

ON Semiconductor®

ISL9V2040D3S / ISL9V2040S3S / ISL9V2040P3

EcoSPARK[®] 200mJ, 400V, N-Channel Ignition IGBT

General Description

The ISL9V2040D3S, ISL9V2040S3S, and ISL9V2040P3 are the next generation ignition IGBTs that offer outstanding SCIS capability in the space saving D-Pak (TO-252), as well as the industry standard D²-Pak (TO-263) and TO-220 plastic packages. This device is intended for use in automotive ignition circuits, specifically as a coil driver. Internal diodes provide voltage clamping without the need for external components.

EcoSPARK¤ devices can be custom made to specific clamp voltages. Contact your nearest ON Semiconductor sales office for more information.

Applications

- Automotive Ignition Coil Driver Circuits
- Coil- On Plug Applications

Features

- Space saving D Pak package available
- SCIS Energy = 200mJ at T₁ = 25°C
- · Logic Level Gate Drive

Formerly Developmental Type 49444

Package Symbol JEDEC TO-252AA JEDEC TO-263AB JEDEC TO-220AB E C G GATE COLLECTOR COLLECTOR (FLANGE) (FLANGE)

Device Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units	
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	430	V	
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	V	
E _{SCIS25}	At Starting $T_J = 25$ °C, $I_{SCIS} = 11.5A$, $L = 3.0$ mHy	200	mJ	
E _{SCIS150}	At Starting $T_J = 150$ °C, $I_{SCIS} = 8.9A$, $L = 3.0$ mHy	120	mJ	
I _{C25}	Collector Current Continuous, At T _C = 25°C, See Fig 9	10	Α	
I _{C110}	10	Α		
V_{GEM}	Gate to Emitter Voltage Continuous	±10	V	
P _D	Power Dissipation Total T _C = 25°C	130	W	
	Power Dissipation Derating T _C > 25°C	0.87	W/°C	
TJ	Operating Junction Temperature Range	-40 to 175	°C	
T _{STG}	Storage Junction Temperature Range	-40 to 175	°C	
TL	Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)	300	°C	
T _{pkg}	Max Lead Temp for Soldering (Package Body for 10s)	260	°C	
ESD	Electrostatic Discharge Voltage at 100pF, 1500Ω	4	kV	

Device Marking		Device	Pa	ackage	Reel Size	Та	pe Width	Qı	uantity	
V2040D		ISL9V2040D3ST	TC	-252AA 330mm		16mm		2500		
V2040S		ISL9V2040S3ST	TC	-263AB 330mm		24mm		800		
V2040P		ISL9V2040P3	TC)-220AB	B Tube		N/A		50	
V2040D		ISL9V2040D3S	TC	0-252AA Tube		N/A		75		
			0-263AB Tube		N/A			50		
Symbol	al Cha	racteristics T _A =	25°C un	Т	noted	Min	Тур	Max	Unit	
ff State	Charact			100101			.,,,,		1 0	
BV _{CER}	Collector to Emitter Breakdown Voltage			$I_C = 2\text{mA}, V_G$ $R_G = 1\text{K}\Omega, S$ $T_J = -40 \text{ to } 15$	370	400	430	V		
BV _{CES}	Collector to Emitter Breakdown Voltage			$I_C = 10 \text{mA}, V_C$ $R_G = 0$, See $T_J = -40 \text{ to } 15$	390	420	450	V		
BV _{ECS}	Emitter to Collector Breakdown Voltage			I _C = -75mA, \ T _C = 25°C	30	-	-	V		
BV_{GES}	Gate to I	ate to Emitter Breakdown Voltage		$I_{GES} = \pm 2mA$		±12	±14	-	V	
I _{CER}	Collector	to Emitter Leakage Cu	rrent	$V_{CER} = 250V$	$T_C = 25^{\circ}C$	-	-	25	μΑ	
			$R_G = 1K\Omega$, See Fig. 11	T _C = 150°C	-	-	1	m <i>P</i>		
I _{ECS}	Emitter to Collector Leakage Current		V _{EC} = 24V, See Fig. 11	ee $T_C = 25^{\circ}C$	-	-	1	m <i>P</i>		
				T _C = 150°C	-	-	40	m/		
R ₁	Series G	s Gate Resistance				-	70	-	Ω	
R ₂	Gate to Emitter Resistance					10K	-	26K	Ω	
n State				T-				1		
V _{CE(SAT)}		Collector to Emitter Saturation Voltage		$I_C = 6A,$ $V_{GE} = 4V$	T _C = 25°C, See Fig. 3	-	1.45	1.9	V	
V _{CE(SAT)}	Collector	Collector to Emitter Saturation Voltage		$I_C = 10A,$ $V_{GE} = 4.5V$	T _C = 150°C See Fig. 4	-	1.95	2.3	V	
ynamic	Charact	eristics								
Q _{G(ON)}	Gate Ch	arge		$I_C = 10A$, $V_{CE} = 12V$, $V_{GE} = 5V$, See Fig. 14		-	12	-	nC	
$V_{GE(TH)}$	Gate to	Emitter Threshold Voltag	ge	$I_C = 1.0 \text{mA},$	$T_C = 25^{\circ}C$	1.3		2.2	V	
. ,				$V_{CE} = V_{GE}$, See Fig. 10	T _C = 150°C	0.75	-	1.8	V	
V_{GEP}	Gate to	Emitter Plateau Voltage		$I_C = 10A, V_{CE}$	= 12V	-	3.4	-	V	
witching	Charac	eteristics								
t _{d(ON)R}	Current	ent Turn-On Delay Time-Resistive		$V_{CE} = 14V, R_{L} = 1\Omega,$		-	0.61	-	μs	
t _{riseR}	Current	urrent Rise Time-Resistive		$V_{GE} = 5V$, $R_G = 1K\Omega$ $T_J = 25$ °C		-	2.17	-	μs	
t _{d(OFF)L}	Current	t Turn-Off Delay Time-Inductive		$V_{CE} = 300V, L = 500\mu Hy,$		-	3.64	-	μs	
t _{fL}		Fall Time-Inductive	V_{GE} = 5V, R_{G} = 1K Ω T _J = 25°C, See Fig. 12		-	2.36	-	μs		
SCIS	Self Clamped Inductive Switching			$T_J = 25^{\circ}\text{C}$, L = 3.0mHy, R _G = 1K Ω , V _{GE} = 5V, See Fig. 1 & 2		-	-	200	m	

TO-252, TO-263, TO-220

1.15

°C/W

Thermal Resistance Junction-Case

Typical Performance Curves

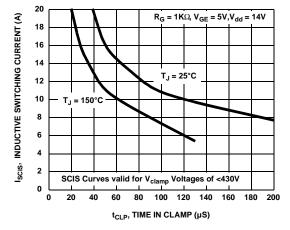
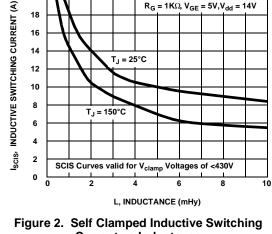



Figure 1. Self Clamped Inductive Switching **Current vs Time in Clamp**

 $R_G = 1K\Omega$, $V_{GE} = 5V$, $V_{dd} = 14V$

Current vs Inductance

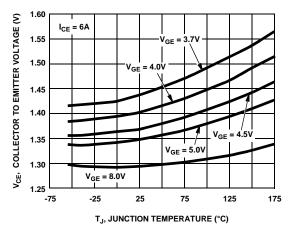


Figure 3. Collector to Emitter On-State Voltage vs **Junction Temperature**

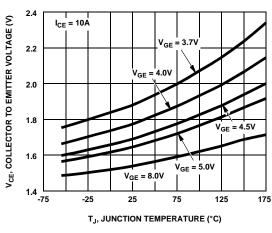


Figure 4. Collector to Emitter On-State Voltage vs Junction Temperature

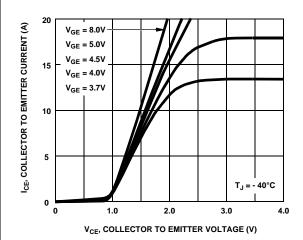


Figure 5. Collector to Emitter On-State Voltage vs **Collector Current**

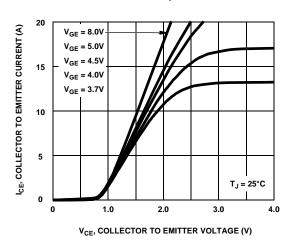


Figure 6. Collector to Emitter On-State Voltage vs Collector Current

Typical Performance Curves (Continued)

Figure 7. Collector to Emitter On-State Voltage vs Collector Current

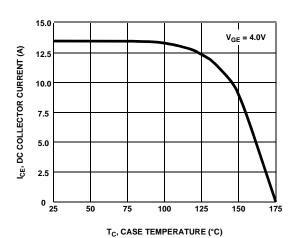


Figure 9. DC Collector Current vs Case Temperature

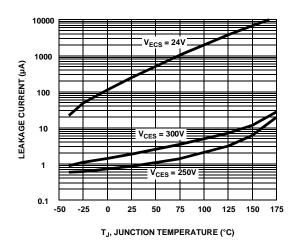


Figure 11. Leakage Current vs Junction Temperature

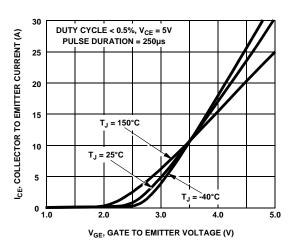


Figure 8. Transfer Characteristics

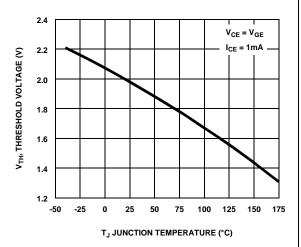


Figure 10. Threshold Voltage vs Junction Temperature

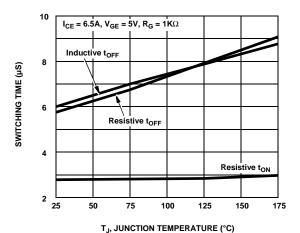
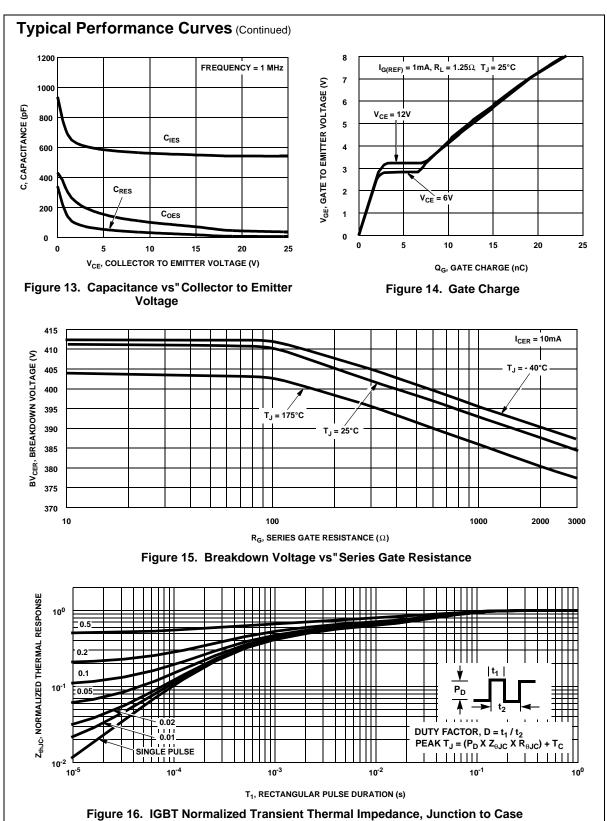
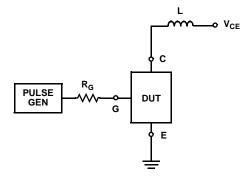
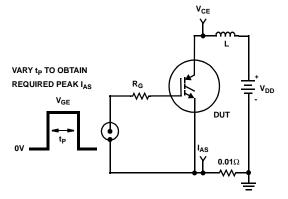




Figure 12. Switching Time vs Junction Temperature


Test Circuit and Waveforms

 $R_{G} = 1K\Omega$ DUT V_{CE}

Figure 17. Inductive Switching Test Circuit

Figure 18. t_{ON} and t_{OFF} Switching Test Circuit

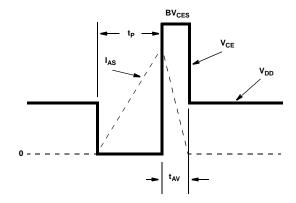
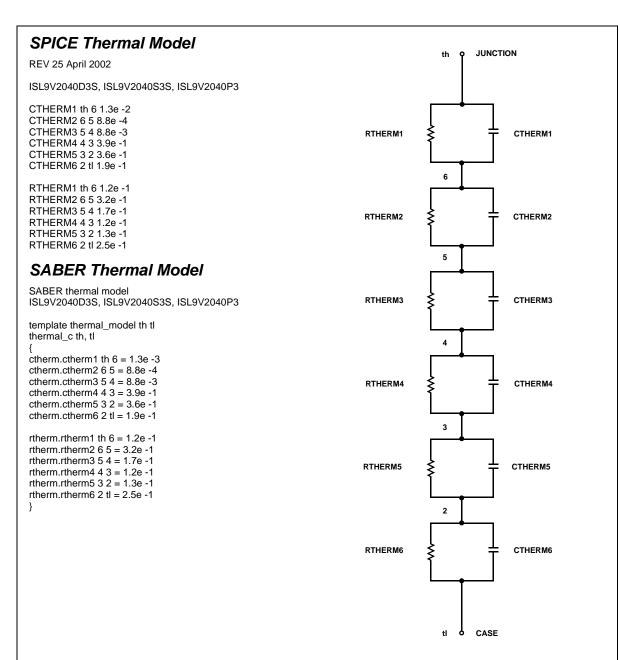



Figure 19. Unclamped Energy Test Circuit

Figure 20. Unclamped Energy Waveforms

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative