LC79401KNC

Dot-Matrix LCD Drivers

CMOS LSI

The LC79401KNC is a 80 -outputs segment driver LSI for graphic dot-matrix liquid crystal display systems. The LC79401KNC latches 80 bits of display data sent from a controller using a 4-bit parallel transfer technique and generates LCD drive signals. When combined

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com as a kit with common driver, either the LC79430KNC, the LC79401KNC can drive large screen LCD panels.

Features

- Incorporates LCD Drive Circuits for 80 bits of Display
- Supports Display Duties from 1/64 to $1 / 256$
- The Provision of a Chip Disable Pin Supports Power Reduction in Large-scale Panels
- Allows External Provision of the Bias Power Supply
- Data Transfer Clock: 6.0 MHz (max), Bidirectional Shifting Supported
- Operating Supply Voltage/Operating Temperature V_{DD} (Logic Block): 2.7 to $5.5 \mathrm{~V} /-20$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$ (LCD Block): 12 to $32 \mathrm{~V} /-20$ to $+85^{\circ} \mathrm{C}$
- Data Input: 4-bit Parallel Input
- CMOS Process
- Package: Bare Chip

The electrical characteristics values shown below are for devices packaged in the plastic package.

ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}\right)$

Symbol	Parameter	Conditions	Ratings	Unit
$\mathrm{V}_{\mathrm{DD}} \max$	Maximum Supply Voltage (Logic)		-0.3 to +7.0	V
$\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}} \max$	Maximum Supply Voltage (LCD)	(Note 1)	0 to 35	V
$\mathrm{~V}_{1} \max$	Maximum Input Voltage		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~T}_{\text {stg }}$	Storage Temperature		-40 to +125	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $V_{D D} \geq \mathrm{V} 1>\mathrm{V} 3>\mathrm{V} 4>\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{DD}}-\mathrm{V} 3 \leq 7 \mathrm{~V}, \mathrm{~V} 4-\mathrm{V}_{\mathrm{EE}} \leq 7 \mathrm{~V}$.

ALLOWABLE OPERATING RANGES ($\mathrm{T}_{\mathrm{A}}=-20$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$V_{\text {DD }}$	Supply Voltage (Logic)			2.7	-	5.5	V
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$	Supply Voltage (LCD)	(Notes 2, 3)		12	-	32	V
V_{IH}	Input High Level Voltage	DI1 to 4, CP, LOAD, CDI, R/L, M, DISPOFF		$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	-	V
$\mathrm{V}_{\text {IL }}$	Input Low Level Voltage	DI1 to 4, CP, LOAD, CDI, R/L, M, DISPOFF		-	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
${ }_{\text {f }}$	CP Shift Clock	CP		-	-	6.0	MHz
t_{wc}	CP Pulse Width	CP		50	-	-	ns
twL	LOAD Pulse Width	LOAD		50	-	-	ns
$\mathrm{t}_{\text {SETUP }}$	Setup Time	Dl1 to $4 \rightarrow$ CP		30	-	-	ns
thold	Hold Time	DI1 to $4 \rightarrow$ CP	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 4.5 V	40	-	-	ns
			$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	30	-	-	ns
t_{CL}	CP \rightarrow LOAD	CP \rightarrow LOAD		80	-	-	ns

LC79401KNC

ALLOWABLE OPERATING RANGES $\left(\mathrm{T}_{\mathrm{A}}=-20\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$) (continued)

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
tLC1	LOAD \rightarrow CP	LOAD \rightarrow CP		110	-	-	ns
tLC2		LOAD \rightarrow CP	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 4.5 V	30	-	-	ns
			$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	15	-	-	ns
t_{R}	CP and LOAD Rise Time	CP, LOAD		-	-	(Note 4)	ns
t_{F}	CP and LOAD Fall Time	CP, LOAD		-	-	(Note 4)	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
2. $\mathrm{V}_{\mathrm{DD}} \geq \mathrm{V} 1>\mathrm{V} 3>\mathrm{V} 4>\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{DD}}-\mathrm{V} 3 \leq 7 \mathrm{~V}, \mathrm{~V} 4-\mathrm{V}_{\mathrm{EE}} \leq 7 \mathrm{~V}$.
3. When the power is turned on, either the logic system power must be turned on before the LCD drive system power or else they must both be turned on at the same time. When the power is turned off, either the LCD drive system power must be turned off before the logic system power, or else both must be turned off at the same time.
4. The CP and LOAD rise time $\left(\mathrm{t}_{\mathrm{R}}\right)$ and the CP and LOAD fall time $\left(\mathrm{t}_{\mathrm{F}}\right)$ must satisfy equations (1) and (2) below at the same time.

$$
\begin{align*}
& \mathrm{t}_{\mathrm{R},} \mathrm{t}_{\mathrm{F}}<\frac{1}{2 \mathrm{f}_{\mathrm{CP}}}-\mathrm{t}_{\mathrm{WC}} \tag{eq.1}\\
& \mathrm{t}_{\mathrm{R},} \mathrm{t}_{\mathrm{F}}<50 \mathrm{~ns}
\end{align*}
$$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7\right.$ to 5.5 V$)$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{IIH}^{\text {H }}$	Input High Level Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$; LOAD, CP, CDI, R/L, DI1 to 4, M, DISPOFF	-	-	1	$\mu \mathrm{A}$
IIL	Input Low Level Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}} ; \mathrm{LOAD}, \mathrm{CP}, \mathrm{CDI}, \mathrm{R} / \mathrm{L} \text {, }$ DI1 to 4, M, DISPOFF	-1	-	-	$\mu \mathrm{A}$
V_{OH}	Output High Level Voltage	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} ; \mathrm{CDO}$	$\mathrm{V}_{\mathrm{DD}}-0.4$	-	-	V
$\mathrm{V}_{\text {OL }}$	Output Low Level Voltage	$\mathrm{I}_{\text {OL }}=400 \mu \mathrm{~A} ; \mathrm{CDO}$	-	-	0.4	V
$\mathrm{R}_{\text {ON }}(1)$	Driver on Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V},\left\|\mathrm{~V}_{\mathrm{DE}}-\mathrm{V}_{\mathrm{O}}\right\|=0.5 \mathrm{~V} \\ & \mathrm{O} 1 \text { to O80 (Note 5) } \end{aligned}$	-	0.6	1.5	$\mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{ON}}(2)$		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=20 \mathrm{~V},\left\|\mathrm{~V}_{\mathrm{DE}}-\mathrm{V}_{\mathrm{O}}\right\|=0.5 \mathrm{~V} \\ & \mathrm{O} 1 \text { to } 080(\text { Note 5) } \end{aligned}$	-	0.7	2.0	k Ω
IST	Standby Current Drain	$\begin{aligned} & \mathrm{CDI}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}, \\ & \mathrm{CP}=6.0 \mathrm{MHz}, \\ & \text { Output unloaded; } \mathrm{V}_{\mathrm{SS}} \end{aligned}$	-	-	200	$\mu \mathrm{A}$
ISS (Note 6)	Operating Current Drain	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}, \mathrm{CP}=6.0 \mathrm{MHz}, \\ & \mathrm{LOAD}=14 \mathrm{kHz}, \mathrm{M}=35 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{SS}} \end{aligned}$	-	-	4.0	mA
IEE (Note 7)		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{E E}=30 \mathrm{~V}, \mathrm{CP}=6.0 \mathrm{MHz}, \\ & \mathrm{LOAD}=14 \mathrm{kHz}, \mathrm{M}=35 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{EE}} \end{aligned}$	-	-	0.5	mA
C_{1}	Input Capacitance	$\mathrm{f}=6 \mathrm{MHz}$; CP	-	8	-	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
5. $\mathrm{V}_{\mathrm{DE}}=$ one of $\mathrm{V} 1, \mathrm{~V} 3, \mathrm{~V} 4$ or $\mathrm{V}_{\mathrm{EE}} \cdot \mathrm{V}^{2}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V} 3=15 / 17\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right), \mathrm{V} 4=2 / 17\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right)$.
6. Iss is the current flowing from $V_{D D}$ to $V_{S S}$.
7. $I_{E E}$ is the current flowing from $V_{D D}$ to $V_{E E}$.

SWITCHING CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.7\right.$ to 5.5 V)

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$t_{\text {D1 }}$	Output Delay Time1	Load $=15 \mathrm{pF}$: CDO	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 4.5 V	-	-	100	ns
			$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	-	-	80	ns
$\mathrm{t}_{\mathrm{D} 2}$	Output Delay Time2	Load = 15 pF : CDO	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 4.5 V	-	-	100	ns
			$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	-	-	80	ns

LC79401KNC

PAD ASSIGNMENT

* Please connects the substrate to VEE or Floating.

Figure 1. Pad Assignment

LC79401KNC

BLOCK DIAGRAM

Figure 2. Block Diagram

LC79401KNC

PAD COORDINATES

Table 1. PAD COORDINATES

Pad No.	Signal	X Coordinates	Y Coordinates	Pad No.	Signal	X Coordinates	Y Coordinates
1	O1	979.5	-1268.0	51	051	-945.0	1411.0
2	O 2	979.5	-1162.0	52	052	-979.5	1268.0
3	O3	979.5	-1072.0	53	053	-979.5	1178.0
4	O4	979.5	-982.0	54	054	-979.5	1088.0
5	O5	979.5	-892.0	55	055	-979.5	998.0
6	06	979.5	-802.0	56	056	-979.5	908.0
7	O7	979.5	-712.0	57	O57	-979.5	818.0
8	O8	979.5	-622.0	58	058	-979.5	728.0
9	09	979.5	-532.0	59	059	-979.5	638.0
10	O10	979.5	-442.0	60	O60	-979.5	548.0
11	011	979.5	-352.0	61	061	-979.5	458.0
12	012	979.5	-262.0	62	062	-979.5	368.0
13	013	979.5	-172.0	63	063	-979.5	278.0
14	014	979.5	-82.0	64	O64	-979.5	188.0
15	O15	979.5	8.0	65	O65	-979.5	98.0
16	O16	979.5	98.0	66	O66	-979.5	8.0
17	017	979.5	188.0	67	067	-979.5	-82.0
18	018	979.5	278.0	68	068	-979.5	-172.0
19	019	979.5	368.0	69	069	-979.5	-262.0
20	O 20	979.5	458.0	70	070	-979.5	-352.0
21	O21	979.5	548.0	71	071	-979.5	-442.0
22	O 22	979.5	638.0	72	072	-979.5	-532.0
23	O 23	979.5	728.0	73	073	-979.5	-622.0
24	O 24	979.5	818.0	74	074	-979.5	-712.0
25	O 25	979.5	908.0	75	075	-979.5	-802.0
26	O 26	979.5	998.0	76	076	-979.5	-892.0
27	027	979.5	1088.0	77	077	-979.5	-982.0
28	O 28	979.5	1178.0	78	078	-979.5	-1072.0
29	029	979.5	1268.0	79	079	-979.5	-1162.0
30	O30	945.0	1411.0	80	O 80	-945.0	-1289.0
31	O31	855.0	1411.0	81	CDI	-855.0	-1289.0
32	O32	765.0	1411.0	82	V1	-765.0	-1289.0
33	O33	675.0	1411.0	83	V3	-675.0	-1289.0
34	O34	585.0	1411.0	84	V4	-585.0	-1289.0
35	O35	495.0	1411.0	85	VEE	-495.0	-1289.0
36	O36	405.0	1411.0	86	M	-405.0	-1289.0
37	O37	315.0	1411.0	87	LOAD	-315.0	-1289.0
38	O38	225.0	1411.0	88	VSS	-225.0	-1289.0
39	O39	135.0	1411.0	89	DISPOFF	-135.0	-1289.0
40	O40	45.0	1411.0	90	VDD	-45.0	-1289.0

LC79401KNC

Table 1. PAD COORDINATES (continued)

Pad No.	Signal	X Coordinates	Y Coordinates	Pad No.	Signal	X Coordinates	Y Coordinates
41	O41	-45.0	1411.0	91	RL	45.0	-1289.0
42	O42	-135.0	1411.0	92	NC	135.0	-1289.0
43	O43	-225.0	1411.0	93	NC	225.0	-1289.0
44	O44	-315.0	1411.0	94	NC	315.0	-1289.0
45	O45	-405.0	1411.0	95	$\mathrm{DI4}$	405.0	-1289.0
46	O46	-495.0	1411.0	96	DI 3	495.0	-1289.0
47	O47	-585.0	1411.0	97	DI 2	585.0	-1289.0
48	O48	-675.0	1411.0	98	$\mathrm{DI1}$	675.0	-1289.0
49	O49	-765.0	1411.0	99	CP	765.0	-1289.0
50	O50	-855.0	1411.0	100	CDO	855.0	-1289.0

PIN FUNCTION

Table 2. PIN FUNCTION

APPLICATION EXAMPLE (LC79401KNC/LC79430KNC)

Figure 3. Application Example

Figure 4. Switching Characteristics Diagram

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

