ON Semiconductor ${ }^{\circledR}$

ISL9R1560P2-F085

15A, 600V Stealth Rectifier

Features

- High Speed Switching ($\mathrm{t}_{\mathrm{rr}}=30 \mathrm{~ns}($ Typ. $) @ \mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}$)
- Low Forward Voltage($\mathrm{V}_{\mathrm{F}}=2.2 \mathrm{~V}$ (Max.) @ $\mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}$)
- Avalanche Energy Rated
- AEC-Q101 Qualified

Applications

- Automotive DCDC Converter
- Automotive On Board Charger
- Switching Power Supply
- Power Switching Circuits

Max Ratings (600V, 15A)

The ISL9R1560P2-F085 is a Stealth ${ }^{\text {TM }}$ diode with soft recovery characteristics (trr < 30ns). It has a low forwardvoltage drop and is of silicon nitride passivated, ionimplanted, epitaxial construction.
This device is intended for use as a freewheel/clamping diode in various automotive switching power supplies and other power switching applications.
Its low stored charge as well as Stealth ${ }^{\text {TM }}$ and soft recovery characteristics minimize ringing and electrical noise while reduce the overall power loss.

Pin Assignments

Absolute Maximum Ratings $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Ratings	Units
$\mathrm{V}_{\text {RRM }}$	Peak Repetitive Reverse Voltage	600	V
$\mathrm{~V}_{\mathrm{RWM}}$	Working Peak Reverse Voltage	600	V
$\mathrm{~V}_{\mathrm{R}}$	DC Blocking Voltage	600	V
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	Average Rectified Forward Current $\quad @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	15	A
$\mathrm{I}_{\mathrm{FSM}}$	Non-repetitive Peak Surge Current (Halfwave 1 Phase 50Hz)	45	A
$\mathrm{E}_{\text {AVL }}$	Avalanche Energy (1A, 40mH)	20	mJ
$\mathrm{~T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	Operating Junction and Storage Temperature	-55 to +175	${ }^{\circ} \mathrm{C}$

Thermal Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Max	Units
$\mathrm{R}_{\theta \mathrm{JC}}$	Maximum Thermal Resistance, Junction to Case	0.93	
$\mathrm{R}_{\theta \mathrm{JA}}$	Maximum Thermal Resistance, Junction to Ambient	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Package Marking and Ordering Information

Device Marking	Device	Package	Tube	Quantity
ISL9R1560P2	ISL9R1560P2-F085	TO-220AC	-	50

Electrical Characteristics
$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Conditions		Min.	Typ.	Max	Units
I_{R}	Instantaneous Reverse Current	$\mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	-	100	uA
			$\mathrm{T}_{\mathrm{C}}=175^{\circ} \mathrm{C}$	-	-	1000	uA
VFM^{1}	Instantaneous Forward Voltage	$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}$	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=175^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 1.65 \\ & 1.24 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
trr^{2}	Reverse Recovery Time	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~V}_{\mathrm{R}}=390 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	22	30	ns
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=200 \mathrm{~A} / \mathrm{ss}, \\ & \mathrm{~V}_{\mathrm{R}}=390 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=175^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{gathered} 30 \\ 127 \end{gathered}$	-	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{a}} \\ & \mathrm{t}_{\mathrm{b}} \\ & \mathrm{Q}_{\mathrm{rr}} \end{aligned}$	Reverse Recovery Time Reverse Recovery Charge	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~V}_{\mathrm{R}}=390 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	$\begin{aligned} & 17 \\ & 13 \\ & 48 \end{aligned}$	-	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{nC} \end{aligned}$

Notes:

1. Pulse : Test Pulse width $=300 \mu \mathrm{~s}$, Duty Cycle $=2 \%$
2. Guaranteed by design

Test Circuit and Waveforms
$t_{\text {rr }}$ Test Circuit

Avalanche Energy Test Circuit

$=1 \mathrm{~A}$
$\mathrm{L}=40 \mathrm{mH}$
$\mathrm{R}<0.1 \Omega$
$E_{A V L}=1 / 2 L L^{2}\left[V_{R(A V L)}\left(V_{R(A V L)}-V_{D D}\right)\right]$
$\mathrm{Q}_{1}=\operatorname{IGBT}\left(\mathrm{BV}_{\mathrm{CES}}>\mathrm{DUT}_{\mathrm{R}(A V L)}\right)$

$t_{\text {rr }}$ Waveforms and Definitions

Avalanche Current and Voltage Waveforms

Typical Performance Characteristics

Figure 1. Typical Forward Voltage Drop vs. Forward Current

Figure 3.Typical Junction Capacitance

Figure 5. Typical Reverse Recovery Current vs. di/dt

Figure 2. Typical Reverse Current vs. Reverse Voltage

Figure 4. Typical Reverse Recovery Time vs. di/dt

Figure 6. Forward Current Derating Curve

Typical Performance Characteristics (Continued)

Figure 7. Reverse Recovery Charge

Figure 8. Transient Thermal Response Curve

Mechanical Dimensions

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

