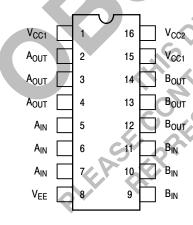

Dual 3-Input/3-Ouput OR Gate


The ability to control three parallel lines from a single point makes the MC10110 particularly useful in clock distribution applications where minimum clock skew is desired. Three V_{CC} pins are provided and each one should be used.

- $P_D = 80 \text{ mW typ/pkg (No Load)}$
- $t_{pd} = 2.4 \text{ ns typ (All Outputs Loaded)}$
- t_r , $t_f = 2.2$ ns typ (20%–80%)

LOGIC DIAGRAM

DIP PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

ON Semiconductor

http://onsemi.com

CDIP-16 **L SUFFIX CASE 620**

PDIP-16 P SUFFIX **CASE 648**

PLCC-20 **FN SUFFIX CASE 775**

= Assembly Location

= Wafer Lot YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping		
MC10110L	CDIP-16	25 Units / Rail		
MC10110P	PDIP-16	25 Units / Rail		
MC10110FN	PLCC-20	46 Units / Rail		

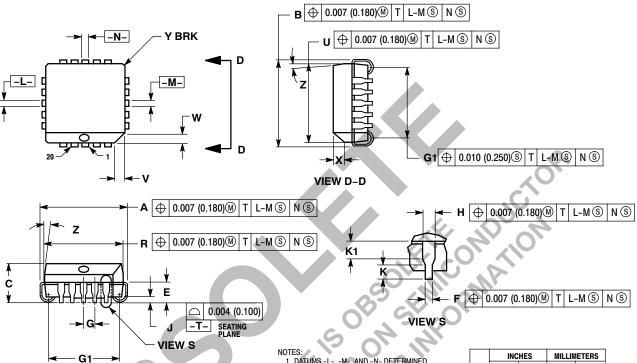
1

ELECTRICAL CHARACTERISTICS

Characteristic				Test Limits		_				
		Pin Under	−30°C		+25°C		+85°C			
No. 10 0 1 1 David O 11 11	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply Drain Current	Ι _Ε	8		42		30	38		42	mAdd
nput Current	I _{inH}	5, 6, 7		680			425		425	μAdc
	I _{inL}	5, 6, 7	0.5		0.5			0.3		μAdc
Output Voltage Logic 1	V _{OH}	2	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc
		3 4	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960		-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									Vala
Output Voltage Logic 0	V _{OL}	2 3	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850		-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc
		4	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	
hreshold Voltage Logic 1	V _{OHA}	2	-1.080		-0.980			-0.910		Vdc
		3 4	-1.080 -1.080		-0.980 -0.980			-0.910 -0.910		
Threshold Voltage Logic 0	V		-1.000	-1.655	-0.300		-1.630	-0.510	-1.595	Vdc
Theshold voltage Logic o	V_{OLA}	2 3		-1.655 -1.655			-1.630 -1.630		-1.595 -1.595	vuc
		4		-1.655			-1.630	(C)	-1.595	
Switching Times (50Ω Load)							(2		ns
Propagation Delay	t ₅₊₂₊	2	1.4	3.5	1.4	2.4	3.5	1.5	3.8	
	t ₅₋₂₋	2	1.4	3.5	1.4	2.4	3.5	1.5	3.8	
	t ₅₊₃₊ t ₅₋₃₋	3	1.4 1.4	3.5 3.5	1.4 1.4	2.4 2.4	3.5 3.5	1.5 1.5	3.8 3.8	
	t ₅₊₄₊	4	1.4	3.5	1.4	2.4	3.5	1.5	3.8	
	t ₅₋₄₋	4	1.4	3.5	1.4	2.4	3.5	1.5	3.8	
Rise Time (20 to 80%)	t ₂₊	2	1.0 1.0	3.5	1.1	2.2	3.5 3.5	1.2 1.2	3.8 3.8	
	t ₃₊ t ₄₊	3 4	1.0	3.5 3.5	13	2.2 2.2	3.5 3.5	1.2	3.8	
Fall Time (20 to 80%)	t ₂₋	2	1.0	3.5	1.1	2.2	3.5	1.2	3.8	
	t ₃₋	3	1.0	3.5	1.1	2.2	3.5	1.2	3.8	
	t ₄₋	4	1.0	3.5	1.1	2.2	3.5	1.2	3.8	

ELECTRICAL CHARACTERISTICS (continued)

			TEST VO	LTAGE VALU	JES (Volts)		
@ Test Te	mperature	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	
	-30°C	-0.890	-1.890	-1.205	-1.500	-5.2	
	+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	
	+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
Dia.			TEST VOLTAGE APPLIED TO PINS LISTED BELOW				
Symbol	Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	(V _{CC}) Gnd
ΙE	8					8	1, 15, 16
I _{inH}	5, 6, 7	*				8	1, 15, 16
I _{inL}	5, 6, 7		*			8	1, 15, 16
V _{OH}	2 3 4	5 6 7				8 8	1, 15, 16 1, 15, 16 1, 15, 16
V _{OL}	2 3 4			•		8 8 8	1, 15, 16 1, 15, 16 1, 15, 16
V _{OHA}	2 3 4			5 6 7	NON	8 8 8	1, 15, 16 1, 15, 16 1, 15, 16
V _{OLA}	2 3 4		S		5 6 7	8 8 8	1, 15, 16 1, 15, 16 1, 15, 16
			0	Pulse In	Pulse Out	-3.2 V	+2.0 V
t ₅₊₂₊ t ₅₋₂₋ t ₅₊₃₊ t ₅₋₃₋ t ₅₊₄₊ t ₅₋₄₋	2 2 3 3 4 4	ICE IS	RON	5 5 5 5 5 5	2 2 3 3 4 4	8 8 8 8	1, 15, 16 1, 15, 16 1, 15, 16 1, 15, 16 1, 15, 16 1, 15, 16
t ₂₊ t ₃₊ t ₄₊ t ₂₋ t ₃₋	2 3 4 2 3	MAT		5 5 5 5	2 3 4 2 3	8 8 8 8	1, 15, 16 1, 15, 16 1, 15, 16 1, 15, 16 1, 15, 16
	Symbol IE IinH IinL VOH VOLA VOLA t5+2+ t5-2- t5+3+ t5-3- t5+4+ t5-4- t2+ t3+ t4+ t4+	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-30°C	@ Test Temperature V _{ILmin} V _{ILmin} -30°C -0.890 -1.890 +25°C -0.810 -1.850 +85°C -0.700 -1.825 Symbol Pin Under Test VIHmax VIHmax VILmin Ie 8 VIHmax VILmin VOH 2 5 3 6 4 YOH 2 5 3 6 7 VOHA 2 3 4 4 4 VOLA 2 3 4 4 4 VOLA 2 3 4 4 4 VOLA 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Weight Volume Vilumin Vilhamin −30°C −0.890 −1.890 −1.205 +25°C −0.810 −1.850 −1.105 +85°C −0.700 −1.825 −1.035 Pin Under Test VIHmax VILmin VIHAmin Ie 8 8 Imin 5, 6, 7 * * VoH 2 5 6 3 6 7 * VOL 2 3 6 4 7 * * VOHA 2 3 6 7 VOLA 2 5 3 4 7 * Pulse In 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 7 * 5 5 5 5 5 5 </td <td>-30°C</td> <td>@ Test Temperature -30°C V_{ILmin} V_{ILAmax} V_E +25°C −0.890 −1.890 −1.205 −1.500 −5.2 +25°C −0.810 −1.850 −1.105 −1.475 −5.2 +85°C −0.700 −1.825 −1.035 −1.440 −5.2 Pin Under Test VIHmax VILmin VIHmin VIHmin VILMIN VILMIN</td>	-30°C	@ Test Temperature -30°C V _{ILmin} V _{ILAmax} V _E +25°C −0.890 −1.890 −1.205 −1.500 −5.2 +25°C −0.810 −1.850 −1.105 −1.475 −5.2 +85°C −0.700 −1.825 −1.035 −1.440 −5.2 Pin Under Test VIHmax VILmin VIHmin VIHmin VILMIN VILMIN


^{*} Individually test each input using the pin connections shown.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to –2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

PACKAGE DIMENSIONS

PLCC-20 **FN SUFFIX**

PLASTIC PLCC PACKAGE CASE 775-02 **ISSUE C**

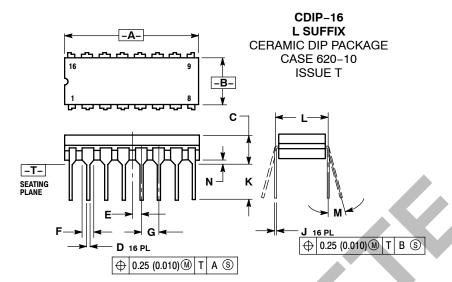
- OTES:

 1. DATUMS -L-, -M-, AND -N- DETERMINED

 WHERE TOP OF LEAD SHOULDER EXITS PLASTIC

0.010 (0.250) T L-M N N

- WHERE 10P LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.

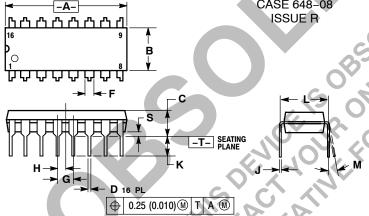

 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T -, SEATING PLANE.

 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
 DIMENSIONING AND TOLERANCING PER ANSI

- 714.5M, 1982.
 5. CONTROLLING DIMENSION: INCH.
 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO .0.12 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP
- AND BOTTOM OF THE PLASTIC BODY.
 DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	0.385	0.395	9.78	10.03		
В	0.385	0.395	9.78	10.03		
С	0.165	0.180	4.20	4.57		
Е	0.090	0.110	2.29	2.79		
F	0.013	0.019	0.33	0.48		
G	0.050	BSC	1.27	1.27 BSC		
Н	0.026	0.032	0.66	0.81		
J	0.020		0.51			
K	0.025		0.64			
R	0.350	0.356	8.89	9.04		
U	0.350	0.356	8.89	9.04		
٧	0.042	0.048	1.07	1.21		
W	0.042	0.048	1.07	1.21		
Х	0.042	0.056	1.07	1.42		
Υ		0.020		0.50		
Z	2°	10°	2 °	10 °		
G1	0.310	0.330	7.88	8.38		
K1	0.040		1.02			

PACKAGE DIMENSIONS



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC

	INC	HES	MILLIMETERS			
DIM	MIN MAX		MIN	MAX		
Α	0.750	0.785	19.05	19.93		
В	0.240	0.295	6.10	7.49		
С		0.200		5.08		
D	0.015	0.020	0.39	0.50		
E	0.050	BSC	1.27 BSC			
F	0.055 0.065		1.40	1.65		
G	0.100	BSC	2.54 BSC			
, н	0.008	0.015	0.21	0.38		
K	0.125	0.170	3.18	4.31		
L	0.300	BSC	7.62 BSC			
M	0°	15°	0°	15°		
N	0.020	0.040	0.51	1.01		

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIMETERS		
DIM	MIN MAX		MIN	MAX	
PΑ	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10°	0°	10 °	
S	0.020	0.040	0.51	1.01	

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative