Front Monitor OE-IC, for Optical Pickups

Overview

The LV0222CS is a front monitor optoelectronic IC for optical pickups that has a built-in photo diode compatible with three waveforms. LV0222CS is small size and type CSP packages.

Functions

- PIN photodiode compatible with three wavelengths incorporated.
- Gain adjustment (-6dB to +6dB in 256 steps) through serial communication.
- Amplifier to amplify differential output.

Applications

- Blu-ray Disk Drive for PC
- · Blu-ray recorder
- · Blu-ray player

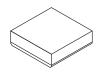
Specifications

Maximum Ratings at Ta = 25°C (Note1)

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply	V _{CC}		6	V
Allowable power dissipation	Pd1	Glass epoxy one-side substrate 55mm × 45mm × 0.8mm Copper foil area (about 80%), Ta=75°C	136	mW
	Pd2	Glass epoxy one-side substrate 55mm × 45mm × 0.8mm Copper foil area (head: about 85% Tail: about 90%), Ta=75°C	100	mW
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg	I. Mariana Patinatahan	-40 to +100	°C

Stresses exceeding those listed in the Maximum Rating table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Recommended Operating Conditions at Ta = 25°C (Note2)


Danamatan	O. made al	ol of Constitution		11-4		
Parameter	Symbol	Conditions	min	typ	max	Unit
Operating supply voltage	V _{CC}		4.5	5	5.5	٧
Output load capacitance	CO		12	20	33	pF
Output load resistance	ZO		3			kΩ

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ON Semiconductor®

www.onsemi.com

ODCSP8 (1.75×1.75)

ORDERING INFORMATION

Ordering Code: LV0222CS-TLM-H

Package ODCSP8 (Pb-Free / Halogen Free)

Shipping (Qty / packing) 4000 / Tape & Reel

[†] For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub_link/Collateral/BRD8011-D.PDF

Electrical Characteristics at Ta = 25°C, V_{CC} = 5V, RL=6k Ω , CL=20pF (Note3)

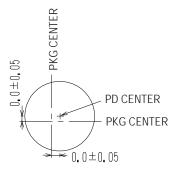
Danamatan	Parameter Symbol Conditions		Ratings			Unit
Parameter	Symbol	Conditions		typ	max	Unit
Current dissipation	^I CC			18	23.4	mA
Sleep current	Islp				1	mA
Output voltage when shielded	VC	At shielding	1.85	2.0	2.15	V
Output offset voltage	Vofs	At shielding, voltage between VOP-VON	-20	0	20	mV
Temperature dependence of offset voltage (Note4)	Vofs	Ta=-10 to +85°C	-30	0	30	μV/°C
Optical output voltage (Note4)	VLC	Low Gain, λ=780nm, G=0dB	0.21	0.262	0.31	mV/μW
Voltage between VOP-VON	VLD	Low Gain, λ=650nm, G=0dB	0.22	0.275	0.33	mV/μW
	VLB	Low Gain, λ=405nm, G=0dB	0.14	0.172	0.21	mV/μW
	VMC	Middle Gain, λ=780nm, G=0dB	0.66	0.83	0.99	mV/μW
	VMD	Middle Gain, λ=650nm, G=0dB	0.70	0.87	1.05	mV/μW
	VMB	Middle Gain, λ=405nm, G=0dB	0.43	0.54	0.65	mV/μW
	VHC	High Gain, λ=780nm, G=0dB	1.97	2.46	2.95	mV/μW
	VHD	High Gain, λ=650nm, G=0dB	2.07	2.58	3.10	mV/μW
	VHB	High Gain, λ=405nm, G=0dB	1.29	1.62	1.94	mV/μW
Light output voltage adjustment range (Note4)	G	G=0dB reference, absolute value of adjustment width	5.5	6.0	6.5	dB
D range (Note4)	VoD	Voltage between VOP-VON	1756	2200		mV
Frequency characteristics (Note4), (Note5)	FcC	-3dB(1MHz reference), λ=780nm	50	75		MHz
		Light input = $40\mu W(DC) + 20\mu W(AC)$				
	FcD	-3dB(1MHz reference), λ=650nm	60	85		MHz
		Light input = $40\mu W(DC) + 20\mu W(AC)$				
	FcB	-3dB(1MHz reference), λ=405nm	60	85		MHz
Cattling time (Nata 4)	Total	Light input = 40μW(DC) + 20μW(AC)		45		
Settling time (Note4)	Tset	W 9 9 W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		15	40	ns
Response time (Note4)	Tr, Tf	Vo=0.9Vp-p, output level 10 to 90% fc=10MHz, duty=50%			10	ns
Overshoot (Note4)	Ovst	Vo=0.9Vp-p			15	%
Undershoot (Note4)	Unst	Vo=0.9Vp-p			15	%
Linearity (Note4)	Lin	At output voltage 0.5V and 1.0V (Between VOP-VON)	-1	0	1	%
Light-output voltage temperature dependence	TC	λ=780nm, 25°C reference	10	13	16	%
Voltage between VOP-VON (Note4), (Note6)	TD	λ=650nm, 25°C reference	0	3	6	%
	ТВ	λ=405nm, 25°C reference	0	3	6	%
Light-output voltage spectral sensitivity	Vf	λ=785nm ±5nm	-0.7		0	%/nm
Voltage between VOP-VON (Note4)		λ=660nm ±5nm	-0.3		0.3	%/nm
		λ=405nm ±5nm	0.1		1.1	%/nm
Step-step voltage ratio (Note4)	DG	(Vn-Vn-1) / Vn *100 (Note7)	-3	0	3	%
		Deviation from the ideal curve of above equation				

^{3.} Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

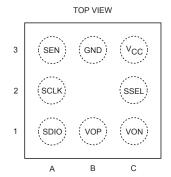

^{4.} Indicate the design reference value.

^{4.} Indicate the design reference value.
5. Indicate the frequency characteristics when VOP and VON are applied individually.
The frequency characteristics are for the case of High / Middle / Low gain and for the case when the output voltage adjustment range is -6 to +6dB
6. indicates the temperature dependence for the case of High / Middle / Low gain and for the case when the temperature is 25 to 85°C for the output voltage adjustment range of -6 to +6dB
7. Vn is Vn = (sensitivity / 2) × 5400 / (5400-16 × GCAstep) × light intensity (μW)
GCA = Gain Control Amplifier

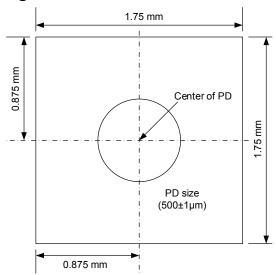
Package Dimensions


unit:mm

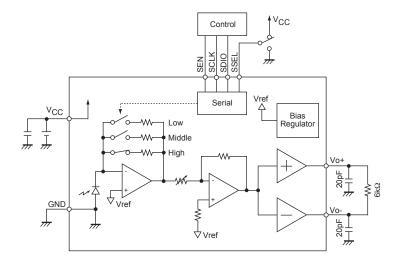
ODCSP8 (1.75 × 1.75)



C3 = (Glass surface to PD: $412\pm27\mu$ m)


It is position clearance of PD CENTER to PKG CENTER

Pin Assignment


Pin No.	Pin name	Function
1A	SDIO	Serial communication Data pin
1B	VOP	Positive side output pin
1C	VON	Negative side output pin
2A	SCLK	Serial communication Clock pin
2C	SSEL	Register selection pin
		SSEL = Low, Open : Address 00 to 0Fh used
		SSEL = High : Address 10 to 1Fh used
3A	SEN	Serial communication Enable pin
3B	GND	GND pin
3C	V _{CC}	Power supply voltage pin

PD assignment

*PD size for reference to be used for design

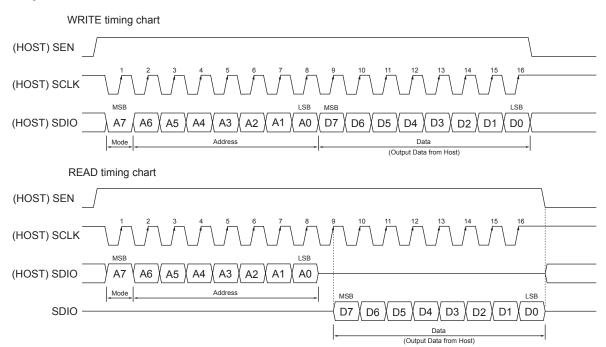
Block diagram and Test circuit diagram

Resister table

Enable selection of the register group from the SSEL pin.

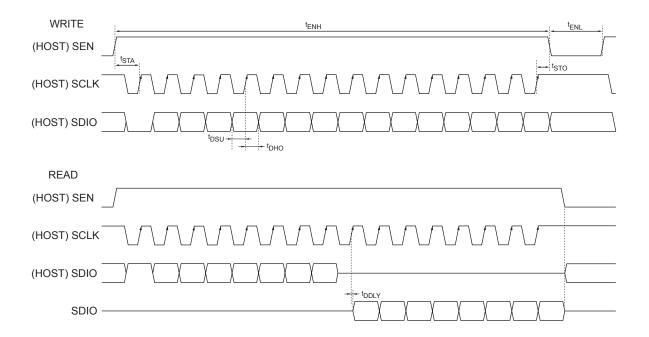
SSEL = Low, Open

	Address	7	6	5	4	3	2	1	0	
Name		PO	WER	IV GAIN SEL		GAIN SEL				
Default] [(00	00		00		х	Х	
Value	00h	11: Po	ower on	00 01	: High	00 01: BD				
		00 01 1	0: Sleep	10: Middle		10:	10: DVD			
				11:	Low	11:	CD			
Name			BD GAIN							
Default	01h	1	1	1	1	1	1	1	1	
Value			00000000 to 11111111							
Name			DVD GAIN							
Default	02h	1	1	1	1	1	1	1	1	
Value					00000000 t	o 11111111				
Name					CD	GAIN				
Default	03h	1	1	1	1	1	1	1	1	
Value		00000000 to 11111111								
Name	0Eh	TEST1 (*1)								
Name	0Fh		•		TEST	T2 (*1)	·	•		


SSEL = High

	Address	7	6	5	4	3	2	1	0
Name		POV	VER	IV GAIN SEL		GAIN SEL			
Default		0	0	00		00		х	х
Value	10h		wer on 0: Sleep	10: Middle		10:	00 01: BD 10: DVD 11: CD		
Name			BD GAIN						
Default	11h	1	1	1	1	1	1	1	1
Value			00000000 to 11111111						
Name			DVD GAIN						
Default	12h	1	1	1	1	1	1	1	1
Value					00000000 t	o 11111111			
Name					CD (GAIN			
Default	13h	1	1	1	1	1	1	1	1
Value		00000000 to 11111111							
Name	1Eh	TEST1 (*1)							
Name	1Fh	TEST2 (*1)							

^{*1} TEST1 and TEST2 are either the time when power is applied or "00000000" is set. Do not attempt to change "00000000" during operation. "000000000" is returned when reading is made.


^{*2} No problem in terms of operation occurs even when writing is made to the address 04h to 0Dh and 14h to 1Dh. "00000000" is returned when this address is read.

Serial protocol

SDIO pin load / CL=20pF (The table below shows the design reference value.)

Parameter	Symbol	Min.	Тур.	Max.	Unit
SCL clock frequency Write	fSCL	0	-	10	MHz
SCL clock frequency Read	fSCL	0		4	MHz
SDIO data setup time	t _{DSU}	50			ns
SDIO data hold time	t _{DHO}	50			ns
SDIO output delay	tDDLY		10	80	ns
SEN "H" period	t _{ENH}	1.6			μS
SEN "L" period	t _{ENL}	200			ns
SCL rise time after SEN rise	tSTA	60			ns
SEN fall time after final SCL rise	t _{STO}	100			ns
Serial input "H" voltage	V _I H	2.4			V
Serial input "L" voltage	V _I L		·	0.6	V
SDIO output "H" voltage	V _O H	2.5	2.9	3.3	V
SDIO output "L" voltage	V _O L	0	0.3	0.8	V

Pin Functions

Pin	Туре	Equivalent circuit diagram
SDIO	Input Output	500Ω 20kΩ 111111111111111111111111111111111111
VOP VON	Output	20Ω
SCLK SSEL SEN	Input	20κΩ

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer