Product Preview

Digital MEMS Microphone Controller including Pre-amplifier and Sigma Delta Modulator and Charge Pump

ON Semiconductor®

www.onsemi.com

Description

The LC706206CA is a MOS LSI which integrates digital MEMS microphone controller function. It supplies bias voltage to external MEMS sensor and accepts analog sound signal, outputs PDM (Pulse Density Modulation) data stream.

The LC706206CA includes LDO, pre-amplifier, ADC (Analog-to Digital Converter) and charge-pump. The charge-pump generates bias voltage which is needed by the MEMS sensor. The pre-amplifier amplifies analog sound signal from the MEMS sensor and drives ADC to obtain PDM data stream.

The LC706206CA features an integrated LDO and is powered from the system supply rails up to 3.6 V, with low current consumption of 550 $\mu A(typ)$ at normal operation mode (Fclk = 2.4 MHz). It also has the low power mode (Fclk = 750 kHz).

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC706206CA	Wafer (Pb-Free)	1 / Wafer Carrier

Features

- Optimized to be combined with a MEMS Sensor with 11 V Bias Voltage and -39 dBV @ 94 dBSPL Sensitivity
- Pulse Density Modulation (PDM) Output
- Standard 5-Wire Digital Interface
- 11.0 V Charge-pump Output for MEMS Sensor Bias
- +13 dB Gain (Transfer Function)
- Low Noise –90 dBFS Output makes total SNR up to 63 dB
- Low Current Consumption 550 μA(typ) at Fclk = 2.4 MHz
- Low Power Mode at Fclk = 750 kHz in which the Current Consumption 300 μA(typ)
- This is a Pb-Free Device

Applications

- Digital MEMS Microphone
- Personal Computer
- Tablet Computer
- Mobile Handset
- Headset Accessories

Block Diagram

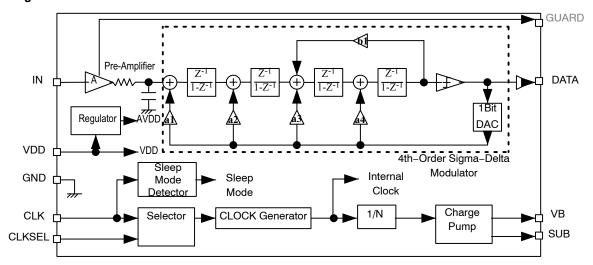
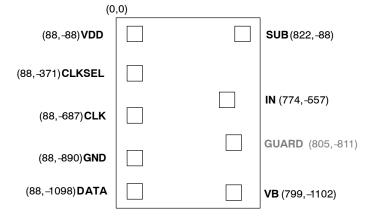



Figure 1. Block Diagram

Pad Coordinate Pad Size

80 μm (Jacket Open Area)

Figure 3. Pad Size

Figure 2. Pad Coordinate

Wafer Outline

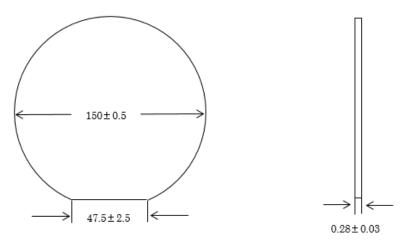


Figure 4. Wafer Outline

Table 1. ABSOLUTE MAXIMUM RATINGS at T_a = 25°C, GND = 0 V

Parameter	Symbol	Pin Name	Min	Max	Unit
Maximum power supply voltage	V _{DD} max	VDD	-0.3	+4.0	V
Maximum input voltage	V _{CLK} max	CLOCK, LR, ADJ	-0.3	V _{DD} + 0.3	V
	V _{IN} max	IN	-0.3	V _{DD} + 0.3	V
Maximum output voltage	V _O max	DATA	-0.3	V _{DD} + 0.3	V
Operating temperature range	Та		-30	70	°C
Storage temperature range	Tstg		-40	85	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 2. CIRCUIT PARAMETERS (Note 1)

Parameter	Symbol	Pin Name	Test Condition	Min	Тур	Max	Unit
Input capacitance of die	C _{IN}	IN			0.4		pF

^{1.} IN-Pin has a limited protection against ESD. Value of IN-Pin is proven by design.

 $\textbf{Table 3. DC ELECTRICAL CHARACTERISTICS RATING} \ \ \text{at } \ T_{a} = 25^{\circ}\text{C}, \ V_{DD} = 1.8 \ \text{V}, \ \text{GND} = 0 \ \text{V}, \ \text{Fclk} = 2.4 \ \text{MHz}, \ \text{Fduty} = 50\%$

Parameter	Symbol	Pin Name	Condition	Min	Тур	Max	Unit
Power supply voltage	V _{DD}	VDD		1.64	1.8	3.6	V
Current consumption 1	IDD1	VDD	V _{DD} = 1.8 V Fclk = 3.0 MHz		550		μΑ
Current consumption 2	IDD2	VDD	V _{DD} = 1.8 V Fclk = 750 kHz		300		μΑ
Standby Current	ISTBY	VDD	V _{DD} = 3.3 V Fclk < 1 kHz			1	μΑ
Input/Output LOW level	Viol	CLK, DATA, CLKSEL	DATA : lol = 0.5 mA			$0.35 \times V_{DD}$	V
Input/Output HIGH level	Vioh	CLK, DATA, CLKSEL	DATA : loh = -0.5 mA	0.65 × V _{DD}			V
Charge pump voltage	Vbias	VB/SUB	V _{DD} = 3.3 V	9.66	10.5	11.34	٧
Load Capacitance	Cload	DATA	V _{DD} = 1.64 V			200	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 4. AC ELECTRICAL CHARACTERISTICS DESIGN

at T_a = 25°C, V_{DD} = 1.8 V, GND = 0 V, Signal Frequency = 1 kHz, Measurement frequency = 100 Hz to 20 kHz, Fclk = 2.4 MHz, Fduty = 50%, Input capacitor = 2.5 pF, Bypass capacitor = 0.1 μ F (V_{DD} – GND)

Parameter	Symbol	Pin Name	Condition	Min	Тур	Max	Unit
Clock Frequency (Normal Operation)	Fclk	CLK		0.6	2.4	3.3	MHz
Clock Frequency (Sleep Mode)	Fclk_SL	CLK				1	kHz
Clock Duty (Note 2)	Fduty	CLK		40		60	%
Over Sampling Ratio	OSR				50		
Maximum Input Voltage	Vin (Note 2)	IN	0 dBFS (= 122 dBSPL)		223.8		mVrms
THD / THD+N	THD+N_0	DATA	Vout = -2 dBFS (= 120 dBSPL) 1 kHz Sin-Wave			5	% (THD)
	THD+N_1	DATA	Vout = -5 dBFS (= 117 dBSPL) 1 kHz Sin-Wave			3	% (THD+N)
	THD+N_2	DATA	Vout = -12 dBFS (= 110 dBSPL) 1 kHz Sin-Wave			1	% (THD+N)
	THD+N_3	DATA	Vout = -28 dBFS (= 94 dBSPL) 1 kHz Sin-Wave			0.5	% (THD+N)
Digital Noise Floor	DNF_1	DATA	Fclk = 2.4 MHz A-weighted		-90.0		dBFS
	DNF_2	DATA	Fclk = 750 kHz A-weighted		-89.0		dBFS
Transfer Function (Note 3)	TF1	DATA			13.0		dB
Transfer Function vs Fclk	TF_Fclk (Note 2)	DATA		-0.1		+0.1	dB
Power Supply Rejection	PSR (Note 2)	DATA	20 Hz to 20 kHz, 100 mVp-p sine wave			-80	dBFS
Wake Up Time (Note 2)	WUT_1	DATA	-0.5 dBFS to final value			20	ms
	WUT_2	DATA	-0.2 dBFS to final value			50	ms
Fall Asleep Time (Note 2)	FAT	DATA	Fclk = 1 kHz			10	ms

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{2.} Reference data: No measurement.

^{3.} Each product has been designed with performance of ±0.5 dB tolerance for transfer function however it's not measured in outgoing inspection.

Table 5. PIN DESCRIPTIONS

No.	Pin Name	Function	I/O	Pin Conditions
_	GND	Ground	-	-
_	VDD	Power Supply	_	-
_	GUARD	Connect to GUARD of MEMS	-	-
_	SUB	Connect to SUB of MEMS	-	-
_	DATA	PDM Data Output	Output	
-	CLKSEL	CLK Select signal input Case 1: When CLKSEL is LOW, PDM data is outputted in sync with negative edge of CLK. Case 2: When CLKSEL is HIGH, PDM data is outputted in sync with positive edge of CLK.	Input	
_	CLK	Clock input	Input	
_	VB	Charge Pump Voltage Output	Output	-
_	IN	Audio signal input	Input	

Table 6. SWITCHING CHARACTERISTICS

at T_a = 25°C, V_{DD} = 1.8 V, GND = 0 V, Fclk = 2.4 MHz, Fduty = 50%

Case 1: CLKSEL = LOW

Parameter	Symbol	Pin Name	Condition	Min	Тур	Max	Unit
Clock Rise Time	Tcr	CLK				10	ns
Clock Fall Time	Tcf	CLK				10	ns
Output Data Delay	Tpd_I	DATA	CL = 13 pF, RL = 1 M Ω	18		60	ns
Output Hi-Z Delay	Tpzd_l	DATA	CL = 13 pF, RL = 1 M Ω	0		16	ns

NOTE: $Tpd_I > Tpzd_I$

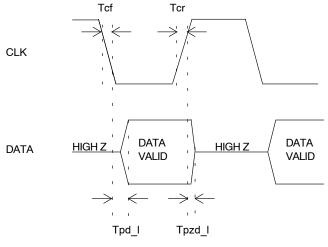


Figure 5.

Table 7. SWITCHING CHARACTERISTICS (Reference data: No measurement)

at $T_a = 25$ °C, $V_{DD} = 1.8$ V, GND = 0 V, Fclk = 2.4 MHz, Fduty = 50%

Case 2: CLKSEL = HIGH

Parameter	Symbol	Pin Name	Condition	Min	Тур	Max	Unit
Clock Rise Time	Tcr	CLK				10	ns
Clock Fall Time	Tcf	CLK				10	ns
Output Data Delay	Tpd_h	DATA	CL = 13 pF, RL = 1 M Ω	18		60	ns
Output Hi-Z Delay	Tpzd_h	DATA	CL = 13 pF, RL = 1 M Ω	0		16	ns

NOTE: Tpd_h > Tpzd_h

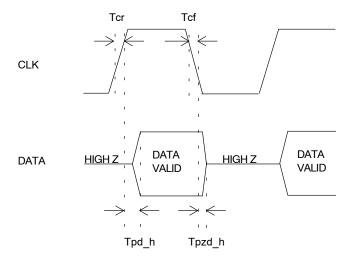


Figure 6.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative