L78LR05D-MA-E

150 mA, 5 V Linear Voltage Regulator with Reset Function

Features

- Backup Supported with Reset Function 150 mA
- 5 V Linear Voltage Regulator
- This is a Pb–Free Device

Application

- Prevention of Malfunction that May Occur when the Power Supply of a Microprocessor System is Turned ON/OFF
- Measure Taken against Abnormal Operations that May Occur at the Time of Instantaneous Break of Power Supply and Control of a Battery-backed Up Memory System

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Symbol	Parameter Conditions		Ratings	Unit
VIN max	Maximum Input Voltage		25	V
Pd max	Allowable Power Dissipation	No heat sink	1.0	W
Topr	Operating Ambient Temperature		-3.0 to +80	°C
Tstg	Storage Ambient Temperature		–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

OPERATING CONDITIONS (Ta = 25°C)

Symbol	Parameter	Conditions	Ratings	Unit
VIN	Input Voltage		7.5 to 20	V
IOUT	Output Current		1 to 150	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ON Semiconductor®

www.onsemi.com

IPAK5 / TP5H CASE 369AG

MARKING DIAGRAM

XXXXX = Specific Device Code Y = Year M = Month DDD = Additional Traceability Data

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present.

ORDERING INFORMATION

Device	Package	Shipping
L78LR05D-MA-E	IPAK5 / TP5H (Pb–Free)	500 / Bulk

*The measured values of Pd represent the values measured when solder on the Cu-foiled area is all wet

Symbol	Characteristic	Conditions		Min	Тур	Max	Unit
VOUT1	Output Voltage	Tj = 25°C		4.8	5.0	5.2	V
VOUT2		7 V \leq VIN \leq 20V, 1 mA \leq IOUT \leq 70 mA		4.75	-	5.25	V
∆VO LINE1	Line regulation	Tj = 25°C	$7 \text{ V} \le \text{VIN} \le 20 \text{ V}$	-	6	75	mV
∆VO LINE2			$8 \text{ V} \leq \text{VIN} \leq 20 \text{ V}$	-	3	50	mV
$\Delta VO LOAD1$	Load regulation	7	$1 \text{ mA} \le \text{IOUT} \le 100 \text{ mA}$	-	9	60	mV
ΔVO LOAD2			$1 \text{ mA} \le \text{IOUT} \le 40 \text{ mA}$	-	3	30	mV
ICC	Current drain		lout = 100 mA	-	1.4	3.4	mA
∆ICC LINE	Current drain	$8 \text{ V} \le \text{IN} \le 20 \text{ V}$		-	0.12	1.5	mA
∆ICC LOAD	- Variation range	$1 \text{ mA} \le \text{IOUT} \le 40 \text{ mA}$		-	0.01	0.1	mA
VNO	Output noise voltage	10 Hz \leq f \leq 100 kHz, IOUT = 1 mA		-	80	-	μV
ΔVOUT/ΔΤj	Temperature coefficient of output voltage	IOUT = 1 mA, Tj = 25 to 125°C		-	±0.5	_	mV/°C
Rrej	Ripple rejection	$Tj=25^{\circ}C,f=120\;Hz,8\;V\leq VIN\leq 18\;V$		-	79	-	dB
VDROP	Dropout voltage	Tj = 25°C		-	1.5	2.2	V
IOSC	Output short current			150	300	450	mA
VORH	"H" reset output voltage			4.8	5.0	5.2	V
VORL	"L" reset output voltage	Tj = 25°C, VIN = 3 V, IOUT = 1 mA		-	10	200	mV
VRT	Reset threshold voltage	Tj = 25°C		4.00	4.20	4.35	V
VRTH	Reset threshold Hysteresis voltage			50	100	200	mV
td	Reset output delay time	Cd = 0.1 μF		7.5	10	12.5	ms
IO LEAK	Output pin leak current	VIN = 0 V, VO = 6 V		-	0.001	2	μΑ
IOR LEAK	Reset output pin leak current	VIN = 0 V, VO = 6 V		-	0.001	2	μA

OPERATING CHARACTERISTICS (Ta = 2	5°C, VIN = 10 V, IOUT = 40 mA,	$CIN = 1 \ \mu F$, $COUT = 10 \ \mu F$)
--	--------------------------------	---

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Equivalent Circuit Block Diagram

Figure 3. Equivalent Circuit Block Diagram

Sample Application Circuit

td = 100 x Cd (μ F) [ms]

NOTES:

- 1. When $Cd \ge 10 \ \mu$ F, the capacitor may not discharge completely, causing td to be made shorter than a set value. In this case, connect high–speed diode (DS442) across pin 2 (anode side) and pin 5 (cathode side)
- 2. Connecting a pull-up resistor to the reset output externally allows sink current up to 4 mA to flow.

Figure 4. Sample Application Circuit

Reset Operation

Figure 5. Reset Operation

PACKAGE DIMENSIONS

IPAK5 / TP5H CASE 369AG ISSUE A

L78LR05D-MA-E

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death

Phone: 421 33 790 2910

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative