I/O	174.00 μm min in–line pad pitch
Library (for core limited designs)	168.20 μm pad height
Tall Pad I/O	92.80 μm min in–line pad pitch
Library (for pad limited designs)	330.60 μ m pad height

MEMORY OPTIONS

RAM	
Synchronous High Speed / High	Minimum: 16 words x 2 bits
Temp Single Port SRAM	Maximum: 128 k bits (i.e: 16 k words x 8 bits, 8 k words x 16 bits,)
Synchronous	Minimum: 16 words x 2 bits
High Speed / High Temp Dual Port SRAM	Maximum: 128 k bits (i.e: 16 k words x 8 bits, 8 k words x 16 bits,)
Low Power	Minimum: 64 words x 4 bits
Synchronous SRAM	Maximum: 128 k bits (i.e: 16 k words x 8 bits, 8 k words x 16 bits, …)

	ROM	
Synchronous	Minimum: 256 words x 4 bits	
High Speed / High Temp Diffusion ROM	Maximum: 512 k bits (i.e: 64 k words x 8 bits, 32 k words x 16 bits,)	
Low Power Synchronous Via	Minimum: 256 words x 4 bits	
Programmable ROM	Maximum: 512 k bits (i.e: 64 k words x 8 bits, 32 k words x 16 bits,)	
Non-Volatile Memory		
OTP – One Time Programmable	Fuse: Zener Diode optimized for low power zapping	
	Both Serial and Parallel Output Capability	
	In field programming available	
	Vector: Up to 320 bits	
EEPROM – No Additional Masks	Differential Bit Cell (Redundancy for High Reliability)	
or Processing Steps	2 ms Write/Erase	
	Array: up to 8 k bits (128 x 64), Vector: 8 to 64 bits (1 x 8 to 1 x 64)	
	Internal Charge Pump provided	
	Memory Failure Rate: < 10 ppm, < 1 ppm with ECC (128 x 56)	
	Automotive qualification AEC-Q100	

CAD TOOL COMPATIBILITY

Digital Design	Synopsys Design Compiler
	Cadence Verilog
Analog Design	Cadence DFII (4.4.6)
	Spectre
Place and Route	Synopsys Apollo
	Cadence Silicon Ensemble
Physical Verification	Mentor Graphics Calibre

13T50

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative