# Product Preview Triple Output Power Supply, For AMOLED

#### Overview

The LV52400XA is a Triple Output Power Supply composed with 2 boost voltages and 1 inverting Buck-boost negative voltage required by AMOLED.

#### Features

- 2.9 V to 4.5 V Input Voltage Range
- External Output Sense Pin for VPOS and VNEG
- Excellent Line Transient Regulation
- High Accuracy Output Voltage
- VPOS = 5.0 V, 4.8 V, 4.6 V or 4.4 V selectable, default 4.6 V
- VAVDD = 7.6 V, 6.9 V, 6.2 V or 5.5 V selectable, default 7.6 V
- Selectable VNEG = -1.4 V to -5.4 V, default -2.4 V
- 300 mA Output Current for VPOS and VNEG
- Short Circuit Protection
- Thermal Shutdown
- 1.97 mm × 1.97 mm × 0.60 mm WLCSP25
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

#### **Typical Applications**

• AMOLED Display BIAS



ON

# **ON Semiconductor®**

www.onsemi.com



CASE 567UY

#### MARKING DIAGRAM



- A = Assembly Site Code
- LW = Lot Code
- YW = Date Code

#### **PIN ASSIGNMENT**



#### **ORDERING INFORMATION**

| Device       | Package                               | Shipping <sup>†</sup>  |
|--------------|---------------------------------------|------------------------|
| LV52400XATAG | WLCSP25<br>(Pb-Free/<br>Halogen Free) | 5,000 /<br>Tape & Reel |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

#### SPECIFICATIONS

#### **ABSOLUTE MAXIMUM RATINGS**

| Parameter                   | Symbol             | Conditions                              | Min  | Max | Units |
|-----------------------------|--------------------|-----------------------------------------|------|-----|-------|
| Pin Voltage                 | PVIN, AVIN,I       | EN, CTRL, CLK, DATA, SWP1, OUTP1, FBSP1 | -0.3 | 6   | V     |
|                             |                    | OUTP2, SWP2                             | -0.3 | 10  | V     |
|                             |                    | OUTN, FBS_N                             |      |     | V     |
|                             |                    | SWN                                     | -6.5 | 5.5 | V     |
| Allowable Power Dissipation | P <sub>d</sub> max | T <sub>A</sub> = 25°C (Note 1)          | TE   | 3D  | W     |
| Operating Temperature       | T <sub>opr</sub>   |                                         | -40  | 85  | °C    |
| Storage Temperature         | T <sub>stg</sub>   | -55                                     | 125  | °C  |       |
| Junction Temperature        | T <sub>jmax</sub>  |                                         | -    | 125 | °C    |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Mounted on the following board: xx mm × xx mm × xx mm (x layer glass epoxy)

#### ELECTRICAL CHARACTERISTICS ANALOG BLOCK

Parameter

(T<sub>A</sub> = 25°C, VIN = 3.7 V, EN = 3.7 V, VPOS = 4.6 V, VNEG = -2.4 V, VAVDD = 7.6 V, unless otherwise specified) (Note 2)

#### SUPPLY VOLTAGE AND SUPPLY CURRENT AND THERMAL PROTECTION

| Vin   | Input Voltage Range             |                                       | 2.9  | 3.7  | 4.5  | V  |
|-------|---------------------------------|---------------------------------------|------|------|------|----|
| Isd   | Shutdown Current into VIN       | CTRL = GND, EN = GND                  | -    | 0.1  | -    | μΑ |
| Vuvlo | Under-voltage Lockout Threshold | Vin falling                           | 2.25 | 2.35 | 2.45 | V  |
|       |                                 | Hysteresis between falling and rising | -    | 0.15 | -    |    |
| Tsd   | Thermal Shutdown Temperature    | Temperature rising                    | -    | 145  | -    | °C |

Conditions

Min

Max

Тур

Unit

#### **BOOST CONVERTER1 (VPOS)**

Symbol

| Vpos          | Positive Output1 Voltage Default               |                                                  | -   | 4.6  | -   | V   |
|---------------|------------------------------------------------|--------------------------------------------------|-----|------|-----|-----|
|               | Output Voltage Range                           | 0.2 V step                                       | 4.4 | -    | 5.0 | V   |
|               | Output Voltage Accuracy                        | T <sub>A</sub> = 25°C, No Load                   | -25 | -    | +25 | mV  |
|               |                                                | $-40^{\circ}C \le T_A \le 85^{\circ}C$ . No Load | -40 | -    | +40 | mV  |
| Rdson1A       | SWP1 MOSFET On-resistance                      | ISWP1 = 200 mA                                   | -   | 250  | -   | mΩ  |
| Rdson1B       | SWP1 MOSFET Rectifier-resistance               |                                                  | -   | 350  | -   | mΩ  |
| Fswp1         | SWP1 Switching Frequency                       | Ipos = 200 mA                                    | -   | 1.5  | -   | MHz |
| lswp1         | SWP1 Switching Current Limit                   |                                                  | 0.8 | 1    | -   | А   |
| Vpos<br>(scp) | Short Circuit Threshold in Operation           | Percentage of nominal VPOS                       | -   | 90   | -   | %   |
| Tpos<br>(scp) | Short Circuit Detection Time in Opera-<br>tion |                                                  | -   | 3    | -   | ms  |
| RDCHG1        | Discharge Resistance                           | CTRL = GND, VPOS = 0.1 V                         | -   | 30   | -   | Ω   |
| Vposline      | Line Regulation                                | lpos = 200 mA                                    | -   | 0.01 | -   | %/V |
| Vposload      | Load Regulation                                | 1 mA $\leq$ lpos $\leq$ 300 mA                   | -   | 0.02 | -   | %/A |

### INVERTING BUCK-BOOST CONVERTER (VNEG)

| Vneg | Output Voltage Default  |                                                  | -    | -2.4 | -    | V  |
|------|-------------------------|--------------------------------------------------|------|------|------|----|
|      | Output Voltage Range    | 0.1 V step                                       | -1.4 | -    | -5.4 | V  |
|      | Output Voltage Accuracy | T <sub>A</sub> = 25°C, No Load                   | -50  | -    | 50   | mV |
|      |                         | $-40^{\circ}C \le T_A \le 85^{\circ}C$ . No Load | -60  | _    | 60   | mV |

**ELECTRICAL CHARACTERISTICS ANALOG BLOCK** (continued) (T<sub>A</sub> = 25°C, VIN = 3.7 V, EN = 3.7 V, VPOS = 4.6 V, VNEG = -2.4 V, VAVDD = 7.6 V, unless otherwise specified) (Note 2)

| Symbol                                | Parameter                                      | Conditions                                          | Min | Тур   | Мах | Unit |  |  |  |  |
|---------------------------------------|------------------------------------------------|-----------------------------------------------------|-----|-------|-----|------|--|--|--|--|
| INVERTING BUCK-BOOST CONVERTER (VNEG) |                                                |                                                     |     |       |     |      |  |  |  |  |
| RdsonNA                               | SWN MOSFET On-resistance                       | ISWN = 200 mA                                       | -   | 250   | -   | mΩ   |  |  |  |  |
| RdsonNB                               | SWN MOSFET Rectifier-resistance                |                                                     | -   | 350   | -   | mΩ   |  |  |  |  |
| Fswn                                  | SWN Switching Frequency                        | Ineg = 10 mA                                        | -   | 1.5   | -   | MHz  |  |  |  |  |
| Iswn                                  | SWN Switching Current Limit                    |                                                     | 1.2 | 1.5   | -   | А    |  |  |  |  |
| VscpN                                 | Short Circuit Threshold in Operation           | Voltage increase from nominal VNEG                  | -   | 500   | -   | mV   |  |  |  |  |
| TscpN                                 | Short Circuit Detection Time in Opera-<br>tion |                                                     | -   | 3     | -   | ms   |  |  |  |  |
| RDCHGN                                | Discharge Resistance                           | CTRL = GND, VNEG = -0.1 V                           | -   | 150   | -   | Ω    |  |  |  |  |
| Vnegline                              | Line Regulation                                | Ineg = 200 mA                                       | -   | 0.004 | -   | %/V  |  |  |  |  |
| Vnegload                              | Load Regulation                                | $1 \text{m A} \leq \text{Ineg} \leq 300 \text{ mA}$ | _   | 0.1   | -   | %/A  |  |  |  |  |

#### **BOOST CONVERTER2 (VAVDD)**

| VAVDD          | Output Voltage                                 |                                                   | -    | 7.6  | -   | V   |
|----------------|------------------------------------------------|---------------------------------------------------|------|------|-----|-----|
|                | Output Voltage Range                           | 0.7 V step                                        | 5.5  | -    | 7.6 | V   |
|                | Output Voltage Accuracy                        | T <sub>A</sub> = 25°C, No Load                    | -80  | -    | 80  | mV  |
|                |                                                | $-40^{\circ}C \le T_A \le 85^{\circ}C$ . No Load  | -100 | -    | 100 | mV  |
| Rdson2A        | SWP2 MOSFET On-resistance                      | ISWP2 = 55 mA                                     | -    | 500  | -   | mΩ  |
| Rdson2B        | SWP2 MOSFET Rectifier-resistance               |                                                   | -    | 1200 | -   | mΩ  |
| Fswp2          | SWP2 Switching Frequency                       | IAVDDs = 0 mA                                     | -    | 1.5  | -   | MHz |
| lswp2          | SWP2 Switching Current Limit                   |                                                   | 0.25 | 0.35 | -   | А   |
| Vavdd<br>(scp) | Short Circuit Threshold in Operation           | Percentage of nominal VAVDD                       | -    | 90   | -   | %   |
| Tavdd<br>(scp) | Short Circuit Detection Time in Opera-<br>tion |                                                   | -    | 3    | -   | ms  |
| RDCHG2         | Discharge Resistance                           | CTRL = GND, VAVDD = 0.1 V                         | -    | 30   | -   | Ω   |
| Vavddline      | Line Regulation                                | IAVDD = 55 mA                                     | -    | 0.04 | -   | %/V |
| Vavddload      | Load Regulation                                | $1 \text{ mA} \le \text{IAVDD} \le 55 \text{ mA}$ | -    | 0.30 | -   | %/A |

#### DCHG PIN INTERFACE

| DCIH | Logic input high level voltage | 0.9 	imes Vin | 1 | -             | V |
|------|--------------------------------|---------------|---|---------------|---|
| DCIL | Logic input low level voltage  | -             | - | 0.1 	imes Vin | V |

#### **CTRL and EN PIN INTERFACE**

| VIH   | Logic Input High Level Voltage |      | 1.2 | -   | -   | V  |
|-------|--------------------------------|------|-----|-----|-----|----|
| VIL   | Logic Input Low Level Voltage  |      | -   | -   | 0.4 | V  |
| Rpden | Pull-down Resistance           | EN   | -   | 500 | -   | kΩ |
| Rpdct | ]                              | CTRL | -   | 500 | -   | kΩ |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Limits mentioned with temperature range are verified by design.

#### **BLOCK DIAGRAM**



Figure 2. Block Diagram

#### **PIN INFORMATION**



Figure 3. Pin Assignment

Figure 4. Recommended PCB Layout Image

#### Table 1. PIN FUNCTION

| Pin No.    | Pin Name | Description                                                        |
|------------|----------|--------------------------------------------------------------------|
| A1         | SWP2     | Boost converter2 switch pin                                        |
| A2         | OUTP2    | Boost converter2 output (VAVDD)                                    |
| A3, B3     | PVIN     | Inverting buck-boost converter power stage supply voltage          |
| A4         | SWN      | Inverting buck-boost converter switch pin                          |
| A5         | OUTN     | Inverting buck-boost converter output (VNEG)                       |
| B1, B2, C2 | AVIN     | Supply voltage for the device                                      |
| B4         | DCHG     | Discharge select PIN (GND is discharge OFF mode for all 3 outputs) |
| B5         | FBS_N    | Inverting buck-boost converter (VNEG) sense input                  |
| C1         | PGND2    | Boost converter2 power ground                                      |
| C3, C4, C5 | AGND     | Analog ground                                                      |
| D1         | PGND1    | Boost converter1 power ground                                      |
| D2         | TEST2    | No connection (for Test Mode only)                                 |
| D3         | TEST1    | No connection (for Test Mode only)                                 |
| D4         | EN       | Boost converter2 (AVDD) enable                                     |
| D5         | SDA      | DATA line of I <sup>2</sup> C BUS control                          |
| E1         | SWP1     | Boost converter1 switch pin                                        |
| E2         | OUTP1    | Boost converter1output (VPOS)                                      |
| E3         | FBSP1    | Boost converter1 (VPOS) sense input                                |
| E4         | CTRL     | Control line for Single Wire control                               |
| E5         | SCL      | CLK line of I <sup>2</sup> C BUS control                           |

#### **GENERAL POWER ON FLOWCHART**





#### DESCRIPTION

# 1. Boost Converters for Panel Power Supply (VPOS and VNEG)

Both boost and inverting buck-boost converters operate with fixed-frequency current-mode topology. They have a dedicated output sense pin (FBSP1 and FBS\_N) on each. Maximum output current is 300 mA and the output voltage can be programmed by communication. VPOS is selectable for 5.0/4.8/4.6 and 4.4 V and VNEG can be programmed from -1.4 V to -5.4 V with 0.1 V steps. Each default setting are 4.6 V and -2.4 V. Both output have superior Line and Load Regulation properties.

#### 2. Output Sense (FBSP1 and FBS\_N)

VPOS and VNEG have dedicated output sense pin to get higher precision for each output voltage.

#### 3. Discharge mode selection (DCHG)

Discharge mode can be selected by the condition of DCHG pin. It is common setting for all 3 outputs. In the case of pulled-high, discharge is performed at shutdown. If it was pulled-low to GND, discharging function is turned off. It can be controlled by I<sup>2</sup>C communication after setting select DCHGOFF\_SEL High.

#### 4. Boost Converter 2 for Display Driver IC (VAVDD)

Boost converter 2 uses a fixed-frequency current-mode topology. Maximum output current is 55 mA and the output voltage is selectable for 7.6/6.9/6.2 and 5.5 V with 0.7 V steps by communication. The default setting is 7.6 V.

#### 5. Enable for VAVDD (EN)

Boost converter 2 and others are operated individually. EN pin is to enable and disable only for VAVDD.

# 6. Enable and programming for VPOS and VNEG (CTRL)

The CTRL pin serves two functions: one is to enable and disable for VPOS and VNEG output, and the other is to program the output voltages. When either EN or CTRL is High, this device can receive the communication signal. When it is used only enable, CTRL is pulled high, and change disable with pulled-low.

All output voltages can be programmed in discrete steps with using simple digital interface. Please refer to Figure 6 for the timing details. When CTRL is pulled high the device starts up with its default voltages 4.6 V and -2.4 V. To control for VNEG, there is a 6-bit DAC that generates the output voltages shown in Negative output voltage levels. The interface counts the rising edges applied to the CTRL pin once the device is enabled. According to Negative output voltage levels, VNEG is programmed to -5.2 V since 39 rising edges are detected. In addition, this device can be changed PFM Mode by Programming. PFM Mode is used at light load (ex. Always ON mode).



Figure 6. Digital Interface Using CTRL

#### Table 2. TRIPLE OUTPUT VOLTAGE LEVELS AND PFM MODE (BY SWIRE)

(Default: VNEG = -2.4 V, VPOS = 4.6 V, VAVDD = 7.6 V and Normal Mode)

| Pulse | VNEG [V] |
|-------|----------|-------|----------|-------|----------|-------|----------|
| 1     | -1.4     | 12    | -2.5     | 23    | -3.6     | 34    | -4.7     |
| 2     | -1.5     | 13    | -2.6     | 24    | -3.7     | 35    | -4.8     |
| 3     | -1.6     | 14    | -2.7     | 25    | -3.8     | 36    | -4.9     |
| 4     | -1.7     | 15    | -2.8     | 26    | -3.9     | 37    | -5.0     |
| 5     | -1.8     | 16    | -2.9     | 27    | -4.0     | 38    | -5.1     |
| 6     | -1.9     | 17    | -3.0     | 28    | -4.1     | 39    | -5.2     |
| 7     | -2.0     | 18    | -3.1     | 29    | -4.2     | 40    | -5.3     |
| 8     | -2.1     | 19    | -3.2     | 30    | -4.3     | 41    | -5.4     |
| 9     | -2.2     | 20    | -3.3     | 31    | -4.4     |       |          |
| 10    | -2.3     | 21    | -3.4     | 32    | -4.5     |       |          |
| 11    | -2.4     | 22    | -3.5     | 33    | -4.6     |       |          |

| Pulse | VPOS [V] | Pulse | VAVDD [V] | Pulse | Mode         | Pulse | Mode          |
|-------|----------|-------|-----------|-------|--------------|-------|---------------|
| 42    | 4.4      | 46    | 5.5       | 50    | EL PFM       | 57    | Reserved      |
| 43    | 4.6      | 47    | 6.2       | 51    | EL Normal    | 58    | Reserved      |
| 44    | 4.8      | 48    | 6.9       | 52    | VAVDD PFM    | 59    | Reserved      |
| 45    | 5.0      | 49    | 7.6       | 53    | VAVDD Normal | 60    | Reserved      |
|       |          |       |           | 54    | Reserved     | 61    | Reserved      |
|       |          |       |           | 55    | Reserved     | 62    | Reserved      |
|       |          |       |           | 56    | Reserved     | 63    | Initial Reset |



Figure 7. SWIRE Programming Diagram

#### Table 3. SWIRE

 $(T_A = 25^{\circ}C, VIN = 3.7 V, EN = 3.7 V, VPOS = 4.6 V, VNEG = -2.4 V, VAVDD = 7.6 V, unless otherwise specified)$ 

| Parameter                                     | Symbol | Conditions | Min | Тур | Max | Unit |
|-----------------------------------------------|--------|------------|-----|-----|-----|------|
| SWIRE Setup Time from shutdown                | TSETUP |            | 300 | -   | -   | μs   |
| SWIRE High                                    | TSWH   |            | 2   | 10  | 20  | μs   |
| SWIRE Low                                     | TSWL   |            | 2   | 10  | 20  | μs   |
| Time to Valid Data                            | TVALID |            | -   | 300 | 400 | μs   |
| Time to Shut Down Delay                       | TSDD   |            | -   | 85  | -   | μs   |
| Time between First SWIRE Data to VPOS Startup | TDTM1  |            | 1   | -   | -   | μs   |
| Time Wait after Data                          | TDTM2  |            | 1   | -   | -   | μs   |
| SWIRE Rising Time                             | TR     |            | -   | -   | 200 | ns   |
| SWIRE Falling Time                            | TF     |            | -   | -   | 200 | ns   |
| Input SWIRE Frequency                         | FSWFR  |            | -   | -   | 250 | kHz  |



Figure 8. SWIRE Logic Diagram

### 7. I<sup>2</sup>C Serial Bus Communication (SDA, SCL)

BITMAP (I<sup>2</sup>C control) / I<sup>2</sup>C disable at standby

IC Address: 0111110 and 0: Write mode or 1: Read mode.

### Table 4. SERIAL BUS COMMUNICATION SPECIFICATIONS

| Parameter                 | Symbol | Conditions                                     | Min | Тур | Max  | Unit |
|---------------------------|--------|------------------------------------------------|-----|-----|------|------|
| STANDARD MODE             |        |                                                | -   |     |      |      |
| SCL Clock Frequency       | fscl   | SCL clock frequency                            | 0   | -   | 100  | kHz  |
| Data Set Up Time          | ts1    | SCL setup time relative to the fall of SDA     | 4.7 | -   | -    | μs   |
|                           | ts2    | SDA setup time relative to the rise of SCL     | 250 | -   | -    | ns   |
|                           | ts3    | SCL setup time relative to the rise of SDA     | 4.0 | -   | -    | μs   |
| Data Hold Time            | th1    | SCL data hold time relative to the rise of SDA | 4.0 | -   | -    | μs   |
|                           | th2    | SDA hold time relative to the fall of SCL      | 0   | -   | -    | μs   |
| Pulse Width               | twL    | SCL pulse width for the L period               | 4.7 | -   | -    | μs   |
|                           | twH    | SCL pulse width for the H period               | 4.0 | -   | -    | μs   |
| Input Waveform Conditions | ton    | SCL and SDA (input) rise time                  | -   | -   | 1000 | ns   |
|                           | tof    | SCL and SDA (input) fall time                  | -   | -   | 300  | ns   |
| Bus Free Time             | tbuf   | Time between STOP and START conditions         | 4.7 | -   | -    | μs   |
| FAST MODE                 |        |                                                |     |     |      |      |
| SCL Clock Frequency       | fscl   | SCL clock frequency                            | 0   | -   | 400  | kHz  |
| Data Setup Time           | ts1    | SCL setup time relative to the fall of SDA     | 0.6 | -   | -    | μs   |
|                           | ts2    | SDA setup time relative to the rise of SCL     | 100 | -   | -    | ns   |
|                           | ts3    | SCL setup time relative to the rise of SDA     | 0.6 | -   | -    | μs   |
| Data Hold Time            | th1    | SCL data hold time relative to the rise of SDA | 0.6 | -   | -    | μs   |
|                           | th2    | SDA hold time relative to the fall of SCL      | 0   | -   | -    | μs   |
| Pulse Width               | twL    | SCL pulse width for the L period               | 1.3 | -   | -    | μs   |
|                           | twH    | SCL pulse width for the H period               | 0.6 | -   | -    | μs   |
| Input Waveform Conditions | ton    | SCL and SDA (input) rise time                  | -   | -   | 300  | ns   |
|                           | tof    | SCL and SDA (input) fall time                  | -   | -   | 300  | ns   |
| Bus Free Time             | tbuf   | Time between STOP and START conditions         | 1.3 | -   | -    | μs   |



Figure 9. I<sup>2</sup>C Serial Transfer Timing Conditions

#### Input Waveform Condition and I<sup>2</sup>C Control Transmission Method

In start and stop conditions of the I<sup>2</sup>C bus, SDA should be, kept in the constant state while SCL is "H" as shown below during data transfer.







Figure 11.

When data transfer is not made, both SCL and SDA are in the "H" state.

When SCL = SDA = "H", change of SDA from "H" to "L" enables the start conditions to start access.

When SCL is "H", change of SDA from "L" to "H" enables the stop conditions to stop access.



#### Data Transfer and Acknowledgement Response

After establishment of start conditions, Data transfer is made by one byte (8-bits). Data transfer enables continuous transfer of any number of bytes. Each time of the 8-bit data is transferred, the ACK signal is sent from the receive side to the send side. The ACK signal is issued when SDA (on the send side) is released and SDA(on the receive side) is set "L" immediately after fall of the clock pulse at the SCL eighth bit of data transfer to "L". When the next 1-byte transfer is left in the receive side, the receive side releases SDA at fall of the SCL ninth clock.

In the  $I^2C$  bus, there is no CE signal. Instead, 7-bit slave address is assigned to each device and the first byte of transfer is assigned to the command (R/W) representing the 7-bit slave address and subsequent transfer direction. Note that only WRITE is valid in this IC. The 7-bit address is transferred sequentially from MSB and the eighth bit is "L" representing WRITE.



Figure 14. Input 2 Data (Register Address Auto Increment)



\*NACK  $\leftarrow$  Notify end of read by not sending out ACK

Figure 15. Output 2 Data (Register Address Auto Increment)

| Sub     |        | MSB              |                                 |              |              |              |             |             | LSB         |
|---------|--------|------------------|---------------------------------|--------------|--------------|--------------|-------------|-------------|-------------|
| Address | Access | [7]              | [6]                             | [5]          | [4]          | [3]          | [2]         | [1]         | [0]         |
| 0       | R/W    | I2C_SEL          | DCHG<br>OFF_SEL                 | DCHG_<br>POS | DCHG_<br>NEG | DCHG_<br>AVD | DCM_<br>POS | DCM_<br>NEG | DCM_<br>AVD |
|         |        | 0                | 0                               | 0            | 0            | 0            | 0           | 0           | 0           |
| 1       | R/W    | I2C_NEG_LVL[5:0] |                                 |              |              |              |             | -           |             |
|         |        | 0                | 1                               | 1            | 1            | 0            | 0           | -           |             |
| 2       | R/W    | I2C_POS          | DS_LVL[1:0] I2C_AVDD_LVL[1:0] - |              |              | -            | -           | -           |             |
|         |        | 0                | 1                               | 1            | 1            | -            | -           | -           | -           |

#### Table 5. IC ADDRESS: 0111110 AND 0: WRITE MODE OR 1: READ MODE

For Test mode allocation, you must not order to Address 3 - 31.

#### Table 6. DESCRIPTION FOR EACH ITEM IN BITMAP

| Item         | Function                                | 0 (min)       | 1 (max)          |
|--------------|-----------------------------------------|---------------|------------------|
| I2C_SEL      | Select communication method             | SWIRE         | l <sup>2</sup> C |
| DCHGOFF_SEL  | Select control of discharge<br>OFF mode | External Pin  | l <sup>2</sup> C |
| DCHG_POS     | Select VPOS discharge mode              | Discharge OFF | Discharge ON     |
| DCHG_NEG     | Select VNEG discharge mode              | Discharge OFF | Discharge ON     |
| DCHG_AVD     | Select VAVDD discharge mode             | Discharge OFF | Discharge ON     |
| DCM_POS      | Select VPOS operation mode              | Normal        | PFM              |
| DCM_NEG      | Select VNEG operation mode              | Normal        | PFM              |
| DCM_AVD      | Select VAVDD operation mode             | Normal        | PFM              |
| I2C_NEG_LVL  | Select VNEG output voltage              | –1.4 V        | –5.4 V           |
| FUSE_READ    | Select FUSE_READ Mode                   | Normal        | FUSE Read        |
| I2C_POS_LVL  | Select VPOS output voltage              | 4.4 V         | 5.0 V            |
| I2C_AVDD_LVL | Select VAVDD output voltage             | 5.5 V         | 7.6 V            |

#### 8. Soft Start and Start-Up Sequence

The devices feature a soft-start function to limit inrush current. Boost converter 2 (VAVDD) is enabled when EN goes high. When CTRL goes high, boost converter 1 starts with a reduced switch current limit and 10 ms later the inverting buck-boost converter (VNEG) starts with its default value of -2.4 V. The typical start-up sequence is shown in Figure 16. The two boost converters operate independently and boost converter 1 (VPOS) does not require boost converter 2 (VAVDD) to be in regulation in order for it to start.





#### 9. TEST1, TEST2

This is a test pin for characteristic verification to use internal evaluation. Floating is preferable.

#### **10. Short Circuits During Operation**

The device is protected against short circuits of VPOS and VNEG to ground and short circuit of these two outputs to each other. During normal operation an error condition is detected if VPOS falls below 90% for longer than 3 ms or VNEG is pulled above the programmed nominal output by 500 mV for longer than 3 ms. In either case the device goes into shutdown and the outputs are disconnected from the input. This state is latched, and to resume normal operation, VI has to cycle below the undervoltage lockout threshold, or CTRL has to toggle LOW and then HIGH.

#### 11. Thermal Shutdown

The LV52400 device enters thermal shutdown if its junction temperature exceeds 145°C (typical). During thermal shutdown none of the device's functions are available. The thermal design which does not work this

function is needed by affect concern of damage or reliability. If it becomes under 115°C (typical), the switching operation is resumed with normal operation. However, the register setting will be initialized as re-started.

#### 12. Undervoltage Lockout

The device features an undervoltage lockout function that disables it when the input supply voltage is too low for proper operation.

The recommended minimum input supply voltage for full-performance is 2.9V. The device continues to operate with input supply voltages below 2.9 V, however, full performance is not guaranteed.

#### 13. Operation with VIN ≈ VPOS (Diode Mode)

The LV52400 device features a "diode mode" that enables it to regulate its VPOS output even when the input supply voltage is close to VPOS (that is, too high for normal boost operation). When operating in diode mode the VPOS boost converter's high-side switch is disabled and its body diode used as the rectifier.

#### PACKAGE DIMENSIONS

WLCSP25 1.97x1.97x0.65 CASE 567UY ISSUE O



ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and its officers, employees, subsidiaries, and distributors harmed for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal i

Phone: 421 33 790 2910

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative