LC706210CA

Product Preview

Digital MEMS Microphone Controller including Pre-amplifier and Sigma Delta Modulator and Charge Pump

ON Semiconductor®

www.onsemi.com

Description

The LC706210CA is a MOS LSI which integrates digital MEMS microphone controller function. It supplies bias voltage to external MEMS sensor and accepts analog sound signal, outputs PDM (Pulse Density Modulation) data stream.

The LC706210CA includes LDO, pre-amplifier, ADC (Analog-to Digital Converter) and charge-pump. The charge-pump generates bias voltage which is needed by the MEMS sensor. The pre-amplifier amplifies analog sound signal from the MEMS sensor and drives ADC to obtain PDM data stream.

The LC706210CA features Gain Adjustment pad which enables sensitivity error reduction by the gain adjustment according to the deviation of MEMS sensor sensitivity. It also make the common MEMS sensor used in bottom–port structure available with top–port by the gain adjustment.

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC706210CA	Wafer (Pb-Free)	1 / Wafer Carrier

Features

- Optimized to be combined with a MEMS Sensor with 13.5 V Bias and -37.5 dBV @ 94 dBSPL Sensitivity
- Pulse Density Modulation (PDM) Output
- Standard 5-Wire Digital Interface
- 13.5 V Charge-pump Output for MEMS Sensor Bias
- +11.5 dB Initial Gain (Transfer Function)
- Dedicated Gain Adjustment Pad which enables -1.5 dB or +3 dB Adjustment from the Initial Gain according to Wire Connection
- Low Noise –91 dBFS Output makes total SNR up to 64 dB
- Low Power Operation Mode
- This is a Pb-Free Device

Applications

- Digital MEMS Microphone
- Personal Computer
- Tablet Computer
- Mobile Handset
- Headset Accessories

Block Diagram

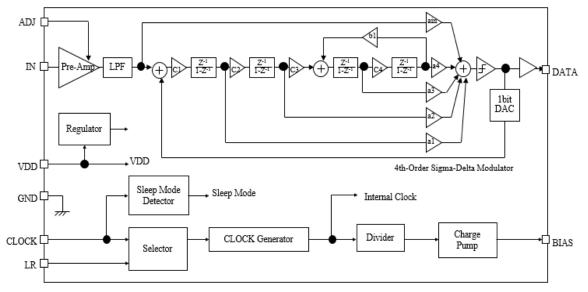
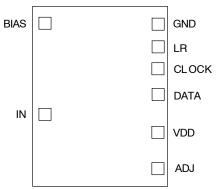



Figure 1. Block Diagram

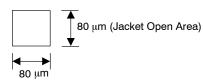


Figure 3. Pad Size

Figure 2. Pad Coordinate

Wafer Outline

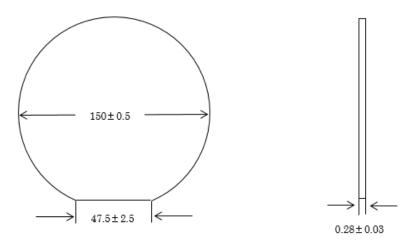


Figure 4. Wafer Outline

LC706210CA

Table 1. ABSOLUTE MAXIMUM RATINGS at $T_a = 25^{\circ}C$, GND = 0 V

Parameter	Symbol	Pin Name	Min	Мах	Unit
Maximum power supply voltage	V _{DD} max	VDD	-0.3	+4.0	V
Maximum input voltage	V _{CLK} max	CLOCK, LR, ADJ	-0.3	V _{DD} + 0.3	V
	V _{IN} max	IN	-0.3	V _{DD} + 0.3	V
Maximum output voltage	V _O max	DATA	-0.3	V _{DD} + 0.3	V
Operating temperature range	Та		-40	85	°C
Storage temperature range	Tstg		-40	85	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 2. CIRCUIT PARAMETERS (Note 1)

Parameter	Symbol	Pin Name	Test Condition	Min	Тур	Max	Unit
Input capacitance of die	C _{IN}	IN			0.4		pF

1. IN-Pin has a limited protection against ESD. Value of IN-Pin is proven by design.

Table 3. DC ELECTRICAL CHARACTERISTICS RATING at T_a = 25°C, V_{DD} = 1.8 V, GND = 0 V, Fduty = 50%

Parameter	Symbol	Pin Name	Condition	Min	Тур	Max	Unit
Power supply voltage	V _{DD}	VDD		1.64	1.8	3.6	V
Power consumption (Normal mode)	IDD(n)	VDD	V _{DD} = 1.8 V Fclk = 2.4 MHz		860		μΑ
Power consumption (Low power mode)	IDD(I)	VDD	V _{DD} = 1.8 V Fclk = 768 kHz		450		μΑ
Standby Current	ISTBY	VDD	V _{DD} = 3.3 V			50	μΑ
Input/Output LOW level	Viol	CLOCK, DATA, LR, ADJ	DATA : lol = 0.5 mA			$0.35 imes V_{DD}$	V
Input/Output HIGH level	Vioh	CLOCK, DATA, LR, ADJ	DATA : loh = –0.5 mA	$0.65 imes V_{DD}$			V
Charge pump voltage	Vbias	BIAS	V _{DD} = 1.8 V		13.5		V
Charge Pump voltage tolerance	Tolerance	BIAS		-8		+8	%

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 4. AC ELECTRICAL CHARACTERISTICS DESIGN

at T_a = 25°C, V_{DD} = 1.8 V, GND = 0 V, Signal Frequency = 1 kHz, Measurement frequency = 100 Hz to 20 kHz, Fduty = 50%, Input capacitor = 1.5 pF, Bypass capacitor = 0.1 μ F (V_{DD} – GND)

Parameter	Symbol	Pin Name	Condition	Min	Тур	Мах	Unit
Clock Frequency (Note 2) (Normal Operation)	Fclk	CLOCK		1	2.4	4.8	MHz
Clock Frequency (Note 2) (Low power Operation)	Fclk	CLOCK		351	768	800	kHz
Clock Frequency (Sleep Mode)	Fclk_SL	CLOCK				1	kHz
Clock Duty (Note 2)	Fduty	CLOCK		40		60	%
Over Sampling Ratio	OSR				50		
Maximum Input Voltage (Input Full Scale Voltage)	Vin	IN	0 dBFS (= 120 dBSPL)		266		mVrms
THD / THD+N	THD+N_0 (Note 2)	DATA	Vout = 0 dBFS (= 120 dBSPL) (= 167.8 mVrms) 1 kHz Sin-Wave			10	% (THD)
	THD+N5	DATA	Vout = -5 dBFS (= 115 dBSPL) (= 94.4 mVrms) 1 kHz Sin-Wave			1	% (THD+N)
	THD+N20 (Note 2)	DATA	Vout = -20 dBFS (= 100 dBSPL) (= 16.8 mVrms) 1 kHz Sin-Wave			1	% (THD+N)
Digital Noise Floor(n)	DNF_n	DATA	Bandwidth 20 kHz A-weighted, Fclk = 2.4 MHz		-91.0		dBFS
Digital Noise Floor(I)	DNF_I	DATA	Bandwidth 8 kHz A-weighted, Fclk = 768 kHz		-90.0		dBFS
Transfer function 1 (Note 3)	TF1	DATA	ADJ = open		11.5		dB
Transfer function 2 (Note 3)	TF2	DATA	ADJ = GND		10.0		dB
Transfer function 3 (Note 3)	TF3	DATA	ADJ = V _{DD}		14.5		dB
Wake Up Time (Note 2)	WUT	CLOCK	Fclk = 2.4 MHz			10	ms
Fall Asleep Time (Note 2)	FAT		Fclk = 1 kHz			10	ms

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Reference data : No measurement.

3. Each product has been designed with performance of ±0.5 dB tolerance for transfer function however it's not measured in outgoing inspection.

Table 5. PIN DESCRIPTIONS

No.	Pin Name	Function	I/O	Pin Conditions
_	GND	Ground	_	-
-	VDD	Power Supply	_	-
-	DATA	PDM Data Output	Output	
_	LR	LR signal input Case 1 : When LR is LOW, PDM data is valid in sync with negative edge of CLOCK. Case 2 : When LR is HIGH, PDM data is valid in sync with positive edge of CLOCK.	Input	
-	CLOCK	Clock input	Input	
-	BIAS	Charge Pump Voltage Output	Output	-
_	IN	Audio signal input	Input	

Table 6. SWITCHING CHARACTERISTICS (Reference data: No measurement)

at T_a = 25°C, V_{DD} = 1.8 V, GND = 0 V, Fclk = 2.4 MHz, Fduty = 50% Case 1: LR = LOW

Parameter	Symbol	Pin Name	Condition	Min	Тур	Max	Unit
Clock Rise Time	Tcr	CLOCK				10	ns
Clock Fall Time	Tcf	CLOCK				10	ns
Output Data Delay	Tpd_l	DATA	CL = 13 pF, RL = 1 MΩ	18		60	ns
Output Hi–Z Delay	Tpzd_l	DATA	CL = 13 pF, RL = 1 MΩ	0		16	ns
Delay for Data Assertion	Tdd_l	DATA		18		36	ns
Delay for Hi–Z	Tdz_I	DATA		0		4	ns

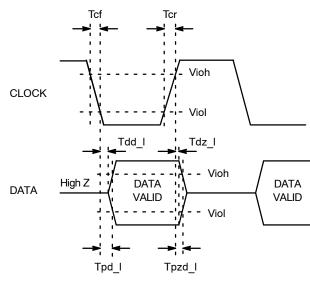
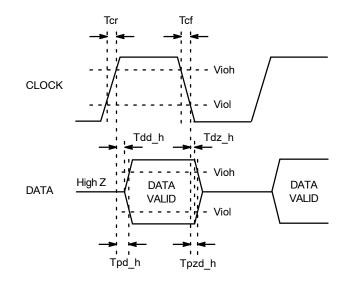



Figure 5.

LC706210CA

Table 7. SWITCHING CHARACTERISTICS (Reference data: No measurement) at $T_a = 25$ °C, $V_{DD} = 1.8$ V, GND = 0 V, Fclk = 2.4 MHz, Fduty = 50% Case 2: LR = HIGH

Parameter	Symbol	Pin Name	Condition	Min	Тур	Max	Unit
Clock Rise Time	Tcr	CLOCK				10	ns
Clock Fall Time	Tcf	CLOCK				10	ns
Output Data Delay	Tpd_h	DATA	CL = 13 pF, RL = 1 M Ω	18		60	ns
Output Hi–Z Delay	Tpzd_h	DATA	CL = 13 pF, RL = 1 M Ω	0		16	ns
Delay for Data Assertion	Tdd_h	DATA		18		36	ns
Delay for Hi-Z	Tdz_h	DATA		0		4	ns

NOTE: Electrical information may be based on testing done on packaged devices. The packaging or device mounting may affect the electrical performance of the device; customers are responsible for verifying device performance and reliability after assembly, and the customer is responsible for the yield of the assembly process.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and dis

Phone: 421 33 790 2910

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative