Preferred Device

Sensitive Gate Triacs

Silicon Bidirectional Thyristors

Designed for industrial and consumer applications for full wave control of ac loads such as appliance controls, heater controls, motor controls, and other power switching applications.

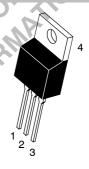
- Sensitive Gate Allows Triggering by Microcontrollers and other Logic Circuits
- High Immunity to dv/dt 50 V/µs Minimum at 125°C
- Commutating di/dt 3.0 A/ms Minimum at 125°C
- Minimum and Maximum Values of I_{GT}, V_{GT} and I_H Specified for Ease of Design
- On-State Current Rating of 4 Amperes RMS at 100°C
- High Surge Current Capability 40 Amperes
- Blocking Voltage to 800 Volts
- Rugged, Economical TO220AB Package
- Operational in Three Quadrants: Q1, Q2, and Q3
- Device Marking: Logo, Device Type, e.g., MAC4SM, Date Code

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage ⁽¹⁾ (T _J = -40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open) MAC4SM MAC4SN	V _{DRM} , V _{RRM}	600 800	Volts
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, T _C = 100°C)	I _{T(RMS)}	4.0	Amps
Peak Non-Repetitive Surge Current (One Full Cycle, 60 Hz, T _J = 125°C)	I _{TSM}	40	Amps
Circuit Fusing Consideration (t = 8.33 ms)	l ² t	6.6	A ² sec
Peak Gate Power (Pulse Width ≤∏.0 μs, T _C = 100°C)	P _{GM}	0.5	Watt
Average Gate Power (t = 8.3 ms, T _C = 100°C)	$P_{G(AV)}$	0.1	Watt
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

⁽¹⁾ V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

1



ON Semiconductor

http://onsemi.com

TRIACS 4 AMPERES RMS 600 thru 800 VOLTS

TO-220AB CASE 221A STYLE 4

	PIN ASSIGNMENT
1	Main Terminal 1
2	Main Terminal 2
3	Gate
4	Main Terminal 2

ORDERING INFORMATION

Device	Package	Shipping
MAC4SM	TO220AB	50 Units/Rail
MAC4SN	TO220AB	50 Units/Rail

Preferred devices are recommended choices for future use and best overall value.

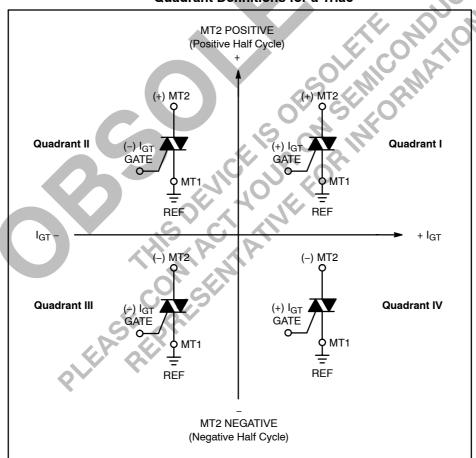
THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction to Case — Junction to Ambient	R _{θJC} R _{θJA}	2.2 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	T _L	260	°C

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted; Electricals apply in both directions)

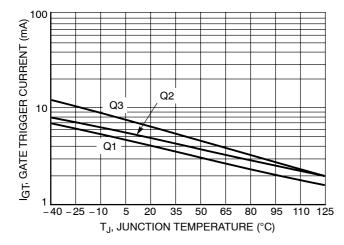
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		1	•	•	•
Peak Repetitive Blocking Current (V_D = Rated V_{DRM} , V_{RRM} ; Gate Open) $T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$				0.01 2.0	mA
ON CHARACTERISTICS					
Peak On-State Voltage ⁽¹⁾ (I _{TM} = ±6.0 A)	V _{TM}		1.3	1.6	V
Gate Trigger Current (Continuous dc) (V_D = 12 V, R_L = 100 Ω) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)	I _{GT}	2.9 2.9 2.9	4.0 4.7 6.0	10 10 10	mA
Holding Current (V _D = 12 V, Gate Open, Initiating Current = ±200 mA)	I _H	2.0	5.0	15	mA
Latching Current (V_D = 12 V, I_G = 10 mA) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)	1200		6,0 15 6.0	30 30 30	mA
Gate Trigger Voltage (Continuous dc) (V_D = 12 V, R_L = 100 Ω) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)	V _{GT}	0.5 0.5 0.5	0.7 .65 0.7	1.3 1.3 1.3	V
DYNAMIC CHARACTERISTICS	70.50)			
Rate of Change of Commutating Current ($V_D = 400~V$, $I_{TM} = 3.5~A$, Commutating dv/dt = 10 V/ μ s, Gate Open $T_J = 125^{\circ}$ C, f = 500 Hz, $C_L = 5.0~\mu$ F, $L_L = 20$ mH, No Snubber)	(di/dt) _c	3.0	4.0	_	A/ms
Critical Rate of Rise of Off-State Voltage (V _D = 0.67 x Rated V _{DRM} , Exponential Waveform, Gate Open, T _J = 125°C)	dv/dt	50	150	_	V/µs
Repetitive Critical Rate of Rise of On-State Current IPK = 50 A; PW = 40 μsec; diG/dt = 200 mA/μsec; f = 60 Hz	di/dt	_	_	10	A/μs

IPK = 50 A; Pvv = 40 μsec, αια/αι - 200 με γ_κ200, ...


(1) Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2%.

Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current



Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

Figure 1. Typical Gate Trigger Current versus Junction Temperature

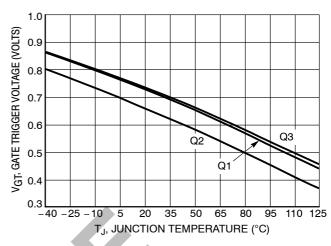


Figure 2. Typical Gate Trigger Voltage versus Junction Temperature

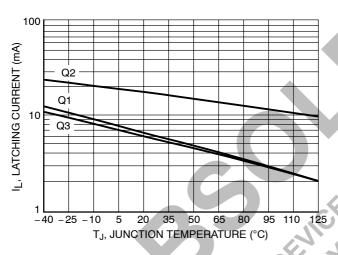
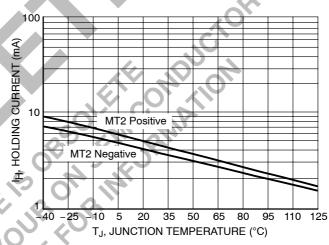



Figure 3. Typical Latching Current versus Junction Temperature

Figure 4. Typical Holding Current versus Junction Temperature

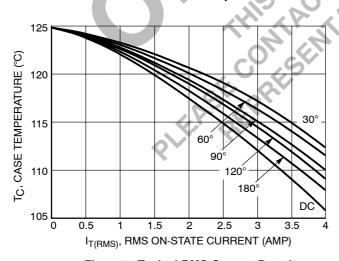


Figure 5. Typical RMS Current Derating

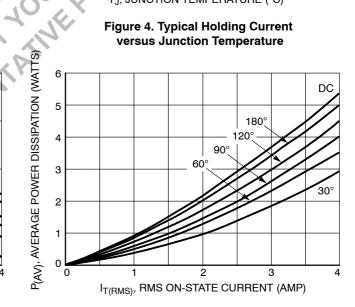
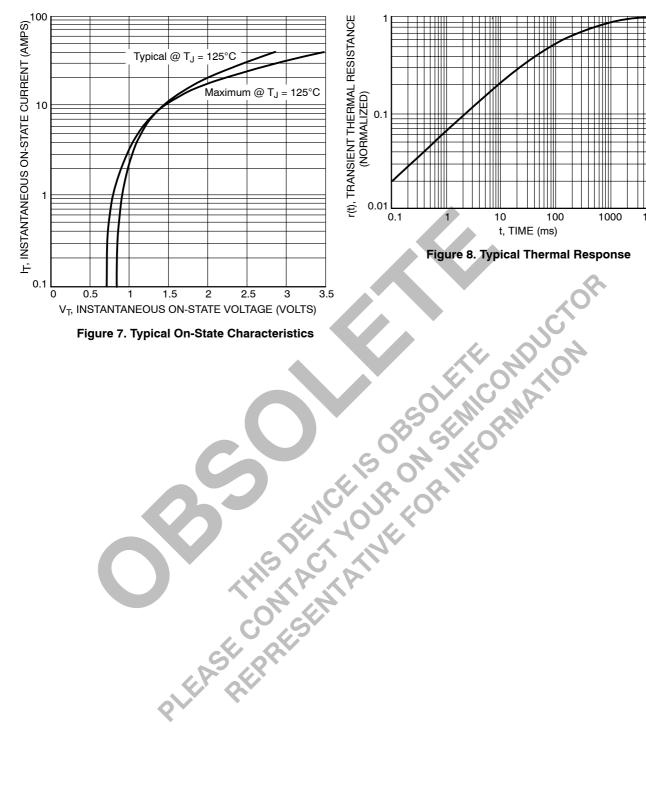
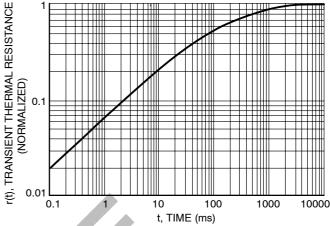
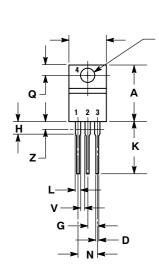
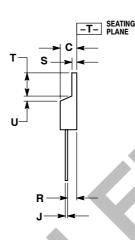


Figure 6. On-State Power Dissipation


Figure 7. Typical On-State Characteristics

PACKAGE DIMENSIONS

TO-220AB CASE 221A-09 **ISSUE Z**

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
- CONTROLLING DIMENSION: INCH.
- DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE 3. ALLOWED

IM.	INC	CHES	MILLI	METER
	MIN	MAX	MIN	MAX
	0.570	0.620	14.48	15.7
	0.380	0.405	9.66	10.2
	0.160	0.190	4.07 0.64	4.8 0.8
	0.142	0.035	3.61	3.7
	0.142	0.147	2.42	2.6
	0.110	0.103	2.80	3.9
	0.018	0.025	0.46	0.6
	0.500	0.562	12.70	14.
$\overline{}$	0.045	0.060	1.15	1.5
	0.190	0.210	4.83	5.3
	0.100	0.120	2.54	3.0
R C	0.080	0.110	2.04	2.7
S 0	0.045	0.055	1.15	1.3
T C	0.235	0.255	5.97	6.4
	0.000	0.050	0.00	1.2
V 0	0.045		1.15	
Z		0.080		2.0
77.		$\mathcal{O}_{I_{I}}$	7	
YLE 4:	4:			
PIN 1.	i. MAI	IN TERM		
2.		İN TERMI	INAL 2	
3.			INIALO	
4.	+. MAI	IN TERM	INAL 2	

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) solicit esserves the right to make changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative